1
|
Xu Y, Zhao T, Kang Q, Liu C, Hu L, Liu S. Phase sensitivity of an SU(1,1) interferometer in photon-loss via photon operations. OPTICS EXPRESS 2023; 31:8414-8427. [PMID: 36859956 DOI: 10.1364/oe.484574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
We study the phase sensitivity of an SU(1,1) interferometer with photon loss by using three different photon operations schemes, i.e., performing photon-addition operation on the input port of the SU(1,1) interferometer (Scheme A), the interior of SU(1,1) interferometer (Scheme B), and both of them (Scheme C). We compare the performance of the three schemes in phase estimation by performing the same times of photon-addition operation to the mode b. The results show that Scheme B improves the phase sensitivity best in ideal case, and Scheme C performs well against internal loss, especially in the case of strong loss. All the three schemes can beat the standard quantum limit in the presence of photon loss, but Scheme B and Scheme C can break through the standard quantum limit in a larger loss range.
Collapse
|
2
|
Grebien S, Göttsch J, Hage B, Fiurášek J, Schnabel R. Multistep Two-Copy Distillation of Squeezed States via Two-Photon Subtraction. PHYSICAL REVIEW LETTERS 2022; 129:273604. [PMID: 36638289 DOI: 10.1103/physrevlett.129.273604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Squeezed states are nonclassical resources of quantum cryptography and photonic quantum computing. The higher the squeeze factor, the greater the quantum advantage. Limitations are set by the effective nonlinearity of the pumped medium and energy loss on the squeezed states produced. Here, we experimentally analyze for the first time the multistep distillation of squeezed states that in the ideal case can approach an infinite squeeze factor. Heralded by the probabilistic subtraction of two photons, the first step increased our squeezing from 2.4 to 2.8 dB. The second step was a two-copy Gaussification, which we emulated. For this, we simultaneously measured orthogonal quadratures of the distilled state and found by probabilistic postprocessing an enhancement from 2.8 to 3.4 dB. Our new approach is able to increase the squeeze factor beyond the limit set by the effective nonlinearity of the pumped medium.
Collapse
Affiliation(s)
- Stephan Grebien
- Institut für Laserphysik & Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Julian Göttsch
- Institut für Laserphysik & Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Boris Hage
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - Jaromír Fiurášek
- Department of Optics, Faculty of Science, Palacký University, 17. listopadu 12, 77900 Olomouc, Czech Republic
| | - Roman Schnabel
- Institut für Laserphysik & Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
3
|
Liu S, Han D, Wang N, Xiang Y, Sun F, Wang M, Qin Z, Gong Q, Su X, He Q. Experimental Demonstration of Remotely Creating Wigner Negativity via Quantum Steering. PHYSICAL REVIEW LETTERS 2022; 128:200401. [PMID: 35657859 DOI: 10.1103/physrevlett.128.200401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/16/2022] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Non-Gaussian states with Wigner negativity are of particular interest in quantum technology due to their potential applications in quantum computing and quantum metrology. However, how to create such states at a remote location remains a challenge, which is important for efficiently distributing quantum resource between distant nodes in a network. Here, we experimentally prepare an optical non-Gaussian state with negative Wigner function at a remote node via local non-Gaussian operation and shared Gaussian entangled state existing quantum steering. By performing photon subtraction on one mode, Wigner negativity is created in the remote target mode. We show that the Wigner negativity is sensitive to loss on the target mode, but robust to loss on the mode performing photon subtraction. This experiment confirms the connection between the remotely created Wigner negativity and quantum steering. As an application, we present that the generated non-Gaussian state exhibits metrological power in quantum phase estimation.
