1
|
Mondal K, Bera P, Ghosh P. Diverse morphology and motility induced emergent order in bacterial collectives. J Chem Phys 2024; 161:094908. [PMID: 39230379 DOI: 10.1063/5.0220700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Microbial communities exhibit complex behaviors driven by species interactions and individual characteristics. In this study, we delve into the dynamics of a mixed bacterial population comprising two distinct species with different morphology and motility aspects. Employing agent-based modeling and computer simulations, we analyze the impacts of size ratios and packing fractions on dispersal patterns, aggregate formation, clustering, and spatial ordering. Notably, we find that motility and anisotropy of elongated bacteria significantly influence the distribution and spatial organization of nonmotile spherical species. Passive spherical cells display a superdiffusive behavior, particularly at larger size ratios in the ballistic regime. As the size ratio increases, clustering of passive cells is observed, accompanied by enhanced alignment and closer packing of active cells in the presence of higher passive cell area fractions. In addition, we identify the pivotal role of passive cell area fraction in influencing the response of active cells toward nematicity, with its dependence on size ratio. These findings shed light on the significance of morphology and motility in shaping the collective behavior of microbial communities, providing valuable insights into complex microbial behaviors with implications for ecology, biotechnology, and bioengineering.
Collapse
Affiliation(s)
- Kaustav Mondal
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Hyderabad, Telangana 500046, India
| | - Pushpita Ghosh
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
2
|
Fylling C, Tamayo J, Gopinath A, Theillard M. Multi-population dissolution in confined active fluids. SOFT MATTER 2024; 20:1392-1409. [PMID: 38305767 DOI: 10.1039/d3sm01196h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Autonomous out-of-equilibrium agents or cells in suspension are ubiquitous in biology and engineering. Turning chemical energy into mechanical stress, they generate activity in their environment, which may trigger spontaneous large-scale dynamics. Often, these systems are composed of multiple populations that may reflect the coexistence of multiple species, differing phenotypes, or chemically varying agents in engineered settings. Here, we present a new method for modeling such multi-population active fluids subject to confinement. We use a continuum multi-scale mean-field approach to represent each phase by its first three orientational moments and couple their evolution with those of the suspending fluid. The resulting coupled system is solved using a parallel adaptive level-set-based solver for high computational efficiency and maximal flexibility in the confinement geometry. Motivated by recent experimental work, we employ our method to study the spatiotemporal dynamics of confined bacterial suspensions and swarms dominated by fluid hydrodynamic effects. Our in silico explorations reproduce observed emergent collective patterns, including features of active dissolution in two-population active-passive swarms, with results clearly suggesting that hydrodynamic effects dominate dissolution dynamics. Our work lays the foundation for a systematic characterization and study of collective phenomena in natural or synthetic multi-population systems such as bacteria colonies, bird flocks, fish schools, colloid swimmers, or programmable active matter.
Collapse
Affiliation(s)
- Cayce Fylling
- Department of Applied Mathematics, University of California Merced, Merced, CA95343, USA.
| | - Joshua Tamayo
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA.
| | - Arvind Gopinath
- Department of Bioengineering, University of California Merced, Merced, CA 95343, USA.
| | - Maxime Theillard
- Department of Applied Mathematics, University of California Merced, Merced, CA95343, USA.
