1
|
Behrens M, Englert L, Bayer T, Wollenhaupt M. XUV-beamline for photoelectron imaging spectroscopy with shaped pulses. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:093101. [PMID: 39287480 DOI: 10.1063/5.0223450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024]
Abstract
We introduce an extreme ultraviolet (XUV)-beamline designed for the time-resolved investigation and coherent control of attosecond (as) electron dynamics in atoms and molecules by polarization-shaped as-laser pulses. Shaped as-pulses are generated through high-harmonic generation (HHG) of tailored white-light supercontinua (WLS) in noble gases. The interaction of shaped as-pulses with the sample is studied using velocity map imaging (VMI) techniques to achieve the differential detection of photoelectron wave packets. The instrument consists of the WLS-beamline, which includes a hollow-core fiber compressor and a home-built 4f polarization pulse shaper, and the high-vacuum XUV-beamline, which combines an HHG-stage and a versatile multi-experiment vacuum chamber equipped with a home-built VMI spectrometer. The VMI spectrometer allows the detection of photoelectron wave packets from both the multiphoton ionization (MPI) of atomic or molecular samples by the tailored WLS-pulses and the single-photon ionization (SPI) by the shaped XUV-pulses. To characterize the VMI spectrometer, we studied the MPI of xenon atoms by linearly polarized WLS pulses. To validate the interplay of these components, we conducted experiments on the SPI of xenon atoms with linearly polarized XUV-pulses. Our results include the reconstruction of the 3D photoelectron momentum distribution (PMD) and initial findings on the coherent control of the PMD by tuning the spectrum of the XUV-pulses with the spectral phase of the WLS. Our results demonstrate the performance of the entire instrument for HHG-based photoelectron imaging spectroscopy with prototypical shaped pulses. Perspectively, we will employ polarization-tailored WLS-pulses to generate polarization-shaped as-pulses.
Collapse
Affiliation(s)
- M Behrens
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - L Englert
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - T Bayer
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| | - M Wollenhaupt
- Institut für Physik, Carl von Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
| |
Collapse
|
2
|
Liu Z, Huang C, He T, Liao J, Li Y, Yu B. The Coulomb effect in nonsequential double ionization by counter-rotating two-color elliptical polarization fields. Phys Chem Chem Phys 2024; 26:4572-4578. [PMID: 38247378 DOI: 10.1039/d3cp05536a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Using a three-dimensional classical ensemble model, nonsequential double ionization (NSDI) of Ar atoms by counter-rotating two-color elliptical polarization (TCEP) fields is investigated. The major axes of the two elliptical fields are aligned in different directions. The relative alignment of the two elliptical fields strongly affects the waveform of the combined electric field and the ultrafast dynamics of NSDI in TCEP fields. Numerical results show that the correlated electron momentum distributions in the x direction evolve from a V-shaped structure near the axis to a distribution concentrated on the diagonal with the angle between the two elliptical major axes increasing. The asymmetry of the energy sharing between the two electrons during recollision results in the V-shaped structure in the correlated momentum spectrum. Back analysis indicates that the recollision times of a part of the trajectories move from the peak to the valley of the combined electric field with the angle between the two elliptical major axes increasing. Therefore, for the case of a larger angle between the two elliptical major axes, the electrons experience a longer time to escape away from the vicinity of the parent ion and thus the stronger Coulomb effect from the parent ion makes the momentum difference between two electrons small, which results in a distribution concentrated on the diagonal. This provides an effective avenue to control the electron ultrafast dynamics in NSDI.
Collapse
Affiliation(s)
- Zichao Liu
- School of Physical Science and Technology and Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Cheng Huang
- School of Physical Science and Technology and Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Tongtong He
- School of Physical Science and Technology and Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Jianying Liao
- School of Physical Science and Technology and Chongqing Key Laboratory of Micro & Nano Structure Optoelectronics, Southwest University, Chongqing 400715, China.
| | - Yingbin Li
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Benhai Yu
- College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
3
|
Wei M, Kang H, XiaoJun Liu H. Manipulating polarization effect in nonsequential double ionization. OPTICS EXPRESS 2024; 32:2679-2687. [PMID: 38297791 DOI: 10.1364/oe.510712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/21/2023] [Indexed: 02/02/2024]
Abstract
We report on a theoretical study of nonsequential double ionization (NSDI) of magnesium atoms by using combined linearly and circularly polarized fields. By employing a concise model including the dynamic ionic dipole potential, we show that the polarization effects can be controlled by tuning the subcycle waveform of the electric field of the two-color pulses. We demonstrate that the influence of the dipole potential on NSDI depends on the symmetry of two-color laser fields by tracing back the electron trajectories. Furthermore, we propose a method allowing for manipulating the returning trajectories with the initial direction of the tunneled electrons almost unchanged.
