1
|
Ravon B, Méhaignerie P, Machu Y, Hernández AD, Favier M, Raimond JM, Brune M, Sayrin C. Array of Individual Circular Rydberg Atoms Trapped in Optical Tweezers. PHYSICAL REVIEW LETTERS 2023; 131:093401. [PMID: 37721832 DOI: 10.1103/physrevlett.131.093401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/24/2023] [Indexed: 09/20/2023]
Abstract
Circular Rydberg atoms (CRAs), i.e., Rydberg atoms with maximal orbital momentum, are highly promising for quantum computation, simulation, and sensing. They combine long natural lifetimes with strong interatomic interactions and coupling to electromagnetic fields. Trapping individual CRAs is essential to harness these unique features. We report the first demonstration of CRAs laser trapping in a programmable array of optical bottle beams. We observe the decay of a trapped rubidium circular level over 5 ms using a novel optical detection method. This first optical detection of alkali CRAs is both spatially and level selective. We finally observe the mechanical oscillations of the CRAs in the traps. This work opens the route to the use of circular levels in quantum devices. It is also promising for quantum simulation and information processing using the full extent of Rydberg manifolds.
Collapse
Affiliation(s)
- B Ravon
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11 place Marcelin Berthelot, F-75231 Paris, France
| | - P Méhaignerie
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11 place Marcelin Berthelot, F-75231 Paris, France
| | - Y Machu
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11 place Marcelin Berthelot, F-75231 Paris, France
| | - A Durán Hernández
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11 place Marcelin Berthelot, F-75231 Paris, France
| | - M Favier
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11 place Marcelin Berthelot, F-75231 Paris, France
| | - J M Raimond
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11 place Marcelin Berthelot, F-75231 Paris, France
| | - M Brune
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11 place Marcelin Berthelot, F-75231 Paris, France
| | - C Sayrin
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-Université PSL, Sorbonne Université, 11 place Marcelin Berthelot, F-75231 Paris, France
| |
Collapse
|
2
|
Wang ZB, Gu C, Hu XX, Zhang YT, Zhang JZ, Li G, He XD, Zou XB, Dong CH, Guo GC, Zou CL. Controllable atomic collision in a tight optical dipole trap. OPTICS LETTERS 2023; 48:1064-1067. [PMID: 36791011 DOI: 10.1364/ol.479036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Single atoms are interesting candidates for studying quantum optics and quantum information processing. Recently, trapping and manipulation of single atoms using tight optical dipole traps has generated considerable interest. Here we report an experimental investigation of the dynamics of atoms in a modified optical dipole trap with a backward propagating dipole trap beam, where a change in the two-atom collision rate by six times has been achieved. The theoretical model presented gives a prediction of high probabilities of few-atom loading rates under proper experimental conditions. This work provides an alternative approach to the control of the few-atom dynamics in a dipole trap and the study of the collective quantum optical effects of a few atoms.
Collapse
|
3
|
Mei Y, Li Y, Nguyen H, Berman PR, Kuzmich A. Trapped Alkali-Metal Rydberg Qubit. PHYSICAL REVIEW LETTERS 2022; 128:123601. [PMID: 35394296 DOI: 10.1103/physrevlett.128.123601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Rydberg interactions of trapped alkali-metal atoms are used widely to facilitate quantum gate operations in quantum processors and repeaters. In most laboratory realizations using this protocol, the Rydberg states are repelled by the trapping laser fields, requiring that the fields be turned off during gate operations. Here we create a quasi-two-level system in a regime of Rydberg excitation blockade for a mesoscopic Rb ensemble of several hundred atoms confined in a magic-wavelength optical lattice. We observe many-body Rabi oscillations between the ground and collective Rydberg state. In addition we use Ramsey interference techniques to obtain the light shifts of both the lower and upper states of the collective qubit. Whereas the coupling producing the Rabi oscillations is enhanced by a factor of sqrt[N], there is no corresponding enhancement for the light shifts. We derive an effective two-level model which is in good agreement with our observations. Trapped Rydberg qubits and an effective two-level description are expected to have broad applicability for studies of quantum simulation and networking using collective encoding in ensembles of neutral atoms.