| |
Collapse
|
3
|
Shoup D, Ursell T. Bacterial bioconvection confers context-dependent growth benefits and is robust under varying metabolic and genetic conditions. J Bacteriol 2023; 205:e0023223. [PMID: 37787517 PMCID: PMC10601612 DOI: 10.1128/jb.00232-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 10/04/2023] Open
Abstract
Microbes often respond to environmental cues by adopting collective behaviors-like biofilms or swarming-that benefit the population. During "bioconvection," microbes gather in dense groups and plume downward through fluid environments, driving flow and mixing on the scale of millions of cells. Though bioconvection was observed a century ago, the effects of differing physical and chemical inputs and its potential selective advantages for different species of microbes remain largely unexplored. In Bacillus subtilis, vertical oxygen gradients that originate from air-liquid interfaces create cell-density inversions that drive bioconvection. Here, we develop Escherichia coli as a complementary model for the study of bioconvection. In the context of a still fluid, we found that motile and chemotactic genotypes of both E. coli and B. subtilis bioconvect and show increased growth compared to immotile or non-chemotactic genotypes, whereas in a well-mixed fluid, there is no growth advantage to motility or chemotaxis. We found that fluid depth, cell concentration, and carbon availability affect the emergence and timing of bioconvective patterns. Also, whereas B. subtilis requires oxygen gradients to bioconvect, E. coli deficient in aerotaxis (Δaer) or energy-taxis (Δtsr) still bioconvects, as do cultures that lack an air-liquid interface. Thus, in two distantly related microbes, bioconvection may confer context-dependent growth benefits, and E. coli bioconvection is robustly elicited by multiple types of chemotaxis. These results greatly expand the set of physical and metabolic conditions in which this striking collective behavior can be expected and demonstrate its potential to be a generic force for behavioral selection across ecological contexts. IMPORTANCE Individual microorganisms frequently move in response to gradients in their fluid environment, with corresponding metabolic benefits. At a population level, such movements can create density variations in a fluid that couple to gravity and drive large-scale convection and mixing called bioconvection. In this work, we provide evidence that this collective behavior confers a selective benefit on two distantly related species of bacteria. We develop new methods for quantifying this behavior and show that bioconvection in Escherichia coli is surprisingly robust to changes in cell concentration, fluid depth, interface conditions, metabolic sensing, and carbon availability. These results greatly expand the set of conditions known to elicit this collective behavior and indicate its potential to be a selective pressure across ecological contexts.
Collapse
Affiliation(s)
- Daniel Shoup
- Department of Physics, University of Oregon, Eugene, Oregon, USA
- Rocky Mountain National Laboratories (NIH), Hamilton, Montana, USA
| | - Tristan Ursell
- Department of Physics, University of Oregon, Eugene, Oregon, USA
- Material Science Institute, Eugene, Oregon, USA
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon, USA
| |
Collapse
|
4
|
Brückner DB, Chen H, Barinov L, Zoller B, Gregor T. Stochastic motion and transcriptional dynamics of pairs of distal DNA loci on a compacted chromosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524527. [PMID: 36711618 PMCID: PMC9882297 DOI: 10.1101/2023.01.18.524527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Chromosomes in the eukaryotic nucleus are highly compacted. However, for many functional processes, including transcription initiation, the 3D pair-wise motion of distal chromosomal elements, such as enhancers and promoters, is essential and necessitates dynamic fluidity. Therefore, the interplay of chromosome organization and dynamics is crucial for gene regulation. Here, we use a live imaging assay to simultaneously measure the positions of pairs of enhancers and promoters and their transcriptional output in the developing fly embryo while systematically varying the genomic separation between these two DNA loci. Our analysis reveals a combination of a compact globular organization and fast subdiffusive dynamics. These combined features cause an anomalous scaling of polymer relaxation times with genomic separation and lead to long-ranged correlations compared to existing polymer models. This scaling implies that encounter times of DNA loci are much less dependent on genomic separation than predicted by existing polymer models, with potentially significant consequences for eukaryotic gene expression.
Collapse
Affiliation(s)
- David B. Brückner
- Institute of Science and Technology, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Hongtao Chen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Lev Barinov
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Benjamin Zoller
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
- Department of Developmental and Stem Cell Biology, CNRS UMR3738, Institut Pasteur, Paris, France
| | - Thomas Gregor
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ, USA
- Department of Developmental and Stem Cell Biology, CNRS UMR3738, Institut Pasteur, Paris, France
| |
Collapse
|
5
|
Mixed-species bacterial swarms show an interplay of mixing and segregation across scales. Sci Rep 2022; 12:16500. [PMID: 36192570 PMCID: PMC9529924 DOI: 10.1038/s41598-022-20644-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 09/16/2022] [Indexed: 11/28/2022] Open
Abstract
Bacterial swarms are a highly-researched example of natural active matter. In particular, the interplay between biological interactions and the physics underlying the swarming dynamics is of both biological and physical interest. In this paper, we study mixed swarms of Bacillus subtilis and Pseudomonas aeruginosa. We find intricate interactions between the species, showing both cooperation and segregation across different spatial and temporal scales. On one hand, even though axenic colonies grow on disparate time scale, an order of magnitude apart, the two-species swarm together, forming a single, combined colony. However, the rapidly moving populations are locally segregated, with different characteristic speeds and lengths (or cluster sizes) that depend on the ratio between the species. Comparison with controlled mutant strains suggest that both the physical and known biological differences in species characteristics may not be enough to explain the segregation between the species in the mixed swarm. We hypothesize that the heterogeneous spatial distribution is due to some mechanism that enables bacteria to recognize their own kind, whose precise origin we could not identify.