Collapse
|
4
|
Hanus V, Kangaparambil S, Richter M, Haßfurth L, Dorner-Kirchner M, Paulus GG, Xie X, Baltuška A, Gräfe S, Zeiler M. Carrier envelope phase sensitivity of photoelectron circular dichroism. Phys Chem Chem Phys 2023; 25:4656-4666. [PMID: 36722912 PMCID: PMC9906976 DOI: 10.1039/d2cp03077b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
We report on a combined experimental and numerical study of photoelectron circular dichroism (PECD) induced by intense few-cycle laser pulses, using methyloxirane as the molecular example. Our experiments reveal a remarkably pronounced sensitivity of the PECD strength of double-ionization on the carrier-envelope phase (CEP) of the laser pulses. By comparison to the simulations, which reproduce the measured CEP-dependence for specific orientations of the molecules in the lab frame, we attribute the origin of the observed CEP-dependence of PECD to the CEP-induced modulation of ionization from different areas of the wave functions of three dominant orbitals.
Collapse
Affiliation(s)
- Václav Hanus
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria.
- Wigner Research Centre for Physics, Institute for Solid State Physics and Optics, 1121 Budapest, Hungary
| | | | - Martin Richter
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
- Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
| | - Lukas Haßfurth
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
- Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
| | | | - Gerhard G Paulus
- Institute for Optics and Quantum Electronics, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany
| | - Xinhua Xie
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria.
- SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | - Andrius Baltuška
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria.
| | - Stefanie Gräfe
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.
- Fraunhofer Institute for Applied Optics and Precision Engineering, 07745 Jena, Germany
| | - Markus Zeiler
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria.
| |
Collapse
|
5
|
Xu J, Li Y, Zhou Y, Chen Y, Li M, Yu B, Lu P. Nonsequential double ionization driven by inhomogeneous laser fields. OPTICS EXPRESS 2022; 30:15951-15962. [PMID: 36221449 DOI: 10.1364/oe.457018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/12/2022] [Indexed: 06/16/2023]
Abstract
With a three-dimensional classical ensemble method, we theoretically investigated the correlated electron dynamics in nonsequential double ionization (NSDI) driven by the spatially inhomogeneous fields. Our results show that NSDI in the spatially inhomogeneous fields is more efficient than that in the spatially homogeneous fields at the low laser intensities, while at the high intensities NSDI is suppressed as compared to the homogeneous fields. More interestingly, our results show that the electron pairs from NSDI exhibit a much stronger angular correlation in the spatially inhomogeneous fields, especially at the higher laser intensities. The correlated electron momentum distribution shows that in the inhomogeneous fields the electron pairs favor to achieve the same final momentum, and the distributions dominantly are clustered in the more compact regions. It is shown that the electron's momentum is focused by the inhomogeneous fields. The underlying dynamics is revealed by back-tracing the classical trajectories.
Collapse
|
6
|
Larsson HR, Tannor DJ. Control of concerted back-to-back double ionization dynamics in helium. J Chem Phys 2021; 155:144105. [PMID: 34654299 DOI: 10.1063/5.0063056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Double ionization (DI) is a fundamental process that despite its apparent simplicity provides rich opportunities for probing and controlling the electronic motion. Even for the simplest multielectron atom, helium, new DI mechanisms are still being found. To first order in the field strength, a strong external field doubly ionizes the electrons in helium such that they are ejected into the same direction (front-to-back motion). The ejection into opposite directions (back-to-back motion) cannot be described to first order, making it a challenging target for control. Here, we address this challenge and optimize the field with the objective of back-to-back double ionization using a (1 + 1)-dimensional model. The optimization is performed using four different control procedures: (1) short-time control, (2) derivative-free optimization of basis expansions of the field, (3) the Krotov method, and (4) control of the classical equations of motion. All four procedures lead to fields with dominant back-to-back motion. All the fields obtained exploit essentially the same two-step mechanism leading to back-to-back motion: first, the electrons are displaced by the field into the same direction. Second, after the field turns off, the nuclear attraction and the electron-electron repulsion combine to generate the final motion into opposite directions for each electron. By performing quasi-classical calculations, we confirm that this mechanism is essentially classical.
Collapse
Affiliation(s)
- Henrik R Larsson
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - David J Tannor
- Department of Chemical Physics, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
7
|
Wu D, Li Q, Wang J, Guo F, Chen J, Yang Y. Double ionization of hydrogen molecules in a high-intensity linearly polarized laser pulse. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2020.138214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Wang Y, Lai X, Yu S, Sun R, Liu X, Dorner-Kirchner M, Erattupuzha S, Larimian S, Koch M, Hanus V, Kangaparambil S, Paulus G, Baltuška A, Xie X, Kitzler-Zeiler M. Laser-Induced Electron Transfer in the Dissociative Multiple Ionization of Argon Dimers. PHYSICAL REVIEW LETTERS 2020; 125:063202. [PMID: 32845670 DOI: 10.1103/physrevlett.125.063202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 05/28/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
We report on an experimental and theoretical study of the ionization-fragmentation dynamics of argon dimers in intense few-cycle laser pulses with a tagged carrier-envelope phase. We find that a field-driven electron transfer process from one argon atom across the system boundary to the other argon atom triggers subcycle electron-electron interaction dynamics in the neighboring atom. This attosecond electron-transfer process between distant entities and its implications manifests itself as a distinct phase-shift between the measured asymmetry of electron emission curves of the Ar^{+}+Ar^{2+} and Ar^{2+}+Ar^{2+} fragmentation channels. This letter discloses a strong-field route to controlling the dynamics in molecular compounds through the excitation of electronic dynamics on a distant molecule by driving intermolecular electron-transfer processes.
