1
|
Ali SY, Bauri P, Mondal D. Optimizing Work Extraction in the Presence of an Entropic Potential: An Entropic Stochastic Resonance. J Phys Chem B 2024; 128:3824-3832. [PMID: 38616737 DOI: 10.1021/acs.jpcb.3c08066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
We study the nontrivial thermodynamic responses of an overdamped Brownian system driven by an unbiased driving force when the particle is confined inside a bilobal irregular structure. The spatial irregularity of the confinement results in an effective entropic bistable potential along the direction of transport. We calculate the thermodynamic response functions in terms of the averaged work done and the absorbed heat over a cycle of driving. We find that the thermodynamic responses are influenced by the nonlinearity of the effective entropic potential, the frequency of the external periodic driving force, and the random thermal fluctuations in a nontrivial way. In the presence of an optimal amount of thermal noise and a favoring driving frequency, the process exhibits a resonance-like precedent in terms of both output work and absorbed heat. We explore the conditions to get best synchronized work extraction (or absorbed heat), which can be utilized as a potential quantifier of an entropic stochastic resonance phenomenon. Finally, we identify a hallmark of entropy dominance over an analogous energy-driven scenario in terms of output work.
Collapse
Affiliation(s)
- Syed Yunus Ali
- Department of Chemistry and Center for Atomic, Molecular, and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| | - Prashanta Bauri
- Department of Chemistry and Center for Atomic, Molecular, and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| | - Debasish Mondal
- Department of Chemistry and Center for Atomic, Molecular, and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| |
Collapse
|
2
|
Berezhkovskii AM, Bezrukov SM. Counter-Intuitive Features of Particle Dynamics in Nanopores. Int J Mol Sci 2023; 24:15923. [PMID: 37958906 PMCID: PMC10648703 DOI: 10.3390/ijms242115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/29/2023] [Indexed: 11/15/2023] Open
Abstract
Using the framework of a continuous diffusion model based on the Smoluchowski equation, we analyze particle dynamics in the confinement of a transmembrane nanopore. We briefly review existing analytical results to highlight consequences of interactions between the channel nanopore and the translocating particles. These interactions are described within a minimalistic approach by lumping together multiple physical forces acting on the particle in the pore into a one-dimensional potential of mean force. Such radical simplification allows us to obtain transparent analytical results, often in a simple algebraic form. While most of our findings are quite intuitive, some of them may seem unexpected and even surprising at first glance. The focus is on five examples: (i) attractive interactions between the particles and the nanopore create a potential well and thus cause the particles to spend more time in the pore but, nevertheless, increase their net flux; (ii) if the potential well-describing particle-pore interaction occupies only a part of the pore length, the mean translocation time is a non-monotonic function of the well length, first increasing and then decreasing with the length; (iii) when a rectangular potential well occupies the entire nanopore, the mean particle residence time in the pore is independent of the particle diffusivity inside the pore and depends only on its diffusivity in the bulk; (iv) although in the presence of a potential bias applied to the nanopore the "downhill" particle flux is higher than the "uphill" one, the mean translocation times and their distributions are identical, i.e., independent of the translocation direction; and (v) fast spontaneous gating affects nanopore selectivity when its characteristic time is comparable to that of the particle transport through the pore.
Collapse
Affiliation(s)
| | - Sergey M. Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
3
|
Rafeek R, Ali SY, Mondal D. Geometric Brownian information engine: Essentials for the best performance. Phys Rev E 2023; 107:044122. [PMID: 37198845 DOI: 10.1103/physreve.107.044122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/03/2023] [Indexed: 05/19/2023]
Abstract
We investigate a geometric Brownian information engine (GBIE) in the presence of an error-free feedback controller that transforms the information gathered on the state of Brownian particles entrapped in monolobal geometric confinement into extractable work. Outcomes of the information engine depend on the reference measurement distance x_{m}, the feedback site x_{f}, and the transverse force G. We determine the benchmarks for utilizing the available information in an output work and the optimum operating requisites for best achievable work. Transverse bias force (G) tunes the entropic contribution in the effective potential and hence the standard deviation (σ) of the equilibrium marginal probability distribution. We recognize that the amount of extractable work reaches a global maximum when x_{f}=2x_{m} with x_{m}∼0.6σ, irrespective of the extent of the entropic limitation. Because of the higher loss of information during the relaxation process, the best achievable work of a GBIE is lower in an entropic system. The feedback regulation also bears the unidirectional passage of particles. The average displacement increases with growing entropic control and is maximum when x_{m}∼0.81σ. Finally, we explore the efficacy of the information engine, a quantity that regulates the efficiency in utilizing the information acquired. With x_{f}=2x_{m}, the maximum efficacy reduces with increasing entropic control and shows a crossover from 2 to 11/9. We discover that the condition for the best efficacy depends only on the confinement lengthscale along the feedback direction. The broader marginal probability distribution accredits the increased average displacement in a cycle and the lower efficacy in an entropy-dominated system.
Collapse
Affiliation(s)
- Rafna Rafeek
- Department of Chemistry and Center for Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| | - Syed Yunus Ali
- Department of Chemistry and Center for Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| | - Debasish Mondal
- Department of Chemistry and Center for Molecular and Optical Sciences & Technologies, Indian Institute of Technology Tirupati, Yerpedu 517619, Andhra Pradesh, India
| |
Collapse
|
4
|
Kellom M, Pagliara S, Richards TA, Santoro AE. Exaggerated trans-membrane charge of ammonium transporters in nutrient-poor marine environments. Open Biol 2022; 12:220041. [PMID: 35857930 PMCID: PMC9277239 DOI: 10.1098/rsob.220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transporter proteins are a vital interface between cells and their environment. In nutrient-limited environments, microbes with transporters that are effective at bringing substrates into their cells will gain a competitive advantage over variants with reduced transport function. Microbial ammonium transporters (Amt) bring ammonium into the cytoplasm from the surrounding periplasm space, but diagnosing Amt adaptations to low nutrient environments solely from sequence data has been elusive. Here, we report altered Amt sequence amino acid distribution from deep marine samples compared to variants sampled from shallow water in two important microbial lineages of the marine water column community-Marine Group I Archaea (Thermoproteota) and the uncultivated gammaproteobacterial lineage SAR86. This pattern indicates an evolutionary pressure towards an increasing dipole in Amt for these clades in deep ocean environments and is predicted to generate stronger electric fields facilitating ammonium acquisition. This pattern of increasing dipole charge with depth was not observed in lineages capable of accessing alternative nitrogen sources, including the abundant alphaproteobacterial clade SAR11. We speculate that competition for ammonium in the deep ocean drives transporter sequence evolution. The low concentration of ammonium in the deep ocean is therefore likely due to rapid uptake by Amts concurrent with decreasing nutrient flux.