Collapse
|
6
|
Zhang Z, Liu H, Karani H, Mallen J, Chen W, De A, Mani S, Tang JX. Enterobacter sp. Strain SM1_HS2B Manifests Transient Elongation and Swimming Motility in Liquid Medium. Microbiol Spectr 2022; 10:e0207821. [PMID: 35647691 PMCID: PMC9241836 DOI: 10.1128/spectrum.02078-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/03/2022] [Indexed: 11/20/2022] Open
Abstract
Many species of bacteria change their morphology and behavior under external stresses. In this study, we report transient elongation and swimming motility of a novel Enterobacter sp. strain, SM1_HS2B, in liquid broth under a standard growth condition. When growing in the Luria-Bertani medium, HS2B cells delay their cell division and elongate. Although transient over a few hours, the average cell length reaches over 10 times that of the stationary-state cells. The increase is also cumulative following repeated growth cycles stimulated by taking cells out of the exponential phase and adding them into fresh medium every 2 hours. The majority of the cells attain swimming motility during the exponential growth phase, and then they lose swimming motility over the course of several hours. Both daughter cells due to division of a long swimming cell retain the ability to swim. We confirm that the long HS2B cells swim with rigid-body rotation along their body axis. These findings based on microscopic observation following repeated cycles of growth establish HS2B as a prototype strain with sensitive dependence of size and motility on its physical and biochemical environment. IMPORTANCE Bacteria undergo morphological changes in order to cope with external stresses. Among the best-known examples are cell elongation and hyperflagellation in the context of swarming motility. The subject of this report, SM1_HS2B, is a hyperswarming strain of a newly identified species of enterobacteria, noted as Enterobacter sp. SM1. The key finding that SM1_HS2B transiently elongates to extreme length in fresh liquid medium offers new insights on regulation in bacterial growth and division. SM1_HS2B also manifests transient but vigorous swimming motility during the exponential phase of growth in liquid medium. These properties establish HS2B as a prototype strain with sensitive dependence of size and motility on its physical and biochemical environment. Such a dependence may be relevant to swarming behavior with a significant environmental or physiological outcome.
Collapse
Affiliation(s)
- Zhiyu Zhang
- Brown University, Physics Department, Providence, Rhode Island, USA
| | - Haoming Liu
- Brown University, Physics Department, Providence, Rhode Island, USA
| | - Hamid Karani
- Brown University, Physics Department, Providence, Rhode Island, USA
| | - Jon Mallen
- Brown University, Physics Department, Providence, Rhode Island, USA
| | - Weijie Chen
- Brown University, Physics Department, Providence, Rhode Island, USA
- Albert Einstein College of Medicine, New York, New York, USA
| | - Arpan De
- Albert Einstein College of Medicine, New York, New York, USA
| | - Sridhar Mani
- Albert Einstein College of Medicine, New York, New York, USA
| | - Jay X. Tang
- Brown University, Physics Department, Providence, Rhode Island, USA
| |
Collapse
|
7
|
Aranson IS. Bacterial active matter. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:076601. [PMID: 35605446 DOI: 10.1088/1361-6633/ac723d] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Bacteria are among the oldest and most abundant species on Earth. Bacteria successfully colonize diverse habitats and play a significant role in the oxygen, carbon, and nitrogen cycles. They also form human and animal microbiota and may become sources of pathogens and a cause of many infectious diseases. Suspensions of motile bacteria constitute one of the most studied examples of active matter: a broad class of non-equilibrium systems converting energy from the environment (e.g., chemical energy of the nutrient) into mechanical motion. Concentrated bacterial suspensions, often termed active fluids, exhibit complex collective behavior, such as large-scale turbulent-like motion (so-called bacterial turbulence) and swarming. The activity of bacteria also affects the effective viscosity and diffusivity of the suspension. This work reports on the progress in bacterial active matter from the physics viewpoint. It covers the key experimental results, provides a critical assessment of major theoretical approaches, and addresses the effects of visco-elasticity, liquid crystallinity, and external confinement on collective behavior in bacterial suspensions.