Collapse
Affiliation(s)
- YanLan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - XuanYang Lai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - ShaoGang Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - RenPing Sun
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | - XiaoJun Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
| | | | - Sonia Erattupuzha
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | - Seyedreza Larimian
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | - Markus Koch
- Institute of Experimental Physics, Graz University of Technology, A-8010 Graz, Austria
| | - Václav Hanus
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | | | - Gerhard Paulus
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Andrius Baltuška
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
| | - Xinhua Xie
- Photonics Institute, Technische Universität Wien, A-1040 Vienna, Austria
- SwissFEL, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland
| | | |
Collapse
|
9
|
Agueny H. Quantum control and characterization of ultrafast ionization with orthogonal two-color laser pulses. Sci Rep 2020; 10:239. [PMID: 31937810 PMCID: PMC6959349 DOI: 10.1038/s41598-019-57125-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/02/2019] [Indexed: 11/23/2022] Open
Abstract
We study ultrafast ionization dynamics using orthogonally polarized two-color (OTC) laser pulses involving the resonant "first plus second" (ω + 2ω) scheme. The scheme is illustrated by numerical simulations of the time-dependent Schrödinger equation and recording the photoelectron momentum distribution. On the basis of the simulations of this resonant ionization, we identify signatures of the dynamic Autler-Townes effect and dynamic interference, in which their characterization is not possible in the spectral domain. Taking advantage of the OTC scheme we show that these dynamical effects, which occur at the same time scale, can be characterized in momentum space by controlling the spatial quantum interference. In particular, we show that with the use of this control scheme, one can tailor the properties of the control pulse to lead to enhancement of the ionization rate through the Autler-Townes effect without affecting the dynamic interference. This enhancement is shown to result from constructive interferences between partial photoelectron waves having opposite-parity, and found to manifest by symmetry-breaking of the momentum distribution. The scenario is investigated for a prototype of a hydrogen atom and is broadly applicable to other systems. Our findings may have applications for photoelectron interferometers to control the electron dynamics in time and space, and for accurate temporal characterization of attosecond pulses.
Collapse
Affiliation(s)
- Hicham Agueny
- Department of Physics and Technology, University of Bergen, Allegt. 55, N-5007, Bergen, Norway.
| |
Collapse
|
10
|
Jin F, Yang H, Wang B, Wei L, Wu H. Angular resolved above-threshold ionization spectrum of an atom in IR+XUV orthogonally polarized two-color laser fields. OPTICS EXPRESS 2019; 27:20754-20762. [PMID: 31510164 DOI: 10.1364/oe.27.020754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
We investigate the above-threshold ionization (ATI) process of atoms exposed to the IR+XUV orthogonally polarized two-color laser fields by using the frequency-domain theory. It is shown that there exists a dip structure in each plateau of the angular resolved ATI spectrum. The dip structure in the first plateau is attributed to the fact that the electron cannot absorb one XUV photon when its emission direction is perpendicular to the XUV laser polarization, while the one in the second plateau is attributed to the coherent results of different channels. The emergence of dip structure is associated directly with the XUV laser field. Furthermore, by applying the saddle-point approximation, it is found that the fringes on the spectrum is caused by the interference of two trajectories for different saddle-points in the IR laser field. Finally, it is found that, in the high energy region, the probability of ATI spectrum is mainly determined by the XUV laser field, and the width of each plateau is mainly determined by the IR laser field; on the other hand, the ATI spectrum of the low energy region is only determined by the IR laser field.
Collapse
|
11
|
Tong A, Li Q, Ma X, Zhou Y, Lu P. Internal collision induced strong-field nonsequential double ionization in molecules. OPTICS EXPRESS 2019; 27:6415-6425. [PMID: 30876227 DOI: 10.1364/oe.27.006415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Using the classical ensemble method, we have investigated the alignment dependence of the correlated electron dynamics in strong-field nonsequential double ionization (NSDI) of diatomic molecules driven by linearly polarized laser pulses. Our numerical results show that the correlated electron pairs are more likely to emit into the same hemisphere (side-by-side emission) for the parallel aligned molecules at the small internuclear distance, in agreement with previous experimental results. Surprisingly, as the internuclear distance increases, this side-by-side emission is more prevalent for the perpendicularly aligned molecules. Back analyzing of the classical trajectories shows that a considerable part of the NSDI events for the parallel aligned molecules at the large internuclear distances occur through an internal collision, not the well-known recollision. In the internal collision induced NSDI, the first electron tunnels through the inner barrier from the up-field core, moves directly towards the other core, and kicks out the second electron. For this type of NSDI events, the electron pairs are more likely to emit into the opposite hemispheres and thus the correlated electron momentum spectrum exhibits a more dominant back-to-back behavior in the parallel aligned molecules.