Collapse
Affiliation(s)
- Matthew Kellom
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Thomas A. Richards
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Alyson E. Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
5
|
Knowles SF, Fletcher M, Mc Hugh J, Earle M, Keyser UF, Thorneywork AL. Observing capture with a colloidal model membrane channel. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:344001. [PMID: 35679844 DOI: 10.1088/1361-648x/ac7764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
We use video microscopy to study the full capture process for colloidal particles transported through microfluidic channels by a pressure-driven flow. In particular, we obtain trajectories for particles as they move from the bulk into confinement, using these to map in detail the spatial velocity and concentration fields for a range of different flow velocities. Importantly, by changing the height profiles of our microfluidic devices, we consider systems for which flow profiles in the channel are the same, but flow fields in the reservoir differ with respect to the quasi-2D monolayer of particles. We find that velocity fields and profiles show qualitative agreement with numerical computations of pressure-driven fluid flow through the systems in the absence of particles, implying that in the regimes studied here particle-particle interactions do not strongly perturb the flow. Analysis of the particle flux through the channel indicates that changing the reservoir geometry leads to a change between long-range attraction of the particles to the pore and diffusion-to-capture-like behaviour, with concentration fields that show qualitative changes based on device geometry. Our results not only provide insight into design considerations for microfluidic devices, but also a foundation for experimental elucidation of the concept of a capture radius. This long standing problem plays a key role in transport models for biological channels and nanopore sensors.
Collapse
Affiliation(s)
- Stuart F Knowles
- Cavendish Laboratory, University of Cambridge, J J Thomson Ave, Cambridge CB3 0HE, United Kingdom
| | - Marcus Fletcher
- Cavendish Laboratory, University of Cambridge, J J Thomson Ave, Cambridge CB3 0HE, United Kingdom
| | - Jeffrey Mc Hugh
- Cavendish Laboratory, University of Cambridge, J J Thomson Ave, Cambridge CB3 0HE, United Kingdom
| | - Max Earle
- Cavendish Laboratory, University of Cambridge, J J Thomson Ave, Cambridge CB3 0HE, United Kingdom
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, J J Thomson Ave, Cambridge CB3 0HE, United Kingdom
| | - Alice L Thorneywork
- Cavendish Laboratory, University of Cambridge, J J Thomson Ave, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
6
|
Allan C, Morris RJ, Meisrimler CN. Encoding, transmission, decoding, and specificity of calcium signals in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3372-3385. [PMID: 35298633 PMCID: PMC9162177 DOI: 10.1093/jxb/erac105] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Calcium acts as a signal and transmits information in all eukaryotes. Encoding machinery consisting of calcium channels, stores, buffers, and pumps can generate a variety of calcium transients in response to external stimuli, thus shaping the calcium signature. Mechanisms for the transmission of calcium signals have been described, and a large repertoire of calcium binding proteins exist that can decode calcium signatures into specific responses. Whilst straightforward as a concept, mysteries remain as to exactly how such information processing is biochemically implemented. Novel developments in imaging technology and genetically encoded sensors (such as calcium indicators), in particular for multi-signal detection, are delivering exciting new insights into intra- and intercellular calcium signaling. Here, we review recent advances in characterizing the encoding, transmission, and decoding mechanisms, with a focus on long-distance calcium signaling. We present technological advances and computational frameworks for studying the specificity of calcium signaling, highlight current gaps in our understanding and propose techniques and approaches for unravelling the underlying mechanisms.
Collapse
Affiliation(s)
- Claudia Allan
- University of Canterbury, School of Biological Science, Christchurch, New Zealand
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich, UK
| | | |
Collapse
|
7
|
Tomkins M, Hughes A, Morris RJ. An update on passive transport in and out of plant cells. PLANT PHYSIOLOGY 2021; 187:1973-1984. [PMID: 35235675 PMCID: PMC8644452 DOI: 10.1093/plphys/kiab406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/30/2021] [Indexed: 05/09/2023]
Abstract
Transport across membranes is critical for plant survival. Membranes are the interfaces at which plants interact with their environment. The transmission of energy and molecules into cells provides plants with the source material and power to grow, develop, defend, and move. An appreciation of the physical forces that drive transport processes is thus important for understanding the plant growth and development. We focus on the passive transport of molecules, describing the fundamental concepts and demonstrating how different levels of abstraction can lead to different interpretations of the driving forces. We summarize recent developments on quantitative frameworks for describing diffusive and bulk flow transport processes in and out of cells, with a more detailed focus on plasmodesmata, and outline open questions and challenges.
Collapse
Affiliation(s)
- Melissa Tomkins
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, UK
| | - Aoife Hughes
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, UK
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, NR4 7UH Norwich, UK
- Author for communication:
| |
Collapse
|
8
|
Hoogenboom BW, Hough LE, Lemke EA, Lim RYH, Onck PR, Zilman A. Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment. PHYSICS REPORTS 2021; 921:1-53. [PMID: 35892075 PMCID: PMC9306291 DOI: 10.1016/j.physrep.2021.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The hallmark of eukaryotic cells is the nucleus that contains the genome, enclosed by a physical barrier known as the nuclear envelope (NE). On the one hand, this compartmentalization endows the eukaryotic cells with high regulatory complexity and flexibility. On the other hand, it poses a tremendous logistic and energetic problem of transporting millions of molecules per second across the nuclear envelope, to facilitate their biological function in all compartments of the cell. Therefore, eukaryotes have evolved a molecular "nanomachine" known as the Nuclear Pore Complex (NPC). Embedded in the nuclear envelope, NPCs control and regulate all the bi-directional transport between the cell nucleus and the cytoplasm. NPCs combine high molecular specificity of transport with high throughput and speed, and are highly robust with respect to molecular noise and structural perturbations. Remarkably, the functional mechanisms of NPC transport are highly conserved among eukaryotes, from yeast to humans, despite significant differences in the molecular components among various species. The NPC is the largest macromolecular complex in the cell. Yet, despite its significant complexity, it has become clear that its principles of operation can be largely understood based on fundamental physical concepts, as have emerged from a combination of experimental methods of molecular cell biology, biophysics, nanoscience and theoretical and computational modeling. Indeed, many aspects of NPC function can be recapitulated in artificial mimics with a drastically reduced complexity compared to biological pores. We review the current physical understanding of the NPC architecture and function, with the focus on the critical analysis of experimental studies in cells and artificial NPC mimics through the lens of theoretical and computational models. We also discuss the connections between the emerging concepts of NPC operation and other areas of biophysics and bionanotechnology.