Collapse
Affiliation(s)
- Shuheng Liu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
| | - Dongmei Han
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Na Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yu Xiang
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Fengxiao Sun
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Meihong Wang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhongzhong Qin
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| | - Xiaolong Su
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, Shanxi University, Taiyuan 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qiongyi He
- State Key Laboratory for Mesoscopic Physics, School of Physics, Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong 226010, Jiangsu, China
| |
Collapse
|
4
|
Liu C, Zhan M, Qiu X, Fu Z, Zhang H, Jia F. Entanglement improvement via a single-side squeezing-based quantum scissors. OPTICS EXPRESS 2022; 30:17174-17192. [PMID: 36221546 DOI: 10.1364/oe.455872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/25/2022] [Indexed: 06/16/2023]
Abstract
The entanglement improvement is theoretically investigated when applying a single-side quantum scissors (SSQS) with a local squeezing operation and two-asymmetrical beam splitters (BSs) to one mode of an input two-mode squeezed vacuum state (TMSV). It is found that the gain factor can be significantly enhanced with the increasing of local squeezing parameter at the expense of the success probability. The entanglement can also be further improved adjusting the local-squeezing or the transmissivity of BSs in a small initial squeezing region. In addition, our scheme is robust against the photon loss in TMSV. The improved effect becomes more obvious due to the presence of local squeezing. However, the case is not true for a more realistic SSQS. In both cases, the asymmetric BSs play a positive role for the entanglement improvement. These results suggest that the squeezing-based SSQS at single-photon level is beneficial to effectively improve the entanglement, which may have potential applications in quantum communication.
Collapse
|
5
|
Park J. Estimating Non-Gaussianity of a Quantum State by Measuring Orthogonal Quadratures. ENTROPY (BASEL, SWITZERLAND) 2022; 24:289. [PMID: 35205583 PMCID: PMC8871266 DOI: 10.3390/e24020289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/10/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
We derive the lower bounds for a non-Gaussianity measure based on quantum relative entropy (QRE). Our approach draws on the observation that the QRE-based non-Gaussianity measure of a single-mode quantum state is lower bounded by a function of the negentropies for quadrature distributions with maximum and minimum variances. We demonstrate that the lower bound can outperform the previously proposed bound by the negentropy of a quadrature distribution. Furthermore, we extend our method to establish lower bounds for the QRE-based non-Gaussianity measure of a multimode quantum state that can be measured by homodyne detection, with or without leveraging a Gaussian unitary operation. Finally, we explore how our lower bound finds application in non-Gaussian entanglement detection.
Collapse
Affiliation(s)
- Jiyong Park
- School of Basic Sciences, Hanbat National University, Daejeon 34158, Korea
| |
Collapse
|
6
|
Fiurášek J. Teleportation-based noiseless quantum amplification of coherent states of light. OPTICS EXPRESS 2022; 30:1466-1489. [PMID: 35209306 DOI: 10.1364/oe.443389] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
We propose and theoretically analyze a teleportation-based scheme for the high-fidelity noiseless quantum amplification of coherent states of light. In our approach, the probabilistic noiseless quantum amplification operation is encoded into a suitable auxiliary two-mode entangled state and then applied to the input coherent state via continuous-variable quantum teleportation. The scheme requires conditioning on the outcomes of homodyne measurements in the teleportation protocol. In contrast to high-fidelity noiseless quantum amplifiers based on combination of conditional single-photon addition and subtraction, the present scheme requires only photon subtraction in combination with auxiliary Gaussian squeezed vacuum states. We first provide a pure-state description of the protocol which allows us to to clearly explain its principles and functioning. Next we develop a more comprehensive model based on phase-space representation of quantum states, that accounts for various experimental imperfections such as excess noise in the auxiliary squeezed states or limited efficiency of the single-photon detectors that can only distinguish the presence or absence of photons. We present and analyze predictions of this phase-space model of the noiseless teleamplifier.
Collapse
|
7
|
Dirmeier T, Tiedau J, Khan I, Ansari V, Müller CR, Silberhorn C, Marquardt C, Leuchs G. Distillation of squeezing using an engineered pulsed parametric down-conversion source. OPTICS EXPRESS 2020; 28:30784-30796. [PMID: 33115072 DOI: 10.1364/oe.402178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Hybrid quantum information processing combines the advantages of discrete and continues variable protocols by realizing protocols consisting of photon counting and homodyne measurements. However, the mode structure of pulsed sources and the properties of the detection schemes often require the use of optical filters in order to combine both detection methods in a common experiment. This limits the efficiency and the overall achievable squeezing of the experiment. In our work, we use photon subtraction to implement the distillation of pulsed squeezed states originating from a genuinely spatially and temporally single-mode parametric down-conversion source in non-linear waveguides. Due to the distillation, we witness an improvement of 0.17 dB from an initial squeezing value of -1.648 ± 0.002 dB, while achieving a purity of 0.58, and confirm the non-Gaussianity of the distilled state via the higher-order cumulants. With this, we demonstrate the source's suitability for scalable hybrid quantum network applications with pulsed quantum light.