Collapse
|
12
|
Huang C, Zhong M, Wu Z. Nonsequential double ionization by co-rotating two-color circularly polarized laser fields. OPTICS EXPRESS 2019; 27:7616-7626. [PMID: 30876323 DOI: 10.1364/oe.27.007616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Nonsequential double ionization (NSDI) of Ar in co-rotating two-color circularly polarized (TCCP) laser fields is investigated with a three-dimensional classical ensemble model. Our numerical results indicate that co-rotating TCCP fields can induce NSDI by recollision process, while the yield is an order of magnitude lower than counter-rotating case. NSDI yield in co-rotating TCCP fields strongly depends on field ratio of the two colors and achieves its maximum at a ratio of 2.4. In co-rotating TCCP fields, the short recollision trajectory with traveling time smaller than one cycle is dominant. Moreover, the recollision time in co-rotating TCCP laser fields depends on the field ratio, which is mapped to the electron momentum distribution. This provides anavenue to obtain information about recollision time and access the subcycle dynamics of the recollision process.
Collapse
|
13
|
Ge P, Han M, Deng Y, Gong Q, Liu Y. Universal Description of the Attoclock with Two-Color Corotating Circular Fields. PHYSICAL REVIEW LETTERS 2019; 122:013201. [PMID: 31012680 DOI: 10.1103/physrevlett.122.013201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/28/2018] [Indexed: 06/09/2023]
Abstract
We experimentally measure the laser-intensity-dependent photoelectron momentum distributions (PMDs) of Ar atoms with two-color (ω+2ω) corotating circularly polarized fields. The interference patterns on PMDs reveal complex structures with respect to the laser intensity ratio. The main above-threshold ionization peaks and sidebands on PMD distribute oppositely when the fundamental field is much weaker than the second-harmonic field, and the PMD reveals a characteristic single-lobe distribution when the two colors have comparable intensities. Using strong-field approximation, we analytically explain how the interference pattern on PMD evolves with respect to the relative laser intensity. By analyzing the interference pattern, we reveal the phase difference and the temporal evolution of the emitting electron wave packets. We show that, when monitoring the intensity ratio, the double-pointer attoclock geometry with corotating circular fields can be universally mimicked as the spatially rotating temporal double-slit experiments with the variable slit width, which can be used to probe and control strong-field ionization.
Collapse
Affiliation(s)
- Peipei Ge
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Meng Han
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yongkai Deng
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
- Center for Applied Physics and Technology, HEDPS, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
14
|
Kang H, Zhou Y, Lu P. Steering electron correlation time by elliptically polarized femtosecond laser pulses. OPTICS EXPRESS 2018; 26:33400-33408. [PMID: 30645492 DOI: 10.1364/oe.26.033400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Electron correlation is ubiquitous across diverse physical systems from atoms and molecules to condensed matter. Observing and controlling dynamical electron correlation in photoinduced processes paves the way to the coherent control of chemical reactionsand photobiological processes. Here, we experimentally investigate dynamics of electron correlation in double ionization of neon irradiated by intense elliptically polarized laser pulses. We find a characteristic, ellipticity-dependent, correlated electron emission along the minor axis of the elliptically polarized light. This observation is well reproduced by a semi-classical ensemble model simulation. By tracing back the corresponding electron trajectories, we find that the dynamical energy sharing during the electron emission process is modified by the ellipticity of the laser light. Thus, our work provides evidence for a possible ultrafast control of the energy sharing between the correlated electrons by varying the light ellipticity.
Collapse
|
15
|
Huang C, Zhong M, Wu Z. Intensity-dependent two-electron emission dynamics in nonsequential double ionization by counter-rotating two-color circularly polarized laser fields. OPTICS EXPRESS 2018; 26:26045-26056. [PMID: 30469697 DOI: 10.1364/oe.26.026045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/06/2018] [Indexed: 06/09/2023]
Abstract
Nonsequential double ionization of helium in counter-rotating two-color circularly polarized laser fields is investigated with a three-dimensional classical ensemble model. At moderate intensity, the momentum distribution of the two electrons shows a maximum in the middle of each side of the triangle of the negative vector potential. At high intensity, the momentum distribution exhibits a double-triangle structure, which is attributed to the different values of the laser intensity where the two electrons are released after recollision. At low intensity, the momentum distribution shows a shift deviating from the middle of the side of the triangle of the negative vector potential. This is because the first electrons are emitted within a narrow time window after the field maximum. In addition, at low intensity, double-recollision events and NSDI originating from doubly excited states induced by recollision are prevalent.