Collapse
Affiliation(s)
- Bart W. Hoogenboom
- London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Loren E. Hough
- Department of Physics and BioFrontiers Institute, University of Colorado, Boulder CO 80309, United States of America
| | - Edward A. Lemke
- Biocenter Mainz, Departments of Biology and Chemistry, Johannes Gutenberg University and Institute of Molecular Biology, 55128 Mainz, Germany
| | - Roderick Y. H. Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Patrick R. Onck
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Anton Zilman
- Department of Physics and Institute for Biomedical Engineering (IBME), University of Toronto, Toronto, ON M5S 1A7, Canada
| |
Collapse
|
9
|
Berezhkovskii AM, Bezrukov SM, Makarov DE. Localized potential well vs binding site: Mapping solute dynamics in a membrane channel onto one-dimensional description. J Chem Phys 2021; 154:111101. [PMID: 33752368 DOI: 10.1063/5.0044044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
In the one-dimensional description, the interaction of a solute molecule with the channel wall is characterized by the potential of mean force U(x), where the x-coordinate is measured along the channel axis. When the molecule can reversibly bind to certain amino acid(s) of the protein forming the channel, this results in a localized well in the potential U(x). Alternatively, this binding can be modeled by introducing a discrete localized site, in addition to the continuum of states along x. Although both models may predict identical equilibrium distributions of the coordinate x, there is a fundamental difference between the two: in the first model, the molecule passing through the channel unavoidably visits the potential well, while in the latter, it may traverse the channel without being trapped at the discrete site. Here, we show that when the two models are parameterized to have the same thermodynamic properties, they automatically yield identical translocation probabilities and mean translocation times, yet they predict qualitatively different shapes of the translocation time distribution. Specifically, the potential well model yields a narrower distribution than the model with a discrete site, a difference that can be quantified by the distribution's coefficient of variation. This coefficient turns out to be always smaller than unity in the potential well model, whereas it may exceed unity when a discrete trapping site is present. Analysis of the translocation time distribution beyond its mean thus offers a way to differentiate between distinct translocation mechanisms.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Dmitrii E Makarov
- Department of Chemistry and Oden Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
10
|
Gałczyńska K, Rachuna J, Ciepluch K, Kowalska M, Wąsik S, Kosztołowicz T, Lewandowska KD, Semaniak J, Kurdziel K, Arabski M. Experimental and Theoretical Analysis of Metal Complex Diffusion through Cell Monolayer. ENTROPY 2021; 23:e23030360. [PMID: 33802897 PMCID: PMC8002612 DOI: 10.3390/e23030360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/11/2021] [Accepted: 03/15/2021] [Indexed: 01/12/2023]
Abstract
The study of drugs diffusion through different biological membranes constitutes an essential step in the development of new pharmaceuticals. In this study, the method based on the monolayer cell culture of CHO-K1 cells has been developed in order to emulate the epithelial cells barrier in permeability studies by laser interferometry. Laser interferometry was employed for the experimental analysis of nickel(II) and cobalt(II) complexes with 1-allylimidazole or their chlorides’ diffusion through eukaryotic cell monolayers. The amount (mol) of nickel(II) and cobalt(II) chlorides transported through the monolayer was greater than that of metals complexed with 1-allylimidazole by 4.34-fold and 1.45-fold, respectively, after 60 min. Thus, laser interferometry can be used for the quantitative analysis of the transport of compounds through eukaryotic cell monolayers, and the resulting parameters can be used to formulate a mathematical description of this process.
Collapse
Affiliation(s)
- Katarzyna Gałczyńska
- Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland; (K.G.); (J.R.); (K.C.); (M.K.)
| | - Jarosław Rachuna
- Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland; (K.G.); (J.R.); (K.C.); (M.K.)
| | - Karol Ciepluch
- Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland; (K.G.); (J.R.); (K.C.); (M.K.)
| | - Magdalena Kowalska
- Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland; (K.G.); (J.R.); (K.C.); (M.K.)
| | - Sławomir Wąsik
- Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland; (S.W.); (T.K.); (J.S.)
| | - Tadeusz Kosztołowicz
- Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland; (S.W.); (T.K.); (J.S.)
| | - Katarzyna D. Lewandowska
- Department of Radiological Informatics and Statistics, Medical University of Gdańsk, Tuwima 15, 80-210 Gdańsk, Poland;
| | - Jacek Semaniak
- Institute of Physics, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland; (S.W.); (T.K.); (J.S.)
| | - Krystyna Kurdziel
- Institute of Chemistry, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland;
| | - Michał Arabski
- Institute of Biology, Jan Kochanowski University, Uniwersytecka 7, 25-406 Kielce, Poland; (K.G.); (J.R.); (K.C.); (M.K.)
- Correspondence: ; Tel./Fax: +48-41-349-63-31
| |
Collapse
|
11
|
Berezhkovskii AM, Bezrukov SM. Capturing single molecules by nanopores: measured times and thermodynamics. Phys Chem Chem Phys 2021; 23:1610-1615. [PMID: 33410847 PMCID: PMC8075107 DOI: 10.1039/d0cp04747c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In numerous nanopore sensing applications transient interruptions in ion current through single nanopores induced by capturing solute molecules are a source of information on how solutes interact with the nanopores. We show that the distribution of time spent by a single captured solute molecule in a nanopore is bimodal with the majority of capture events being too fast to be experimentally resolved. As a result, the exact mean durations of the event and inter-event interval are orders of magnitude shorter than their measured values. Moreover, the exact and measured mean durations have qualitatively different dependences on the molecule diffusivity. This leads to a formal contradiction with the thermodynamics of molecule partitioning between the bulk and the nanopore. Here we resolve this controversy. We also demonstrate that, surprisingly, the probability of finding a molecule in the nanopore, obtained from the ratio of the measured mean durations of the capture event and interevent interval, is essentially identical to the exact equilibrium thermodynamic probability.