Collapse
Affiliation(s)
- Y Mei
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Y Li
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - H Nguyen
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - P R Berman
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A Kuzmich
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
4
|
Sun PF, Yu Y, An ZY, Li J, Yang CW, Bao XH, Pan JW. Deterministic Time-Bin Entanglement between a Single Photon and an Atomic Ensemble. PHYSICAL REVIEW LETTERS 2022; 128:060502. [PMID: 35213187 DOI: 10.1103/physrevlett.128.060502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Hybrid matter-photon entanglement is the building block for quantum networks. It is very favorable if the entanglement can be prepared with a high probability. In this Letter, we report the deterministic creation of entanglement between an atomic ensemble and a single photon by harnessing the Rydberg blockade. We design a scheme that creates entanglement between a single photon's temporal modes and the Rydberg levels that host a collective excitation, using a process of cyclical retrieving and patching. The hybrid entanglement is tested via retrieving the atomic excitation as a second photon and performing correlation measurements, which suggest an entanglement fidelity of 87.8%. Our source of matter-photon entanglement will enable the entangling of remote quantum memories with much higher efficiency.
Collapse
Affiliation(s)
- Peng-Fei Sun
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong Yu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Ye An
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chao-Wei Yang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Hui Bao
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Controlled multi-photon subtraction with cascaded Rydberg superatoms as single-photon absorbers. Nat Commun 2021; 12:4328. [PMID: 34267206 PMCID: PMC8282843 DOI: 10.1038/s41467-021-24522-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/23/2021] [Indexed: 12/03/2022] Open
Abstract
The preparation of light pulses with well-defined quantum properties requires precise control at the individual photon level. Here, we demonstrate exact and controlled multi-photon subtraction from incoming light pulses. We employ a cascaded system of tightly confined cold atom ensembles with strong, collectively enhanced coupling of photons to Rydberg states. The excitation blockade resulting from interactions between Rydberg atoms limits photon absorption to one per ensemble and rapid dephasing of the collective excitation suppresses stimulated re-emission of the photon. We experimentally demonstrate subtraction with up to three absorbers. Furthermore, we present a thorough theoretical analysis of our scheme where we identify weak Raman decay of the long-lived Rydberg state as the main source of infidelity in the subtracted photon number and investigate the performance of the multi-photon subtractor for increasing absorber numbers in the presence of Raman decay. Interaction of photons with Rydberg atoms can be used to modify quantum states of light. Here the authors demonstrate a controlled nonlinear quantum behavior of multi-photon subtraction in a cascaded system based on Rydberg superatoms.
Collapse
|
6
|
Lampen J, Duspayev A, Nguyen H, Tamura H, Berman PR, Kuzmich A. Hanbury Brown-Twiss Correlations for a Driven Superatom. PHYSICAL REVIEW LETTERS 2019; 123:203603. [PMID: 31809095 DOI: 10.1103/physrevlett.123.203603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Hanbury Brown-Twiss interference and stimulated emission, two fundamental processes in atomic physics, have been studied in a wide range of applications in science and technology. We study interference effects that occur when a weak probe is sent through a gas of two-level atoms that are prepared in a singly excited collective (Dicke or "superatom") state and for atoms prepared in a factorized state. We measure the time-integrated second-order correlation function g^{(2)} of the output field as a function of the delay τ between the input probe field and radiation emitted by the atoms and find that, for the Dicke state, g^{(2)} is twice as large for τ=0 as it is for γ_{e}τ≫1 (γ_{e} is an excited state decay rate), while for the product state, this ratio is equal to 3/2. The results agree with those of a theoretical model in which any effects related to stimulated emission are totally neglected-the coincidence counts measured in our experiment arise from Hanbury Brown-Twiss interference between the input field and the field radiated by the atoms.