Collapse
|
16
|
Huang C, Zhong M, Wu Z. Anomalous ellipticity dependence in nonsequential double ionization of ArXe. Sci Rep 2018; 8:8772. [PMID: 29884833 PMCID: PMC5993723 DOI: 10.1038/s41598-018-27120-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/24/2018] [Indexed: 11/30/2022] Open
Abstract
Using a three-dimensional classical ensemble method, we present a theoretical study of nonsequential double ionization of ArXe dimer aligned along the minor axis of the elliptically polarized laser pulse. Numerical results show that NSDI probability firstly increases and then decreases with the laser ellipticity increasing, which is different from atoms. Moreover, the correlated electron momentum spectra from elliptical polarization are always asymmetric, and the asymmetry is enhanced as the ellipticity increases. Analysis backward in time indicates that in NSDI of ArXe aligned along the minor axis the recollision occurs via a semi-elliptical trajectory.
Collapse
Affiliation(s)
- Cheng Huang
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China.
| | - Mingmin Zhong
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
| | - Zhengmao Wu
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
| |
Collapse
|
17
|
Kang H, Henrichs K, Kunitski M, Wang Y, Hao X, Fehre K, Czasch A, Eckart S, Schmidt LPH, Schöffler M, Jahnke T, Liu X, Dörner R. Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses. PHYSICAL REVIEW LETTERS 2018; 120:223204. [PMID: 29906162 DOI: 10.1103/physrevlett.120.223204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Indexed: 06/08/2023]
Abstract
We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.
Collapse
Affiliation(s)
- H Kang
- Institut für Kernphysik, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - K Henrichs
- Institut für Kernphysik, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - M Kunitski
- Institut für Kernphysik, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Y Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - X Hao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Theoretical Physics and Department of Physics, Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
| | - K Fehre
- Institut für Kernphysik, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - A Czasch
- Institut für Kernphysik, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - S Eckart
- Institut für Kernphysik, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - L Ph H Schmidt
- Institut für Kernphysik, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - M Schöffler
- Institut für Kernphysik, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - T Jahnke
- Institut für Kernphysik, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - X Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - R Dörner
- Institut für Kernphysik, Goethe Universität Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|
18
|
Luo S, Ma X, Xie H, Li M, Zhou Y, Cao W, Lu P. Controlling nonsequential double ionization of Ne with parallel-polarized two-color laser pulses. OPTICS EXPRESS 2018; 26:13666-13676. [PMID: 29801389 DOI: 10.1364/oe.26.013666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
We measure the recoil-ion momentum distributions from nonsequential double ionization of Ne by two-color laser pulses consisting of a strong 800-nm field and a weak 400-nm field with parallel polarizations. The ion momentum spectra show pronounced asymmetries in the emission direction, which depend sensitively on the relative phase of the two-color components. Moreover, the peak of the doubly charged ion momentum distribution shifts gradually with the relative phase. The shifted range is much larger than the maximal vector potential of the 400-nm laser field. Those features are well recaptured by a semiclassical model. Through analyzing the correlated electron dynamics, we found that the energy sharing between the two electrons is extremely unequal at the instant of recollison. We further show that the shift of the ion momentum corresponds to the change of the recollision time in the two-color laser field. By tuning the relative phase of the two-color components, the recollision time is controlled with attosecond precision.
Collapse
|
19
|
Xie X, Wang T, Yu S, Lai X, Roither S, Kartashov D, Baltuška A, Liu X, Staudte A, Kitzler M. Disentangling Intracycle Interferences in Photoelectron Momentum Distributions Using Orthogonal Two-Color Laser Fields. PHYSICAL REVIEW LETTERS 2017; 119:243201. [PMID: 29286743 DOI: 10.1103/physrevlett.119.243201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 06/07/2023]
Abstract
We use orthogonally polarized two-color (OTC) laser pulses to separate quantum paths in the multiphoton ionization of Ar atoms. Our OTC pulses consist of 400 and 800 nm light at a relative intensity ratio of 10∶1. We find a hitherto unobserved interference in the photoelectron momentum distribution, which exhibits a strong dependence on the relative phase of the OTC pulse. Analysis of model calculations reveals that the interference is caused by quantum pathways from nonadjacent quarter cycles.
Collapse
Affiliation(s)
- Xinhua Xie
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria
| | - Tian Wang
- Joint Laboratory for Attosecond Science of the National Research Council and the University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
| | - ShaoGang Yu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - XuanYang Lai
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Stefan Roither
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria
| | - Daniil Kartashov
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria
| | - Andrius Baltuška
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria
| | - XiaoJun Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - André Staudte
- Joint Laboratory for Attosecond Science of the National Research Council and the University of Ottawa, Ottawa, Ontario K1A 0R6, Canada
| | - Markus Kitzler
- Photonics Institute, Technische Universität Wien, 1040 Vienna, Austria
| |
Collapse
|
20
|
Burger C, Frisch WF, Kardaś TM, Trubetskov M, Pervak V, Moshammer R, Bergues B, Kling MF, Wnuk P. Compact and flexible harmonic generator and three-color synthesizer for femtosecond coherent control and time-resolved studies. OPTICS EXPRESS 2017; 25:31130-31139. [PMID: 29245790 DOI: 10.1364/oe.25.031130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
Intense, multi-color laser fields permit the control of the ionization of atoms and the steering of electron dynamics. Here, we present the efficient collinear creation of the second and third harmonic of a 790 nm femtosecond laser followed by a versatile field synthesizer for the three color fields' composition. Using the device, we investigate the strong-field ionization of neon by fields composed of the fundamental, and the second or third harmonic. The three-color device offers sufficient flexibility for the coherent control of strong-field processes and for time-resolved pump-probe studies.