Collapse
Affiliation(s)
- Alexander M Berezhkovskii
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Mathematical and Statistical Computing Laboratory, Office of Intramural Research, Center for Information Technology, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Optical Trapping, Sizing, and Probing Acoustic Modes of a Small Virus. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10010394] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Prior opto-mechanical techniques to measure vibrational frequencies of viruses work on large ensembles of particles, whereas, in this work, individually trapped viral particles were studied. Double nanohole (DNH) apertures in a gold film were used to achieve optical trapping of one of the smallest virus particles yet reported, PhiX174, which has a diameter of 25 nm. When a laser was focused onto these DNH apertures, it created high local fields due to plasmonic enhancement, which allowed stable trapping of small particles for prolonged periods at low powers. Two techniques were performed to characterize the virus particles. The particles were sized via an established autocorrelation analysis technique, and the acoustic modes were probed using the extraordinary acoustic Raman (EAR) method. The size of the trapped particle was determined to be 25 ± 3.8 nm, which is in good agreement with the established diameter of PhiX174. A peak in the EAR signal was observed at 32 GHz, which fits well with the predicted value from elastic theory.
Collapse
|
13
|
Shi X, Huang S, Wang L, Li F. Numerical analysis of passive micromixer with novel obstacle design. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1699428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Xianchun Shi
- School of Mechanical Engineering, Anhui University of Science and Technology, Anhui, Huainan, China
| | - Shaofu Huang
- School of Mechanical Engineering, Anhui University of Science and Technology, Anhui, Huainan, China
| | - Long Wang
- School of Mechanical Engineering, Anhui University of Science and Technology, Anhui, Huainan, China
| | - Feng Li
- Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China
| |
Collapse
|
14
|
Yang T, Peng J, Shu Z, Sekar PK, Li S, Gao D. Determination of the Membrane Transport Properties of Jurkat Cells with a Microfluidic Device. MICROMACHINES 2019; 10:E832. [PMID: 31795446 PMCID: PMC6952789 DOI: 10.3390/mi10120832] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/21/2022]
Abstract
The Jurkat cell is an immortalized line of human acute lymphocyte leukemia cells that is widely used in the study of adoptive cell therapy, a novel treatment of several advanced forms of cancer. The ability to transport water and solutes across the cell membrane under different temperatures is an important factor for deciding the specific protocol for cryopreservation of the Jurkat cell. In this study we propose a comprehensive process for determination of membrane transport properties of Jurkat cell. using a novel microfluidic controlled single cell-trapping system. The osmotic behavior of an individual Jurkat cell to water and dimethyl sulfoxide (DMSO), a commonly used cryoprotective agent (CPA), under constant temperature, was recorded under a microscope utilizing the modified microfluidic system. The images of the Jurkat cell under osmotic change were processed to obtain a relationship between cell volume change and time. The experimental results were fitted using a two-parameter transport numeric model to calculate the Jurkat cell membrane permeability to water and DMSO at room temperature (22 °C). This model and the calculated parameters can help scientists optimize the cryopreservation protocol for any cell type with optimal cryoprotective agents and cooling rate for future experiments.
Collapse
Affiliation(s)
- Tianhang Yang
- Department of Fluid Control and Automation, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China;
- Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (J.P.); (Z.S.); (P.K.S.)
| | - Ji Peng
- Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (J.P.); (Z.S.); (P.K.S.)
| | - Zhiquan Shu
- Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (J.P.); (Z.S.); (P.K.S.)
- School of Mechanical and Materials Engineering, Washington State University, Everett, WA 98201, USA
| | - Praveen K. Sekar
- Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (J.P.); (Z.S.); (P.K.S.)
| | - Songjing Li
- Department of Fluid Control and Automation, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China;
| | - Dayong Gao
- Mechanical Engineering, University of Washington, Seattle, WA 98195, USA; (J.P.); (Z.S.); (P.K.S.)
| |
Collapse
|
15
|
Łapińska U, Glover G, Capilla-Lasheras P, Young AJ, Pagliara S. Bacterial ageing in the absence of external stressors. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180442. [PMID: 31587633 PMCID: PMC6792439 DOI: 10.1098/rstb.2018.0442] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2019] [Indexed: 12/03/2022] Open
Abstract
Evidence of ageing in the bacterium Escherichia coli was a landmark finding in senescence research, as it suggested that even organisms with morphologically symmetrical fission may have evolved strategies to permit damage accumulation. However, recent work has suggested that ageing is only detectable in this organism in the presence of extrinsic stressors, such as the fluorescent proteins and strong light sources typically used to excite them. Here we combine microfluidics with brightfield microscopy to provide evidence of ageing in E. coli in the absence of these stressors. We report (i) that the doubling time of the lineage of cells that consistently inherits the 'maternal old pole' progressively increases with successive rounds of cell division until it reaches an apparent asymptote, and (ii) that the parental cell divides asymmetrically, with the old pole daughter showing a longer doubling time and slower glucose accumulation than the new pole daughter. Notably, these patterns arise without the progressive accumulation or asymmetric partitioning of observable misfolded-protein aggregates, phenomena previously hypothesized to cause the ageing phenotype. Our findings suggest that ageing is part of the naturally occurring ecologically-relevant phenotype of this bacterium and highlight the importance of alternative mechanisms of damage accumulation in this context. This article is part of a discussion meeting issue 'Single cell ecology'.