Collapse
Affiliation(s)
- Igor S Aranson
- Departments of Biomedical Engineering, Chemistry, and Mathematics, Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
8
|
Jose A, Ariel G, Be'er A. Physical characteristics of mixed-species swarming colonies. Phys Rev E 2022; 105:064404. [PMID: 35854624 DOI: 10.1103/physreve.105.064404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
In nature, bacterial collectives typically consist of multiple species, which are interacting both biochemically and physically. Nonetheless, past studies on the physical properties of swarming bacteria were focused on axenic (single-species) populations. In bacterial swarming, intricate interactions between the individuals lead to clusters, rapid jets, and vortices that depend on cell characteristics such as speed and length. In this work, we show the first results of rapidly swarming mixed-species populations of Bacillus subtilis and Serratia marcescens, two model swarm species that are known to swarm well in axenic situations. In mixed liquid cultures, both species have higher reproduction rates. We show that the mixed population swarms together well and that the fraction between the species determines all dynamical scales-from the microscopic (e.g., speed distribution), mesoscopic (vortex size), and macroscopic (colony structure and size). Understanding mixed-species swarms is essential for a comprehensive understanding of the bacterial swarming phenomenon and its biological and evolutionary implications.
Collapse
Affiliation(s)
- Ajesh Jose
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52000 Ramat Gan, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel and Department of Physics, Ben-Gurion University of the Negev 84105, Beer-Sheva, Israel
| |
Collapse
|
9
|
Surveying a Swarm: Experimental Techniques to Establish and Examine Bacterial Collective Motion. Appl Environ Microbiol 2021; 88:e0185321. [PMID: 34878816 DOI: 10.1128/aem.01853-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The survival and successful spread of many bacterial species hinges on their mode of motility. One of the most distinct of these is swarming, a collective form of motility where a dense consortium of bacteria employ flagella to propel themselves across a solid surface. Surface environments pose unique challenges, derived from higher surface friction/tension and insufficient hydration. Bacteria have adapted by deploying an array of mechanisms to overcome these challenges. Beyond allowing bacteria to colonize new terrain in the absence of bulk liquid, swarming also bestows faster speeds and enhanced antibiotic resistance to the collective. These crucial attributes contribute to the dissemination, and in some cases pathogenicity, of an array of bacteria. This mini-review highlights; 1) aspects of swarming motility that differentiates it from other methods of bacterial locomotion. 2) Facilitatory mechanisms deployed by diverse bacteria to overcome different surface challenges. 3) The (often difficult) approaches required to cultivate genuine swarmers. 4) The methods available to observe and assess the various facets of this collective motion, as well as the features exhibited by the population as a whole.
Collapse
|
10
|
Bera P, Wasim A, Mondal J, Ghosh P. Mechanistic underpinning of cell aspect ratio-dependent emergent collective motions in swarming bacteria. SOFT MATTER 2021; 17:7322-7331. [PMID: 34286783 DOI: 10.1039/d1sm00311a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Self-propelled bacteria can exhibit a large variety of non-equilibrium self-organized phenomena. Swarming is one such fascinating dynamical scenario where a number of motile individuals group into dynamical clusters and move in synchronized flows and vortices. While precedent investigations into rod-like particles confirm that an increased aspect-ratio promotes alignment and order, recent experimental studies in bacteria Bacillus subtilis show a non-monotonic dependence of the cell-aspect ratio on their swarming motion. Here, by computer simulations of an agent-based model of self-propelled, mechanically interacting, rod-shaped bacteria under overdamped conditions, we explore the collective dynamics of a bacterial swarm subjected to a variety of cell-aspect ratios. When modeled with an identical self-propulsion speed across a diverse range of cell aspect ratios, simulations demonstrate that both shorter and longer bacteria exhibit slow dynamics whereas the fastest speed is obtained at an intermediate aspect ratio. Our investigation highlights that the origin of this observed non-monotonic trend of bacterial speed and vorticity with the cell-aspect ratio is rooted in the cell-size dependence of motility force. The swarming features remain robust for a wide range of surface density of the cells, whereas asymmetry in friction attributes a distinct effect. Our analysis identifies that at an intermediate aspect ratio, an optimum cell size and motility force promote alignment, which reinforces the mechanical interactions among neighboring cells leading to the overall fastest motion. Mechanistic underpinning of the collective motions reveals that it is a joint venture of the short-range repulsive and the size-dependent motility forces, which determines the characteristics of swarming.