Collapse
|
21
|
Li N, Zhou Y, Ma X, Li M, Huang C, Lu P. Correlated electron dynamics in strong-field nonsequential double ionization of Mg. J Chem Phys 2017; 147:174302. [PMID: 29117686 DOI: 10.1063/1.5001668] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using the classical ensemble model, we systematically investigate strong-field nonsequential double ionization (NSDI) of Mg by intense elliptically polarized laser pulses with different wavelengths. Different from the noble atoms, NSDI occurs for Mg driven by elliptically and circularly polarized laser fields. Our results show that in elliptically and circularly polarized laser fields, the NSDI yield is sharply suppressed as the wavelength increases. Interestingly, the correlated behavior in the electron momentum spectra depends sensitively on the wavelengths. The corresponding electron dynamics is revealed by back tracing the classical trajectory.
Collapse
Affiliation(s)
- Ning Li
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yueming Zhou
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaomeng Ma
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Min Li
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cheng Huang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Peixiang Lu
- School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
22
|
Kübel M, Dube Z, Naumov AY, Spanner M, Paulus GG, Kling MF, Villeneuve DM, Corkum PB, Staudte A. Streak Camera for Strong-Field Ionization. PHYSICAL REVIEW LETTERS 2017; 119:183201. [PMID: 29219565 DOI: 10.1103/physrevlett.119.183201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Ionization of an atom or molecule by a strong laser field produces suboptical cycle wave packets whose control has given rise to attosecond science. The final states of the wave packets depend on ionization and deflection by the laser field, which are convoluted in conventional experiments. Here, we demonstrate a technique enabling efficient electron deflection, separate from the field driving strong-field ionization. Using a midinfrared deflection field permits one to distinguish electron wave packets generated at different field maxima of an intense few-cycle visible laser pulse. We utilize this capability to trace the scattering of low-energy electrons driven by the midinfrared field. Our approach represents a general technique for studying and controlling strong-field ionization dynamics on the attosecond time scale.
Collapse
Affiliation(s)
- M Kübel
- Joint Attosecond Laboratory, National Research Council and University of Ottawa, Ottawa, Ontario, Canada K1A 0R6
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany
| | - Z Dube
- Joint Attosecond Laboratory, National Research Council and University of Ottawa, Ottawa, Ontario, Canada K1A 0R6
| | - A Yu Naumov
- Joint Attosecond Laboratory, National Research Council and University of Ottawa, Ottawa, Ontario, Canada K1A 0R6
| | - M Spanner
- Joint Attosecond Laboratory, National Research Council and University of Ottawa, Ottawa, Ontario, Canada K1A 0R6
| | - G G Paulus
- Institute for Optics and Quantum Electronics, Universität Jena, D-07743 Jena, Germany
- Helmholtz Institute Jena, D-07743 Jena, Germany
| | - M F Kling
- Department of Physics, Ludwig-Maximilians-Universität Munich, D-85748 Garching, Germany
| | - D M Villeneuve
- Joint Attosecond Laboratory, National Research Council and University of Ottawa, Ottawa, Ontario, Canada K1A 0R6
| | - P B Corkum
- Joint Attosecond Laboratory, National Research Council and University of Ottawa, Ottawa, Ontario, Canada K1A 0R6
| | - A Staudte
- Joint Attosecond Laboratory, National Research Council and University of Ottawa, Ottawa, Ontario, Canada K1A 0R6
| |
Collapse
|
23
|
Yuan KJ, Chelkowski S, Bandrauk AD. Ultrafast molecular photoionization by two-color orthogonally polarized ultraviolet laser pulses: Effects of relative pulse phases. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
24
|
Ben S, Guo PY, Pan XF, Xu TT, Song KL, Liu XS. Recollision induced excitation-ionization with counter-rotating two-color circularly polarized laser field. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.076] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Zhou Y, Li M, Li Y, Tong A, Li Q, Lu P. Dissection of electron correlation in strong-field sequential double ionization using a classical model. OPTICS EXPRESS 2017; 25:8450-8458. [PMID: 28380956 DOI: 10.1364/oe.25.008450] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent experiments on strong-field sequential double ionization (SDI) have reported several observations which are regarded as evidence of electron correlation, querying the validity of the standard independent electron approximation for SDI. Here we theoretically study SDI with a classical ensemble model. The experimental results are well reproduced with this model. Back tracing of the ionization process shows that these results are ascribed to the subcycle ionization dynamics of the two electrons, not the evidences of the electron correlation in SDI. Thus, the previously reported observations are not enough to claim the breakdown of the independent electron approximation in SDI.