Collapse
Affiliation(s)
- Urszula Łapińska
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Georgina Glover
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Pablo Capilla-Lasheras
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Andrew J. Young
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, UK
| | - Stefano Pagliara
- Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
- Living Systems Institute, University of Exeter, Exeter, Devon EX4 4QD, UK
| |
Collapse
|
16
|
Maguire L, Stefferson M, Betterton MD, Hough LE. Design principles of selective transport through biopolymer barriers. Phys Rev E 2019; 100:042414. [PMID: 31770897 PMCID: PMC7502277 DOI: 10.1103/physreve.100.042414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Indexed: 12/20/2022]
Abstract
In biological systems, polymeric materials block the movement of some macromolecules while allowing the selective passage of others. In some cases, binding enables selective transport, while in others the most inert particles appear to transit most rapidly. To study the general principles of filtering, we develop a model motivated by features of the nuclear pore complex (NPC) which are highly conserved and could potentially be applied to other biological systems. The NPC allows selective transport of proteins called transport factors, which transiently bind to disordered flexible proteins called phenylalanine-glycine-nucleoporins. While the NPC is tuned for transport factors and their cargo, we show that a single feature is sufficient for selective transport: the bound-state motion resulting from transient binding to flexible filaments. Interchain transfer without unbinding can further improve selectivity, especially for cross-linked chains. We generalize this observation to model nanoparticle transport through mucus and show that bound-state motion accelerates transport of transient nanoparticle application, even with clearance by mucus flow. Our model provides a framework to control binding-induced selective transport in biopolymeric materials.
Collapse
Affiliation(s)
- Laura Maguire
- Department of Physics, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
| | - Michael Stefferson
- Department of Physics, University of Colorado Boulder
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder
| | - Meredith D. Betterton
- Department of Physics, University of Colorado Boulder
- Molecular, Cellular and Developmental Biology, University of Colorado Boulder
| | - Loren E. Hough
- Department of Physics, University of Colorado Boulder
- BioFrontiers Institute, University of Colorado Boulder
| |
Collapse
|
17
|
Deng B, Wang H, Tan Z, Quan Y. Microfluidic Cell Trapping for Single-Cell Analysis. MICROMACHINES 2019; 10:mi10060409. [PMID: 31248148 PMCID: PMC6632028 DOI: 10.3390/mi10060409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/10/2019] [Accepted: 06/18/2019] [Indexed: 12/19/2022]
Abstract
The single-cell capture microfluidic chip has many advantages, including low cost, high throughput, easy manufacturing, integration, non-toxicity and good stability. Because of these characteristics, the cell capture microfluidic chip is increasingly becoming an important carrier on the study of life science and pharmaceutical analysis. Important promises of single-cell analysis are the paring, fusion, disruption and analysis of intracellular components for capturing a single cell. The capture, which is based on the fluid dynamics method in the field of micro fluidic chips is an important way to achieve and realize the operations mentioned above. The aim of this study was to compare the ability of three fluid dynamics-based microfluidic chip structures to capture cells. The effects of cell growth and distribution after being captured by different structural chips and the subsequent observation and analysis of single cells on the chip were compared. It can be seen from the experimental results that the microfluidic chip structure most suitable for single-cell capture is a U-shaped structure. It enables single-cell capture as well as long-term continuous culture and the single-cell observation of captured cells. Compared to the U-shaped structure, the cells captured by the microcavity structure easily overlapped during the culture process and affected the subsequent analysis of single cells. The flow shortcut structure can also be used to capture and observe single cells, however, the shearing force of the fluid caused by the chip structure is likely to cause deformation of the cultured cells. By comparing the cell capture efficiency of the three chips, the reagent loss during the culture process and the cell growth state of the captured cells, we are provided with a theoretical support for the design of a single-cell capture microfluidic chip and a reference for the study of single-cell capture in the future.
Collapse
Affiliation(s)
- Bing Deng
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000, China.
| | - Heyi Wang
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000, China.
| | - Zhaoyi Tan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000, China.
| | - Yi Quan
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou 215000, China.
| |
Collapse
|
18
|
Gong J, Liu J, Tan X, Li Z, Li Q, Zhang J. Bio-Preparation and Regulation of Pyrrole Structure Nano-Pigment Based on Biomimetic Membrane. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E114. [PMID: 30669357 PMCID: PMC6359519 DOI: 10.3390/nano9010114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
Microbial pigments, regarded as the most potential biomass pigments, have lately attracted increasing attention in textile dyeing due to their sustainability and cleaner production. The pyrrole structure microbial pigment, called prodigiosin, recently have become a research hotspot for its bright colors and antibacterial function. However, in most case the extraction and preparation are time-consuming and expensive processes since these kinds of microbial pigments are intracellular metabolites. In order to promote the application of microbial pigments in textile dyeing, a novel idea of preparing dye liquid of pyrrole structure pigments based on fermentation broth was put forward via increasing the proportion of extracellular pigments. A model membrane platform was established with a planar lipid bilayer to investigate transmembrane transport of microbial pigments and permeability barrier of cell membrane. The nano-dispersion of pigments was produced as the dye liquor owing to high-throughput transmembrane transfer of intracellular pigments and the increase of extracellular pigments proportion. The results indicated that the size and surface electrical properties of the pigments had contributed much to the mass transfer. It is also showed that transmembrane transmission of the intracellular pigments could be regulated by physical and chemical methods. With the improvement of transmembrane transfer efficiency of microbial pigments and the proportion of extracellular pigments, the complicated biological separation process could be avoided and the application of microbial pigments in textile dyeing can be promoted.
Collapse
Affiliation(s)
- Jixian Gong
- School of Textiles Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory of Advanced Textile Composites Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jiayin Liu
- School of Textiles Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory of Advanced Textile Composites Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Xueqiang Tan
- School of Textiles Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory of Advanced Textile Composites Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Zheng Li
- School of Textiles Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory of Advanced Textile Composites Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Qiujin Li
- School of Textiles Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory of Advanced Textile Composites Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China.
| | - Jianfei Zhang
- School of Textiles Science and Engineering, Tianjin Polytechnic University, Tianjin 300387, China.