Collapse
Affiliation(s)
- J Lampen
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A Duspayev
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - H Nguyen
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - H Tamura
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - P R Berman
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A Kuzmich
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
7
|
Li J, Zhou MT, Yang CW, Sun PF, Liu JL, Bao XH, Pan JW. Semideterministic Entanglement between a Single Photon and an Atomic Ensemble. PHYSICAL REVIEW LETTERS 2019; 123:140504. [PMID: 31702192 DOI: 10.1103/physrevlett.123.140504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Indexed: 06/10/2023]
Abstract
Entanglement between a single photon and a matter qubit is an indispensable resource for quantum repeater and quantum networks. With atomic ensembles, the entanglement creation probability is typically very low to inhibit high-order events. In this paper, we propose and experimentally realize a scheme that creates atom-photon entanglement with an intrinsic efficiency of 50%. We make use of Rydberg blockade to generate two collective excitations, lying in separate internal states. By introducing the momentum degree of freedom for the excitations, and interfering them via Raman coupling, we entangle the two excitations. Via retrieving one excitation, we create the entanglement between the polarization of a single photon and the momentum of the remaining atomic excitation, with a measured fidelity of 0.901(8). The retrieved optical field is verified to be genuine single photons. The realized entanglement may be employed to create entanglement between two distant nodes in a fully heralded way and with a much higher efficiency.
Collapse
Affiliation(s)
- Jun Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ming-Ti Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chao-Wei Yang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Peng-Fei Sun
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Long Liu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao-Hui Bao
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China and CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
8
|
Liu JZ, Chen NY, Liu WQ, Wei HR, Hua M. Hyperparallel transistor, router and dynamic random access memory with unity fidelities. OPTICS EXPRESS 2019; 27:21380-21394. [PMID: 31510217 DOI: 10.1364/oe.27.021380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 06/23/2019] [Indexed: 06/10/2023]
Abstract
We theoretically implement some hyperparallel optical elements, including quantum single photon transistor, router, and dynamic random access memory (DRAM). The inevitable side leakage and the imperfect birefringence of the quantum dot (QD)-cavity mediates are taken into account, and unity fidelities of our optical elements can be achieved. The hyperparallel constructions are based on polarization and spatial degrees of freedom (DOFs) of the photon to increase the parallel efficiency, improve the capacity of channel, save the quantum resources, reduce the operation time, and decrease the environment noises. Moreover, the practical schemes are robust against the side leakage and the coupling strength limitation in the microcavities.
Collapse
|
9
|
Petrosyan D, Mølmer K. Deterministic Free-Space Source of Single Photons Using Rydberg Atoms. PHYSICAL REVIEW LETTERS 2018; 121:123605. [PMID: 30296151 DOI: 10.1103/physrevlett.121.123605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Indexed: 06/08/2023]
Abstract
We propose an efficient free-space scheme to create single photons in a well-defined spatiotemporal mode. To that end, we first prepare a single source atom in an excited Rydberg state. The source atom interacts with a large ensemble of ground-state atoms via a laser-mediated dipole-dipole exchange interaction. Using an adiabatic passage with a chirped laser pulse, we produce a spatially extended spin wave of a single Rydberg excitation in the ensemble, accompanied by the transition of the source atom to another Rydberg state. The collective atomic excitation can then be converted to a propagating optical photon via a coherent coupling field. In contrast to previous approaches, our single-photon source does not rely on the strong coupling of a single emitter to a resonant cavity, nor does it require the heralding of collective excitation or complete Rydberg blockade of multiple excitations in the atomic ensemble.
Collapse
Affiliation(s)
- David Petrosyan
- Institute of Electronic Structure and Laser, FORTH, GR-71110 Heraklion, Crete, Greece
| | - Klaus Mølmer
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
10
|
Kumlin J, Hofferberth S, Büchler HP. Emergent Universal Dynamics for an Atomic Cloud Coupled to an Optical Waveguide. PHYSICAL REVIEW LETTERS 2018; 121:013601. [PMID: 30028171 DOI: 10.1103/physrevlett.121.013601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Indexed: 06/08/2023]
Abstract
We study the dynamics of a single collective excitation in a cold ensemble of atoms coupled to a one-dimensional waveguide. The coupling between the atoms and the photonic modes provides a coherent and a dissipative dynamics for this collective excitation. While the dissipative part accounts for the collectively enhanced and directed emission of photons, we find a remarkable universal dynamics for increasing atom numbers exhibiting several revivals under the coherent part. While this phenomenon provides a limit on the intrinsic dephasing for such a collective excitation, a setup is presented where the universal dynamics can be explored.