Collapse
|
26
|
Huang C, Zhong M, Wu Z. Recollision dynamics in nonsequential double ionization of atoms by long-wavelength pulses. OPTICS EXPRESS 2016; 24:28361-28371. [PMID: 27958546 DOI: 10.1364/oe.24.028361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recollision dynamics and electron correlation behavior are investigated for several long laser wavelengths (1200-3000 nm) in nonsequential double ionization (NSDI) of helium using three-dimensional classical ensembles. Numerical results show that for these long wavelengths NSDI events are mainly from the multiple-return trajectory which is different from the case of 800 nm. Moreover, with increasing laser wavelength NSDI events move from the diagonal to the two axes in the correlated electron momentum distributions, and finally form an experimentally observed prominent V-shaped structure [Phys. Rev. X 5, 021034 (2015)] in the first and third quadrants. Back analysis indicates that the asymmetric energy sharing between the two electrons at recollision is responsible for the formation of the prominent V-shaped structure of 3000 nm.
Collapse
|
27
|
Eckart S, Richter M, Kunitski M, Hartung A, Rist J, Henrichs K, Schlott N, Kang H, Bauer T, Sann H, Schmidt LPH, Schöffler M, Jahnke T, Dörner R. Nonsequential Double Ionization by Counterrotating Circularly Polarized Two-Color Laser Fields. PHYSICAL REVIEW LETTERS 2016; 117:133202. [PMID: 27715093 DOI: 10.1103/physrevlett.117.133202] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 06/06/2023]
Abstract
We report on nonsequential double ionization of Ar by a laser pulse consisting of two counterrotating circularly polarized fields (390 and 780 nm). The double-ionization probability depends strongly on the relative intensity of the two fields and shows a kneelike structure as a function of intensity. We conclude that double ionization is driven by a beam of nearly monoenergetic recolliding electrons, which can be controlled in intensity and energy by the field parameters. The electron momentum distributions show the recolliding electron as well as a second electron which escapes from an intermediate excited state of Ar^{+}.
Collapse
Affiliation(s)
- S Eckart
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - M Richter
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - M Kunitski
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - A Hartung
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - J Rist
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - K Henrichs
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - N Schlott
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - H Kang
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - T Bauer
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - H Sann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - L Ph H Schmidt
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - M Schöffler
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - T Jahnke
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| | - R Dörner
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Straße 1, 60438 Frankfurt, Germany
| |
Collapse
|
28
|
Huang C, Zhong M, Wu Z. Origin of double-line structure in nonsequential double ionization by few-cycle laser pulses. J Chem Phys 2016; 145:044302. [PMID: 27475356 DOI: 10.1063/1.4959188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We investigate nonsequential double ionization (NSDI) of molecules by few-cycle laser pulses at the laser intensity of 1.2-1.5 × 10(14) W/cm(2) using the classical ensemble model. The same double-line structure as the lower intensity (1.0 × 10(14) W/cm(2)) is also observed in the correlated electron momentum spectra for 1.2-1.4 × 10(14) W/cm(2). However, in contrast to the lower intensity where NSDI proceeds only through the recollision-induced double excitation with subsequent ionization (RDESI) mechanism, here, the recollision-induced excitation with subsequent ionization (RESI) mechanism has a more significant contribution to NSDI. This indicates that RDESI is not necessary for the formation of the double-line structure and RESI can give rise to the same type of structure independently. Furthermore, we explore the ultrafast dynamics underlying the formation of the double-line structure in RESI.
Collapse
Affiliation(s)
- Cheng Huang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Mingmin Zhong
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| | - Zhengmao Wu
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China
| |
Collapse
|
29
|
Maxwell AS, Faria CFDM. Controlling Below-Threshold Nonsequential Double Ionization via Quantum Interference. PHYSICAL REVIEW LETTERS 2016; 116:143001. [PMID: 27104701 DOI: 10.1103/physrevlett.116.143001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Indexed: 06/05/2023]
Abstract
We show through simulation that quantum interference in nonsequential double ionization can be used to control the recollision excitation with subsequent ionization (RESI) mechanism. This includes the shape, localization, and symmetry of RESI electron-momentum distributions, which may be shifted from a correlated to an anticorrelated distribution or vice versa, far below the direct ionization threshold intensity. As a testing ground, we reproduce recent experimental results by employing specific coherent superpositions of excitation channels. We examine two types of interference, from electron indistinguishability and intracycle events, and from different excitation channels. These effects survive focal averaging and transverse-momentum integration.