- Key Laboratory of Advanced Textile Composites Ministry of Education, Tianjin Polytechnic University, Tianjin 300387, China.
| |
Collapse
|
19
|
Experimental evidence of symmetry breaking of transition-path times. Nat Commun 2019; 10:55. [PMID: 30610184 PMCID: PMC6320364 DOI: 10.1038/s41467-018-07873-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 11/11/2018] [Indexed: 11/08/2022] Open
Abstract
While thermal rates of state transitions in classical systems have been studied for almost a century, associated transition-path times have only recently received attention. Uphill and downhill transition paths between states at different free energies should be statistically indistinguishable. Here, we systematically investigate transition-path-time symmetry and report evidence of its breakdown on the molecular- and meso-scale out of equilibrium. In automated Brownian dynamics experiments, we establish first-passage-time symmetries of colloids driven by femtoNewton forces in holographically-created optical landscapes confined within microchannels. Conversely, we show that transitions which couple in a path-dependent manner to fluctuating forces exhibit asymmetry. We reproduce this asymmetry in folding transitions of DNA-hairpins driven out of equilibrium and suggest a topological mechanism of symmetry breakdown. Our results are relevant to measurements that capture a single coordinate in a multidimensional free energy landscape, as encountered in electrophysiology and single-molecule fluorescence experiments.
Collapse
|
20
|
Numerical and Experimental Investigations of a Micromixer with Chicane Mixing Geometry. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8122458] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A micromixer is a new type of chemical engineering equipment used to intensify the mixing process. This article provides details on flow regimes in microchannels with a complex geometry, such as with chicane mixing geometry. Experiments involving water, ink, and a micro digital camera have determined both the micromixer’s initial mixing zone, and also the streamlines. Computational fluid dynamics (CFD) modelling helped identify the mechanism of stimulating effect; swirling and recirculation were identified as two special cases of the convective mixing process. To characterize the degree of mixing, a function of volume flow rate was proposed. A much higher degree of mixing in vortex flow compared to stratified flow was observed. The relationship between laminar flow and vortices shows a square-law dependence of pressure drop against the volume flow rate. The mixing cost and the mixing energy cost at Reynolds number of 50 are higher for the chicane micromixer than for micromixers without chicanes geometry.
Collapse
|
21
|
Mehrdel P, Karimi S, Farré-Lladós J, Casals-Terré J. Novel Variable Radius Spiral⁻Shaped Micromixer: From Numerical Analysis to Experimental Validation. MICROMACHINES 2018; 9:E552. [PMID: 30715051 PMCID: PMC6266334 DOI: 10.3390/mi9110552] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/19/2018] [Accepted: 10/25/2018] [Indexed: 12/19/2022]
Abstract
A novel type of spiral micromixer with expansion and contraction parts is presented in order to enhance the mixing quality in the low Reynolds number regimes for point-of-care tests (POCT). Three classes of micromixers with different numbers of loops and modified geometries were studied. Numerical simulation was performed to study the flow behavior and mixing performance solving the steady-state Navier⁻Stokes and the convection-diffusion equations in the Reynolds range of 0.1⁻10.0. Comparisons between the mixers with and without expansion parts were made to illustrate the effect of disturbing the streamlines on the mixing performance. Image analysis of the mixing results from fabricated micromixers was used to verify the results of the simulations. Since the proposed mixer provides up to 92% of homogeneity at Re 1.0, generating 442 Pa of pressure drop, this mixer makes a suitable candidate for research in the POCT field.
Collapse
Affiliation(s)
- Pouya Mehrdel
- Mechanical Engineering Department-MicroTech Lab., Universitat Politècnica de Catalunya, Colom 7-11 08222 Terrassa, Barcelona, Spain.
| | - Shadi Karimi
- Mechanical Engineering Department-MicroTech Lab., Universitat Politècnica de Catalunya, Colom 7-11 08222 Terrassa, Barcelona, Spain.
| | - Josep Farré-Lladós
- Mechanical Engineering Department-MicroTech Lab., Universitat Politècnica de Catalunya, Colom 7-11 08222 Terrassa, Barcelona, Spain.
| | - Jasmina Casals-Terré
- Mechanical Engineering Department-MicroTech Lab., Universitat Politècnica de Catalunya, Colom 7-11 08222 Terrassa, Barcelona, Spain.
| |
Collapse
|
22
|
Lips D, Ryabov A, Maass P. Brownian Asymmetric Simple Exclusion Process. PHYSICAL REVIEW LETTERS 2018; 121:160601. [PMID: 30387631 DOI: 10.1103/physrevlett.121.160601] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Indexed: 06/08/2023]
Abstract
We study the driven Brownian motion of hard rods in a one-dimensional cosine potential with a large amplitude compared to the thermal energy. In a closed system, we find surprising features of the steady-state current in dependence of the particle density. The form of the current-density relation changes greatly with the particle size and can exhibit both a local maximum and minimum. The changes are caused by an interplay of a barrier reduction, blocking, and exchange symmetry effect. The latter leads to a current equal to that of noninteracting particles for a particle size commensurate with the period length of the cosine potential. For an open system coupled to particle reservoirs, we predict five different phases of nonequilibrium steady states to occur. Our results show that the particle size can be of crucial importance for nonequilibrium phase transitions in driven systems. Possible experiments for demonstrating our findings are pointed out.
Collapse
Affiliation(s)
- Dominik Lips
- Universität Osnabrück, Fachbereich Physik, Barbarastraße 7, D-49076 Osnabrück, Germany
| | - Artem Ryabov
- Charles University, Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, CZ-18000 Praha 8, Czech Republic
| | - Philipp Maass
- Universität Osnabrück, Fachbereich Physik, Barbarastraße 7, D-49076 Osnabrück, Germany
| |
Collapse
|
23
|
Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers. MICROMACHINES 2018; 9:mi9050204. [PMID: 30424137 PMCID: PMC6187307 DOI: 10.3390/mi9050204] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/18/2018] [Accepted: 04/25/2018] [Indexed: 01/04/2023]
Abstract
Vortex flow increases the interface area of fluid streams by stretching along with providing continuous stirring action to the fluids in micromixers. In this study, experimental and numerical analyses on a design of micromixer that creates vortex flow were carried out, and the mixing performance was compared with a simple micro T-mixer. In the vortex micro T-mixer, the height of the inlet channels is half of the height of the main mixing channel. The inlet channel connects to the main mixing channel (micromixer) at the one end at an offset position in a fashion that creates vortex flow. In the simple micro T-mixer, the height of the inlet channels is equal to the height of the channel after connection (main mixing channel). Mixing of fluids and flow field have been analyzed for Reynolds numbers in a range from 1–80. The study has been further extended to planar serpentine microchannels, which were combined with a simple and a vortex T-junction, to evaluate and verify their mixing performances. The mixing performance of the vortex T-mixer is higher than the simple T-mixer and significantly increases with the Reynolds number. The design is promising for efficiently increasing mixing simply at the T-junction and can be applied to all micromixers.