Collapse
Affiliation(s)
- Jan Kumlin
- Institute for Theoretical Physics III and Center for Integrated Quantum Science and Technology, University of Stuttgart, 70550 Stuttgart, Germany
| | - Sebastian Hofferberth
- Department of Physics, Chemistry and Pharmacy, Physics@SDU, University of Southern Denmark, 5320 Odense, Denmark
| | - Hans Peter Büchler
- Institute for Theoretical Physics III and Center for Integrated Quantum Science and Technology, University of Stuttgart, 70550 Stuttgart, Germany
| |
Collapse
|
11
|
Tresp C, Zimmer C, Mirgorodskiy I, Gorniaczyk H, Paris-Mandoki A, Hofferberth S. Single-Photon Absorber Based on Strongly Interacting Rydberg Atoms. PHYSICAL REVIEW LETTERS 2016; 117:223001. [PMID: 27925746 DOI: 10.1103/physrevlett.117.223001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Indexed: 06/06/2023]
Abstract
We report on the realization of a free-space single-photon absorber, which deterministically absorbs exactly one photon from an input pulse. Our scheme is based on the saturation of an optically thick medium by a single photon due to Rydberg blockade. By converting one absorbed input photon into a stationary Rydberg excitation, decoupled from the light field through fast engineered dephasing, we blockade the full atomic cloud and change our optical medium from opaque to transparent. We show that this results in the subtraction of one photon from the input pulse over a wide range of input photon numbers. We investigate the change of the pulse shape and temporal photon statistics of the transmitted light pulses for different input photon numbers and compare the results to simulations. Based on the experimental results, we discuss the applicability of our single-photon absorber for number resolved photon detection schemes or quantum gate operations.
Collapse
Affiliation(s)
- C Tresp
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - C Zimmer
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - I Mirgorodskiy
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - H Gorniaczyk
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - A Paris-Mandoki
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - S Hofferberth
- 5. Physikalisches Institut and Center for Integrated Quantum Science and Technology, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|
12
|
Li L, Kuzmich A. Quantum memory with strong and controllable Rydberg-level interactions. Nat Commun 2016; 7:13618. [PMID: 27869195 PMCID: PMC5121357 DOI: 10.1038/ncomms13618] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 10/19/2016] [Indexed: 11/29/2022] Open
Abstract
Realization of distributed quantum systems requires fast generation and long-term storage of quantum states. Ground atomic states enable memories with storage times in the range of a minute, however their relatively weak interactions do not allow fast creation of non-classical collective states. Rydberg atomic systems feature fast preparation of singly excited collective states and their efficient mapping into light, but storage times in these approaches have not yet exceeded a few microseconds. Here we demonstrate a system that combines fast quantum state generation and long-term storage. An initially prepared coherent state of an atomic memory is transformed into a non-classical collective atomic state by Rydberg-level interactions in less than a microsecond. By sheltering the quantum state in the ground atomic levels, the storage time is increased by almost two orders of magnitude. This advance opens a door to a number of quantum protocols for scalable generation and distribution of entanglement. Quantum information processing requires long-storage time of quantum states, but this typically comes at the expense of their addressability. Here the authors developed a method that exploits interaction between Rydberg and ground states of an atom reporting fast state generation and long-term storage.
Collapse
Affiliation(s)
- Lin Li
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A Kuzmich
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
13
|
Barredo D, de Léséleuc S, Lienhard V, Lahaye T, Browaeys A. An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays. Science 2016; 354:1021-1023. [PMID: 27811285 DOI: 10.1126/science.aah3778] [Citation(s) in RCA: 170] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/07/2016] [Indexed: 11/02/2022]
Abstract
Large arrays of individually controlled atoms trapped in optical tweezers are a very promising platform for quantum engineering applications. However, deterministic loading of the traps is experimentally challenging. We demonstrate the preparation of fully loaded two-dimensional arrays of up to ~50 microtraps, each containing a single atom and arranged in arbitrary geometries. Starting from initially larger, half-filled matrices of randomly loaded traps, we obtain user-defined target arrays at unit filling. This is achieved with a real-time control system and a moving optical tweezers, which together enable a sequence of rapid atom moves depending on the initial distribution of the atoms in the arrays. These results open exciting prospects for quantum engineering with neutral atoms in tunable two-dimensional geometries.