Collapse
|
8
|
Švarc V, Hloušek J, Nováková M, Fiurášek J, Ježek M. Feedforward-enhanced Fock state conversion with linear optics. OPTICS EXPRESS 2020; 28:11634-11644. [PMID: 32403670 DOI: 10.1364/oe.385609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/18/2020] [Indexed: 06/11/2023]
Abstract
Engineering quantum states of light represents a crucial task in the vast majority of photonic quantum technology applications. Direct manipulation of the number of photons in the light signal, such as single-photon subtraction and addition, proved to be an efficient strategy for the task. Here we propose an adaptive multi-photon subtraction scheme where a particular subtraction task is conditioned by all previous subtraction events in order to maximize the probability of successful subtraction. We theoretically illustrate this technique on the model example of conversion of Fock states via photon subtraction. We also experimentally demonstrate the core building block of the proposal by implementing a feedforward-assisted conversion of two-photon state to a single-photon state. Our experiment combines two elementary photon subtraction blocks where the splitting ratio of the second subtraction beam splitter is affected by the measurement result from the first subtraction block in real time using an ultra-fast feedforward loop. The reported optimized photon subtraction scheme applies to a broad range of photonic states, including highly nonclassical Fock states and squeezed light, advancing the photonic quantum toolbox.
Collapse
|
9
|
Marek P, Provazník J, Filip R. Loop-based subtraction of a single photon from a traveling beam of light. OPTICS EXPRESS 2018; 26:29837-29847. [PMID: 30469942 DOI: 10.1364/oe.26.029837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 09/25/2018] [Indexed: 06/09/2023]
Abstract
Manipulating light by adding and subtracting individual photons is a powerful approach with a principal drawback: the operations are fundamentally probabilistic and the probability is often small. This limits not only the fundamental scalability but also the number of operations that can be applied in realistic experimental settings. We propose and analyze a loop-based technique which can significantly increase the probability of success while preserving the quality of the photon subtraction. We show the improvement both in single mode preparation and manipulation of non-Gaussian states with negative Wigner functions and in two-mode entanglement distillation protocol with Gaussian states of light.
Collapse
|
10
|
Ding S, Maslennikov G, Hablützel R, Matsukevich D. Quantum Simulation with a Trilinear Hamiltonian. PHYSICAL REVIEW LETTERS 2018; 121:130502. [PMID: 30312083 DOI: 10.1103/physrevlett.121.130502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/12/2018] [Indexed: 06/08/2023]
Abstract
Interaction among harmonic oscillators described by a trilinear Hamiltonian ℏξ(a^{†}bc+ab^{†}c^{†}) is one of the most fundamental models in quantum optics. By employing the anharmonicity of the Coulomb potential in a linear trapped three-ion crystal, we experimentally implement it among three normal modes of motion in the strong-coupling regime, where the coupling strength is much larger than the decoherence rate of the ion motion. We use it to simulate the interaction of an atom and light as described by the Tavis-Cummings model and the process of nondegenerate parametric down-conversion in the regime of a depleted pump.
Collapse
Affiliation(s)
- Shiqian Ding
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543, Singapore
| | - Gleb Maslennikov
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543, Singapore
| | - Roland Hablützel
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543, Singapore
| | - Dzmitry Matsukevich
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543, Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore
| |
Collapse
|
11
|
Landon-Cardinal O, Govia LCG, Clerk AA. Quantitative Tomography for Continuous Variable Quantum Systems. PHYSICAL REVIEW LETTERS 2018; 120:090501. [PMID: 29547319 DOI: 10.1103/physrevlett.120.090501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 06/08/2023]
Abstract
We present a continuous variable tomography scheme that reconstructs the Husimi Q function (Wigner function) by Lagrange interpolation, using measurements of the Q function (Wigner function) at the Padua points, conjectured to be optimal sampling points for two dimensional reconstruction. Our approach drastically reduces the number of measurements required compared to using equidistant points on a regular grid, although reanalysis of such experiments is possible. The reconstruction algorithm produces a reconstructed function with exponentially decreasing error and quasilinear runtime in the number of Padua points. Moreover, using the interpolating polynomial of the Q function, we present a technique to directly estimate the density matrix elements of the continuous variable state, with only a linear propagation of input measurement error. Furthermore, we derive a state-independent analytical bound on this error, such that our estimate of the density matrix is accompanied by a measure of its uncertainty.