Collapse
|
24
|
Zuo Y, Zhu X, Shi Y, Liang L, Yang Y. Light Manipulation in Inhomogeneous Liquid Flow and Its Application in Biochemical Sensing. MICROMACHINES 2018; 9:mi9040163. [PMID: 30424097 PMCID: PMC6187708 DOI: 10.3390/mi9040163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
Light manipulation has always been the fundamental subject in the field of optics since centuries ago. Traditional optical devices are usually designed using glasses and other materials, such as semiconductors and metals. Optofluidics is the combination of microfluidics and optics, which brings a host of new advantages to conventional solid systems. The capabilities of light manipulation and biochemical sensing are inherent alongside the emergence of optofluidics. This new research area promotes advancements in optics, biology, and chemistry. The development of fast, accurate, low-cost, and small-sized biochemical micro-sensors is an urgent demand for real-time monitoring. However, the fluid flow in the on-chip sensor is usually non-uniformed, which is a new and emerging challenge for the accuracy of optical detection. It is significant to reveal the principle of light propagation in an inhomogeneous liquid flow and the interaction between biochemical samples and light in flowing liquids. In this review, we summarize the current state of optofluidic lab-on-a-chip techniques from the perspective of light modulation by the unique dynamic properties of fluid in heterogeneous media, such as diffusion, heat transfer, and centrifugation etc. Furthermore, this review introduces several novel photonic phenomena in an inhomogeneous liquid flow and demonstrates their application in biochemical sensing.
Collapse
Affiliation(s)
- Yunfeng Zuo
- School of Physics and Technology, Wuhan University, Wuhan 430070, China.
| | - Xiaoqiang Zhu
- School of Physics and Technology, Wuhan University, Wuhan 430070, China.
| | - Yang Shi
- School of Physics and Technology, Wuhan University, Wuhan 430070, China.
| | - Li Liang
- School of Physics and Technology, Wuhan University, Wuhan 430070, China.
| | - Yi Yang
- School of Physics and Technology, Wuhan University, Wuhan 430070, China.
| |
Collapse
|
25
|
Raza W, Ma SB, Kim KY. Multi-Objective Optimizations of a Serpentine Micromixer with Crossing Channels at Low and High Reynolds Numbers. MICROMACHINES 2018; 9:mi9030110. [PMID: 30424044 PMCID: PMC6187566 DOI: 10.3390/mi9030110] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/26/2018] [Accepted: 03/01/2018] [Indexed: 11/16/2022]
Abstract
In order to maximize the mixing performance of a micromixer with an integrated three-dimensional serpentine and split-and-recombination configuration, multi-objective optimizations were performed at two different Reynolds numbers, 1 and 120, based on numerical simulation. Numerical analyses of fluid flow and mixing in the micromixer were performed using three-dimensional Navier-Stokes equations and convection-diffusion equation. Three dimensionless design variables that were related to the geometry of the micromixer were selected as design variables for optimization. Mixing index at the exit and pressure drop through the micromixer were employed as two objective functions. A parametric study was carried out to explore the effects of the design variables on the objective functions. Latin hypercube sampling method as a design-of-experiment technique has been used to select design points in the design space. Surrogate modeling of the objective functions was performed by using radial basis neural network. Concave Pareto-optimal curves comprising of Pareto-optimal solutions that represents the trade-off between the objective functions were obtained using a multi-objective genetic algorithm at Re = 1 and 120. Through the optimizations, maximum enhancements of 18.8% and 6.0% in mixing index were achieved at Re = 1 and 120, respectively.
Collapse
Affiliation(s)
- Wasim Raza
- Department of Mechanical Engineering, Inha University, Incheon 22212, Korea.
| | - Sang-Bum Ma
- Department of Mechanical Engineering, Inha University, Incheon 22212, Korea.
| | - Kwang-Yong Kim
- Department of Mechanical Engineering, Inha University, Incheon 22212, Korea.
| |
Collapse
|
26
|
Recent Achievements on Photovoltaic Optoelectronic Tweezers Based on Lithium Niobate. CRYSTALS 2018. [DOI: 10.3390/cryst8020065] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This review presents an up-dated summary of the fundamentals and applications of optoelectronic photovoltaic tweezers for trapping and manipulation of nano-objects on the surface of lithium niobate crystals. It extends the contents of previous reviews to cover new topics and developments which have emerged in recent years and are marking the trends for future research. Regarding the theoretical description of photovoltaic tweezers, detailed simulations of the electrophoretic and dielectrophoretic forces acting on different crystal configurations are discussed in relation to the structure of the obtained trapping patterns. As for the experimental work, we will pay attention to the manipulation and patterning of micro-and nanoparticles that has experimented an outstanding progress and relevant applications have been reported. An additional focus is now laid on recent work about micro-droplets, which is a central topic in microfluidics and optofluidics. New developments in biology and biomedicine also constitute a relevant part of the review. Finally, some topics partially related with photovoltaic tweezers and a discussion on future prospects and challenges are included.
Collapse
|
27
|
Tan Y, Gladrow J, Keyser UF, Dagdug L, Pagliara S. Particle transport across a channel via an oscillating potential. Phys Rev E 2017; 96:052401. [PMID: 29347788 DOI: 10.1103/physreve.96.052401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Indexed: 06/07/2023]
Abstract
Membrane protein transporters alternate their substrate-binding sites between the extracellular and cytosolic side of the membrane according to the alternating access mechanism. Inspired by this intriguing mechanism devised by nature, we study particle transport through a channel coupled with an energy well that oscillates its position between the two entrances of the channel. We optimize particle transport across the channel by adjusting the oscillation frequency. At the optimal oscillation frequency, the translocation rate through the channel is a hundred times higher with respect to free diffusion across the channel. Our findings reveal the effect of time-dependent potentials on particle transport across a channel and will be relevant for membrane transport and microfluidics application.