Collapse
Affiliation(s)
- Daniel Barredo
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex, France
| | - Sylvain de Léséleuc
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex, France
| | - Vincent Lienhard
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex, France
| | - Thierry Lahaye
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex, France.
| | - Antoine Browaeys
- Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex, France
| |
Collapse
|
14
|
Li J, Zhou MT, Jing B, Wang XJ, Yang SJ, Jiang X, Mølmer K, Bao XH, Pan JW. Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble. PHYSICAL REVIEW LETTERS 2016; 117:180501. [PMID: 27835003 DOI: 10.1103/physrevlett.117.180501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Indexed: 06/06/2023]
Abstract
We demonstrate deterministic generation of two distinct collective excitations in one atomic ensemble, and we realize the Hong-Ou-Mandel interference between them. Using Rydberg blockade we create single collective excitations in two different Zeeman levels, and we use stimulated Raman transitions to perform a beam-splitter operation between the excited atomic modes. By converting the atomic excitations into photons, the two-excitation interference is measured by photon coincidence detection with a visibility of 0.89(6). The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and we demonstrate its two times enhanced sensitivity to a magnetic field compared with a single excitation. Our work implements a minimal instance of boson sampling and paves the way for further multimode and multiexcitation studies with collective excitations of atomic ensembles.
Collapse
Affiliation(s)
- Jun Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Ming-Ti Zhou
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Bo Jing
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Xu-Jie Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Sheng-Jun Yang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Xiao Jiang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Klaus Mølmer
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Xiao-Hui Bao
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| |
Collapse
|
15
|
Labuhn H, Barredo D, Ravets S, de Léséleuc S, Macrì T, Lahaye T, Browaeys A. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models. Nature 2016; 534:667-70. [DOI: 10.1038/nature18274] [Citation(s) in RCA: 437] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/11/2016] [Indexed: 11/09/2022]
|
16
|
|
17
|
Ebert M, Kwon M, Walker TG, Saffman M. Coherence and Rydberg Blockade of Atomic Ensemble Qubits. PHYSICAL REVIEW LETTERS 2015; 115:093601. [PMID: 26371650 DOI: 10.1103/physrevlett.115.093601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Indexed: 06/05/2023]
Abstract
We demonstrate |W⟩ state encoding of multiatom ensemble qubits. Using optically trapped Rb atoms, the T_{2} coherence time is 2.6(3) ms for N[over ¯]=7.6 atoms and scales approximately inversely with the number of atoms. Strong Rydberg blockade between two ensemble qubits is demonstrated with a fidelity of 0.89(1), and with a fidelity of ∼1.0 when postselected on a control ensemble excitation. These results are a significant step towards deterministic entanglement of atomic ensembles.
Collapse
Affiliation(s)
- M Ebert
- Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA
| | - M Kwon
- Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA
| | - T G Walker
- Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA
| | - M Saffman
- Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, Wisconsin 53706, USA
| |
Collapse
|
18
|
Teixeira RC, Hermann-Avigliano C, Nguyen TL, Cantat-Moltrecht T, Raimond JM, Haroche S, Gleyzes S, Brune M. Microwaves Probe Dipole Blockade and van der Waals Forces in a Cold Rydberg Gas. PHYSICAL REVIEW LETTERS 2015; 115:013001. [PMID: 26182093 DOI: 10.1103/physrevlett.115.013001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Indexed: 06/04/2023]
Abstract
We show that microwave spectroscopy of a dense Rydberg gas trapped on a superconducting atom chip in the dipole blockade regime reveals directly the dipole-dipole many-body interaction energy spectrum. We use this method to investigate the expansion of the Rydberg cloud under the effect of repulsive van der Waals forces and the breakdown of the frozen gas approximation. This study opens a promising route for quantum simulation of many-body systems and quantum information transport in chains of strongly interacting Rydberg atoms.