Collapse
Affiliation(s)
- A S Maxwell
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | |
Collapse
|
30
|
Ben S, Wang T, Xu T, Guo J, Liu X. Nonsequential double ionization channels control of Ar with few-cycle elliptically polarized laser pulse by carrier-envelope-phase. OPTICS EXPRESS 2016; 24:7525-7533. [PMID: 27137041 DOI: 10.1364/oe.24.007525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.
Collapse
|
31
|
Geng JW, Xiong WH, Xiao XR, Peng LY, Gong Q. Nonadiabatic Electron Dynamics in Orthogonal Two-Color Laser Fields with Comparable Intensities. PHYSICAL REVIEW LETTERS 2015; 115:193001. [PMID: 26588375 DOI: 10.1103/physrevlett.115.193001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Indexed: 06/05/2023]
Abstract
We theoretically investigate the nonadiabatic subcycle electron dynamics in orthogonally polarized two-color laser fields with comparable intensities. The photoelectron dynamics is simulated by exact solution to the 3D time-dependent Schrödinger equation, and also by two other semiclassical methods, i.e., the quantum trajectory Monte Carlo simulation and the Coulomb-corrected strong field approximation. Through these methods, we identify the underlying mechanisms of the subcycle electron dynamics and find that both the nonadiabatic effects and the Coulomb potential play very important roles. The contribution of the nonadiabatic effects manifest in two aspects, i.e., the nonadiabatic ionization rate and the nonzero initial velocities at the tunneling exit. The Coulomb potential has a different impact on the electrons' trajectories for different relative phases between the two pulses.
Collapse
Affiliation(s)
- Ji-Wei Geng
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
| | - Wei-Hao Xiong
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
| | - Xiang-Ru Xiao
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
| | - Liang-You Peng
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| |
Collapse
|
32
|
Yuan KJ, Chelkowski S, Bandrauk AD. Molecular photoelectron momentum distributions by intense orthogonally polarized attosecond ultraviolet laser pulses. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2015.08.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Tong A, Zhou Y, Lu P. Resolving subcycle electron emission in strong-field sequential double ionization. OPTICS EXPRESS 2015; 23:15774-15783. [PMID: 26193556 DOI: 10.1364/oe.23.015774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using a fully classical model, we have studied sequential double ionization (SDI) of argon driven by elliptically polarized laser pulses at intensities well in the over-barrier ionization region. The results show that ion momentum distributions evolve from the two-band structure to the four-band, six-band structure and finally to the previously obtained four-band structure as the pulse duration increases. Our analysis shows that the evolution of these band structures originates from the pulse-duration-dependent multiple ionization bursts of the second electron. These band structures unambiguously indicate the subcycle electron emission in SDI.
Collapse
|
34
|
Xie X. Two-dimensional attosecond electron wave-packet interferometry. PHYSICAL REVIEW LETTERS 2015; 114:173003. [PMID: 25978229 DOI: 10.1103/physrevlett.114.173003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Indexed: 06/04/2023]
Abstract
We propose a two-dimensional interferometry based on the electron wave-packet interference by using a cycle-shaped orthogonally polarized two-color laser field. With such a method, the subcycle and intercycle interferences can be disentangled into different directions in the measured photoelectron momentum spectra. The Coulomb influence can be minimized and the overlapping of interference fringes with the complicated low-energy structures can be avoided as well. The contributions of the excitation effect and the long-range Coulomb potential can be traced in the Fourier domain of the photoelectron distribution. Because of these advantages, precise information on valence electron dynamics of atoms or molecules with attosecond temporal resolution and additional spatial information with angstrom resolution can be obtained with the two-dimensional electron wave-packet interferometry.
Collapse
Affiliation(s)
- Xinhua Xie
- Photonics Institute, Vienna University of Technology, A-1040 Vienna, Austria
| |
Collapse
|
35
|
Richter M, Kunitski M, Schöffler M, Jahnke T, Schmidt LPH, Li M, Liu Y, Dörner R. Streaking temporal double-slit interference by an orthogonal two-color laser field. PHYSICAL REVIEW LETTERS 2015; 114:143001. [PMID: 25910115 DOI: 10.1103/physrevlett.114.143001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Indexed: 06/04/2023]
Abstract
We investigate electron momentum distributions from single ionization of Ar by two orthogonally polarized laser pulses of different color. The two-color scheme is used to experimentally control the interference between electron wave packets released at different times within one laser cycle. This intracycle interference pattern is typically hard to resolve in an experiment. With the two-color control scheme, these features become the dominant contribution to the electron momentum distribution. Furthermore, the second color can be used for streaking of the otherwise interfering wave packets establishing a which-way marker. Our investigation shows that the visibility of the interference fringes depends on the degree of the which-way information determined by the controllable phase between the two pulses.
Collapse
Affiliation(s)
- Martin Richter
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Maksim Kunitski
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Markus Schöffler
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Till Jahnke
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Lothar P H Schmidt
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Min Li
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Yunquan Liu
- State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871, People's Republic of China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Reinhard Dörner
- Institut für Kernphysik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| |
Collapse
|