Collapse
Affiliation(s)
- Yizhou Tan
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Jannes Gladrow
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Leonardo Dagdug
- Departamento de Fisica, Universidad Autonoma Metropolitana-Iztapalapa, 09340 Mexico City, Mexico
| | - Stefano Pagliara
- Living Systems Institute, University of Exeter, Exeter EX4 4QD, United Kingdom and Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
28
|
Zhdanov VP. Interpretation of amperometric kinetics of content release during contacts of vesicles with a lipid membrane. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 46:461-470. [PMID: 27942741 DOI: 10.1007/s00249-016-1189-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/21/2016] [Accepted: 11/28/2016] [Indexed: 11/25/2022]
Abstract
The exocytotic pathway of secretion of molecules from cells includes transport by vesicles, tether-mediated fusion of vesicles with the plasma membrane accompanied by pore formation, and diffusion-mediated release of their contents via a pore to the outside. In related basic biophysical studies, vesicle-content release is tracked by measuring corresponding amperometric spikes. Although experiments of this type have a long history, the understanding of the underlying physics is still elusive. The present study elucidates the likely contribution of line energy, membrane tension and bending, osmotic pressure, hydration forces, and tethers to the potential energy for fusion-related pore formation and evolution. The overdamped Langevin equation is used to describe the pore dynamics, which are in turn employed to calculate the kinetics of content release and to interpret the shape of amperometric spikes.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Section of Biological Physics, Department of Physics, Chalmers University of Technology, Göteborg, Sweden.
- Boreskov Institute of Catalysis, Russian Academy of Sciences, Novosibirsk, Russia.
| |
Collapse
|
29
|
Tabacchi G, Calzaferri G, Fois E. One-dimensional self-assembly of perylene-diimide dyes by unidirectional transit of zeolite channel openings. Chem Commun (Camb) 2016; 52:11195-8. [PMID: 27484884 DOI: 10.1039/c6cc05303c] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Confined supramolecular architectures of chromophores are key components in artificial antenna composites for solar energy harvesting and storage. A typical fabrication process, based on the insertion of dye molecules into zeolite channels, is still unknown at the molecular level. We show that slipping of perylene diimide dyes into the one-dimensional channels of zeolite L and travelling inside is only possible because of steric-interaction-induced cooperative vibrational modes of the host and the guest. The funnel-like structure of the channel opening, larger at the entrance, along with a directionally asymmetric entrance-exit probability, ensures a favorable self-assembly process of the perylene units.
Collapse
Affiliation(s)
- Gloria Tabacchi
- Department of Science and High Technology, University of Insubria, and INSTM, Via Valleggio 9, I-22100 Como, Italy.
| | | | | |
Collapse
|
30
|
Locatelli E, Pierno M, Baldovin F, Orlandini E, Tan Y, Pagliara S. Single-File Escape of Colloidal Particles from Microfluidic Channels. PHYSICAL REVIEW LETTERS 2016; 117:038001. [PMID: 27472142 DOI: 10.1103/physrevlett.117.038001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 06/06/2023]
Abstract
Single-file diffusion is a ubiquitous physical process exploited by living and synthetic systems to exchange molecules with their environment. It is paramount to quantify the escape time needed for single files of particles to exit from constraining synthetic channels and biological pores. This quantity depends on complex cooperative effects, whose predominance can only be established through a strict comparison between theory and experiments. By using colloidal particles, optical manipulation, microfluidics, digital microscopy, and theoretical analysis we uncover the self-similar character of the escape process and provide closed-formula evaluations of the escape time. We find that the escape time scales inversely with the diffusion coefficient of the last particle to leave the channel. Importantly, we find that at the investigated microscale, bias forces as tiny as 10^{-15} N determine the magnitude of the escape time by drastically reducing interparticle collisions. Our findings provide crucial guidelines to optimize the design of micro- and nanodevices for a variety of applications including drug delivery, particle filtering, and transport in geometrical constrictions.
Collapse
Affiliation(s)
- Emanuele Locatelli
- Dipartimento di Fisica e Astronomia "G. Galilei" (DFA) and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Matteo Pierno
- Dipartimento di Fisica e Astronomia "G. Galilei" (DFA) and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Fulvio Baldovin
- Dipartimento di Fisica e Astronomia "G. Galilei" (DFA), Sezione INFN and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia "G. Galilei" (DFA), Sezione INFN and Sezione CNISM, Università di Padova, Via Marzolo 8, 35131 Padova, Italy
| | - Yizhou Tan
- Cavendish Laboratory, Cambridge CB30HE, United Kingdom
| | | |
Collapse
|
31
|
Ding H, Jiang H, Hou Z. Entropic transport without external force in confined channel with oscillatory boundary. J Chem Phys 2015; 143:244119. [DOI: 10.1063/1.4939081] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Huai Ding
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huijun Jiang
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhonghuai Hou
- Department of Chemical Physics & Hefei National Laboratory for Physical Sciences at Microscales, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
32
|
Misiunas K, Pagliara S, Lauga E, Lister JR, Keyser UF. Nondecaying Hydrodynamic Interactions along Narrow Channels. PHYSICAL REVIEW LETTERS 2015; 115:038301. [PMID: 26230830 DOI: 10.1103/physrevlett.115.038301] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 06/04/2023]
Abstract
Particle-particle interactions are of paramount importance in every multibody system as they determine the collective behavior and coupling strength. Many well-known interactions such as electrostatic, van der Waals, or screened Coulomb interactions, decay exponentially or with negative powers of the particle spacing r. Similarly, hydrodynamic interactions between particles undergoing Brownian motion decay as 1/r in bulk, and are assumed to decay in small channels. Such interactions are ubiquitous in biological and technological systems. Here we confine two particles undergoing Brownian motion in narrow, microfluidic channels and study their coupling through hydrodynamic interactions. Our experiments show that the hydrodynamic particle-particle interactions are distance independent in these channels. This finding is of fundamental importance for the interpretation of experiments where dense mixtures of particles or molecules diffuse through finite length, water-filled channels or pore networks.
Collapse
Affiliation(s)
- Karolis Misiunas
- Cavendish Laboratory, University of Cambridge, United Kingdom and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Stefano Pagliara
- Cavendish Laboratory, University of Cambridge, United Kingdom and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Eric Lauga
- Cavendish Laboratory, University of Cambridge, United Kingdom and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - John R Lister
- Cavendish Laboratory, University of Cambridge, United Kingdom and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Ulrich F Keyser
- Cavendish Laboratory, University of Cambridge, United Kingdom and Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|