Collapse
Affiliation(s)
- Olivier Landon-Cardinal
- Department of Physics, McGill University, 3600 rue University, Montréal, Québec, Canada H3A 2T8
| | - Luke C G Govia
- Department of Physics, McGill University, 3600 rue University, Montréal, Québec, Canada H3A 2T8
- Institute for Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA
| | - Aashish A Clerk
- Department of Physics, McGill University, 3600 rue University, Montréal, Québec, Canada H3A 2T8
- Institute for Molecular Engineering, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA
| |
Collapse
|
12
|
Walschaers M, Fabre C, Parigi V, Treps N. Entanglement and Wigner Function Negativity of Multimode Non-Gaussian States. PHYSICAL REVIEW LETTERS 2017; 119:183601. [PMID: 29219579 DOI: 10.1103/physrevlett.119.183601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Indexed: 06/07/2023]
Abstract
Non-Gaussian operations are essential to exploit the quantum advantages in optical continuous variable quantum information protocols. We focus on mode-selective photon addition and subtraction as experimentally promising processes to create multimode non-Gaussian states. Our approach is based on correlation functions, as is common in quantum statistical mechanics and condensed matter physics, mixed with quantum optics tools. We formulate an analytical expression of the Wigner function after the subtraction or addition of a single photon, for arbitrarily many modes. It is used to demonstrate entanglement properties specific to non-Gaussian states and also leads to a practical and elegant condition for Wigner function negativity. Finally, we analyze the potential of photon addition and subtraction for an experimentally generated multimode Gaussian state.
Collapse
Affiliation(s)
- Mattia Walschaers
- Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, ENS-PSL Research University, Collège de France, CNRS; 4 place Jussieu, F-75252 Paris, France
| | - Claude Fabre
- Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, ENS-PSL Research University, Collège de France, CNRS; 4 place Jussieu, F-75252 Paris, France
| | - Valentina Parigi
- Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, ENS-PSL Research University, Collège de France, CNRS; 4 place Jussieu, F-75252 Paris, France
| | - Nicolas Treps
- Laboratoire Kastler Brossel, UPMC-Sorbonne Universités, ENS-PSL Research University, Collège de France, CNRS; 4 place Jussieu, F-75252 Paris, France
| |
Collapse
|
13
|
Fedorov IA, Ulanov AE, Kurochkin YV, Lvovsky AI. Synthesis of the Einstein-Podolsky-Rosen entanglement in a sequence of two single-mode squeezers. OPTICS LETTERS 2017; 42:132-134. [PMID: 28059196 DOI: 10.1364/ol.42.000132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We propose and implement a new scheme of generating the optical Einstein-Podolsky-Rosen entangled state. Parametric down-conversion in two nonlinear crystals, positioned back-to-back in the waist of a pump beam, produces single-mode squeezed vacuum states in orthogonal polarization modes; a subsequent beam splitting entangles them and generates the Einstein-Podolsky-Rosen state. The technique takes advantage of the strong nonlinearity associated with type-0 phase-matching configuration while, at the same time, eliminating the need for actively stabilizing the optical phase between the two single-mode squeezers. We demonstrate our method, preparing a 1.4 dB two-mode squeezed state and characterizing it via two-mode homodyne tomography.
Collapse
|
14
|
Abdelkhalek D, Syllwasschy M, Cerf NJ, Fiurášek J, Schnabel R. Efficient entanglement distillation without quantum memory. Nat Commun 2016; 7:11720. [PMID: 27241946 PMCID: PMC4895034 DOI: 10.1038/ncomms11720] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 04/22/2016] [Indexed: 11/14/2022] Open
Abstract
Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. Entanglement distribution between distant parties is an essential component to most quantum communication protocols, but losses and decoherence present in real systems degrade it. Here the authors demonstrate an efficient iterative entanglement distillation protocol that does not rely on quantum memories.