Collapse
Affiliation(s)
- R Celistrino Teixeira
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités, 11 place Marcelin Berthelot, 75005 Paris, France
| | - C Hermann-Avigliano
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités, 11 place Marcelin Berthelot, 75005 Paris, France
| | - T L Nguyen
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités, 11 place Marcelin Berthelot, 75005 Paris, France
| | - T Cantat-Moltrecht
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités, 11 place Marcelin Berthelot, 75005 Paris, France
| | - J M Raimond
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités, 11 place Marcelin Berthelot, 75005 Paris, France
| | - S Haroche
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités, 11 place Marcelin Berthelot, 75005 Paris, France
| | - S Gleyzes
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités, 11 place Marcelin Berthelot, 75005 Paris, France
| | - M Brune
- Laboratoire Kastler Brossel, Collège de France, CNRS, ENS-PSL Research University, UPMC-Sorbonne Universités, 11 place Marcelin Berthelot, 75005 Paris, France
| |
Collapse
|
19
|
Schauss P, Zeiher J, Fukuhara T, Hild S, Cheneau M, Macri T, Pohl T, Bloch I, Gross C. Crystallization in Ising quantum magnets. Science 2015; 347:1455-8. [DOI: 10.1126/science.1258351] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Barredo D, Labuhn H, Ravets S, Lahaye T, Browaeys A, Adams CS. Coherent excitation transfer in a spin chain of three Rydberg atoms. PHYSICAL REVIEW LETTERS 2015; 114:113002. [PMID: 25839265 DOI: 10.1103/physrevlett.114.113002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Indexed: 06/04/2023]
Abstract
We study coherent excitation hopping in a spin chain realized using highly excited individually addressable Rydberg atoms. The dynamics are fully described in terms of an XY spin Hamiltonian with a long range resonant dipole-dipole coupling that scales as the inverse third power of the lattice spacing, C(3)/R(3). The experimental data demonstrate the importance of next neighbor interactions which are manifest as revivals in the excitation dynamics. The results suggest that arrays of Rydberg atoms are ideally suited to large scale, high-fidelity quantum simulation of spin dynamics.
Collapse
Affiliation(s)
- Daniel Barredo
- Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris Sud 11, 2 avenue Augustin Fresnel, 91127 Palaiseau cedex, France
| | - Henning Labuhn
- Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris Sud 11, 2 avenue Augustin Fresnel, 91127 Palaiseau cedex, France
| | - Sylvain Ravets
- Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris Sud 11, 2 avenue Augustin Fresnel, 91127 Palaiseau cedex, France
| | - Thierry Lahaye
- Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris Sud 11, 2 avenue Augustin Fresnel, 91127 Palaiseau cedex, France
| | - Antoine Browaeys
- Laboratoire Charles Fabry, UMR 8501, Institut d'Optique, CNRS, Université Paris Sud 11, 2 avenue Augustin Fresnel, 91127 Palaiseau cedex, France
| | - Charles S Adams
- Joint Quantum Centre (JQC) Durham-Newcastle, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
21
|
Gorniaczyk H, Tresp C, Schmidt J, Fedder H, Hofferberth S. Single-photon transistor mediated by interstate Rydberg interactions. PHYSICAL REVIEW LETTERS 2014; 113:053601. [PMID: 25126918 DOI: 10.1103/physrevlett.113.053601] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Indexed: 06/03/2023]
Abstract
We report on the realization of an all-optical transistor by mapping gate and source photons into strongly interacting Rydberg excitations with different principal quantum numbers in an ultracold atomic ensemble. We obtain a record switch contrast of 40% for a coherent gate input with mean photon number one and demonstrate attenuation of source transmission by over ten photons with a single gate photon. We use our optical transistor to demonstrate the nondestructive detection of a single Rydberg atom with a fidelity of 0.72(4).
Collapse
Affiliation(s)
- H Gorniaczyk
- 5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - C Tresp
- 5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - J Schmidt
- 5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - H Fedder
- 3. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - S Hofferberth
- 5. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| |
Collapse
|