Collapse
Affiliation(s)
- Daniela Abdelkhalek
- Institut für Laserphysik, Universität Hamburg, Hamburg 22761, Germany.,Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Hannover 30167, Germany
| | - Mareike Syllwasschy
- Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Hannover 30167, Germany
| | - Nicolas J Cerf
- Quantum Information and Communication, Ecole Polytechnique de Bruxelles, CP 165, Université libre de Bruxelles, Brussels 1050, Belgium
| | - Jaromír Fiurášek
- Department of Optics, Palacký University, Olomouc 77146, Czech Republic
| | - Roman Schnabel
- Institut für Laserphysik, Universität Hamburg, Hamburg 22761, Germany.,Institut für Gravitationsphysik, Leibniz Universität Hannover and Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut), Hannover 30167, Germany
| |
Collapse
|
15
|
Harder G, Bartley TJ, Lita AE, Nam SW, Gerrits T, Silberhorn C. Single-Mode Parametric-Down-Conversion States with 50 Photons as a Source for Mesoscopic Quantum Optics. PHYSICAL REVIEW LETTERS 2016; 116:143601. [PMID: 27104708 DOI: 10.1103/physrevlett.116.143601] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Indexed: 05/14/2023]
Abstract
We generate pulsed, two-mode squeezed states in a single spatiotemporal mode with mean photon numbers up to 20. We directly measure photon-number correlations between the two modes with transition edge sensors up to 80 photons per mode. This corresponds roughly to a state dimensionality of 6400. We achieve detection efficiencies of 64% in the technologically crucial telecom regime and demonstrate the high quality of our measurements by heralded nonclassical distributions up to 50 photons per pulse and calculated correlation functions up to 40th order.
Collapse
Affiliation(s)
- Georg Harder
- Integrated Quantum Optics Group, Applied Physics, University of Paderborn, 33098 Paderborn, Germany
| | - Tim J Bartley
- Integrated Quantum Optics Group, Applied Physics, University of Paderborn, 33098 Paderborn, Germany
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
| | - Adriana E Lita
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
| | - Sae Woo Nam
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
| | - Thomas Gerrits
- National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305, USA
| | - Christine Silberhorn
- Integrated Quantum Optics Group, Applied Physics, University of Paderborn, 33098 Paderborn, Germany
| |
Collapse
|
16
|
Gong YX, Zhang S, Xu P, Zhu SN. Scheme for generating distillation-favorable continuous-variable entanglement via three concurrent parametric down-conversions in a single χ (2) nonlinear photonic crystal. OPTICS EXPRESS 2016; 24:6402-6412. [PMID: 27136831 DOI: 10.1364/oe.24.006402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We propose to generate a single-mode-squeezing two-mode squeezed vacuum state via a single χ(2) nonlinear photonic crystal. The state is favorable for existing Gaussian entanglement distillation schemes, since local squeezing operations can enhance the final entanglement and the success probability. The crystal is designed for enabling three concurrent quasi-phase-matching parametric-down conversions, and hence relieves the auxiliary on-line bi-side local squeezing operations. The compact source opens up a way for continuous-variable quantum technologies and could find more potential applications in future large-scale quantum networks.
Collapse
|
17
|
Barbieri M, Spagnolo N, Ferreyrol F, Blandino R, Smith BJ, Tualle-Brouri R. Qubit-Programmable Operations on Quantum Light Fields. Sci Rep 2015; 5:15125. [PMID: 26468614 PMCID: PMC4606785 DOI: 10.1038/srep15125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/16/2015] [Indexed: 11/25/2022] Open
Abstract
Engineering quantum operations is a crucial capability needed for developing quantum technologies and designing new fundamental physics tests. Here we propose a scheme for realising a controlled operation acting on a travelling continuous-variable quantum field, whose functioning is determined by a discrete input qubit. This opens a new avenue for exploiting advantages of both information encoding approaches. Furthermore, this approach allows for the program itself to be in a superposition of operations, and as a result it can be used within a quantum processor, where coherences must be maintained. Our study can find interest not only in general quantum state engineering and information protocols, but also details an interface between different physical platforms. Potential applications can be found in linking optical qubits to optical systems for which coupling is best described in terms of their continuous variables, such as optomechanical devices.
Collapse
Affiliation(s)
- Marco Barbieri
- Dipartimento di Scienze, Università degli Studi Roma Tre, Rome, Italy
| | - Nicolò Spagnolo
- Dipartimento di Fisica, Sapienza Università di Roma, Rome, Italy
| | - Franck Ferreyrol
- Laboratoire Photonique, Numérique et Nanostructures, Institut d'Optique, CNRS and Université de Bordeaux, Talence, France
| | - Rémi Blandino
- Centre for Quantum Computation and Communication Technology, School of Mathematics and Physics, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Brian J Smith
- Clarendon Laboratory, Department of Physics, University of Oxford, United Kingdom
| | - Rosa Tualle-Brouri
- Laboratoire Charles Fabry, Institut d'Optique, CNRS and Université Paris-Sud, Palaiseau, France and Institut Universitaire de France, Paris, France
| |
Collapse
|