Collapse
Affiliation(s)
- Palash Bera
- Tata Institute of Fundamental Research Hyderabad, Telangana 500046, India.
| | | | | | | |
Collapse
|
11
|
Knebel D, Sha-ked C, Agmon N, Ariel G, Ayali A. Collective motion as a distinct behavioral state of the individual. iScience 2021; 24:102299. [PMID: 33855280 PMCID: PMC8024921 DOI: 10.1016/j.isci.2021.102299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/04/2021] [Accepted: 03/05/2021] [Indexed: 02/04/2023] Open
Abstract
The collective motion of swarms depends on adaptations at the individual level. We explored these and their effects on swarm formation and maintenance in locusts. The walking kinematics of individual insects were monitored under laboratory settings, before, as well as during collective motion in a group, and again after separation from the group. It was found that taking part in collective motion induced in the individual unique behavioral kinematics, suggesting the existence of a distinct behavioral mode that we term a "collective-motion-state." This state, characterized by behavioral adaptation to the social context, is long lasting, not induced by crowding per se, but only by experiencing collective motion. Utilizing computational models, we show that this adaptability increases the robustness of the swarm. Overall, our findings suggest that collective motion is not only an emergent property of the group but also depends on a behavioral mode, rooted in endogenous mechanisms of the individual.
Collapse
Affiliation(s)
- Daniel Knebel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Department of Computer Science, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ciona Sha-ked
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Noa Agmon
- Department of Computer Science, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Gil Ariel
- Department of Mathematics, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Amir Ayali
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
12
|
Grobas I, Polin M, Asally M. Swarming bacteria undergo localized dynamic phase transition to form stress-induced biofilms. eLife 2021; 10:62632. [PMID: 33722344 PMCID: PMC7963483 DOI: 10.7554/elife.62632] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 02/26/2021] [Indexed: 12/23/2022] Open
Abstract
Self-organized multicellular behaviors enable cells to adapt and tolerate stressors to a greater degree than isolated cells. However, whether and how cellular communities alter their collective behaviors adaptively upon exposure to stress is largely unclear. Here, we investigate this question using Bacillus subtilis, a model system for bacterial multicellularity. We discover that, upon exposure to a spatial gradient of kanamycin, swarming bacteria activate matrix genes and transit to biofilms. The initial stage of this transition is underpinned by a stress-induced multilayer formation, emerging from a biophysical mechanism reminiscent of motility-induced phase separation (MIPS). The physical nature of the process suggests that stressors which suppress the expansion of swarms would induce biofilm formation. Indeed, a simple physical barrier also induces a swarm-to-biofilm transition. Based on the gained insight, we propose a strategy of antibiotic treatment to inhibit the transition from swarms to biofilms by targeting the localized phase transition.
Collapse
Affiliation(s)
- Iago Grobas
- Warwick Medical School, Universityof Warwick, Coventry, United Kingdom
| | - Marco Polin
- Warwick Medical School, Universityof Warwick, Coventry, United Kingdom.,Centre for Mechanochemical Cell Biology, University of Warwick, Coventry, United Kingdom.,Physics Department, University of Warwick, Coventry, United Kingdom.,Mediterranean Institute for Advanced Studies (IMEDEA UIB-CSIC), C/ Miquel Marqués, Balearic Islands, Spain
| | - Munehiro Asally
- Bio-Electrical Engineering Innovation Hub, University of Warwick, Coventry, United Kingdom.,Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, United Kingdom.,School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
13
|
Peled S, Ryan SD, Heidenreich S, Bär M, Ariel G, Be'er A. Heterogeneous bacterial swarms with mixed lengths. Phys Rev E 2021; 103:032413. [PMID: 33862716 DOI: 10.1103/physreve.103.032413] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022]
Abstract
Heterogeneous systems of active matter exhibit a range of complex emergent dynamical patterns. In particular, it is difficult to predict the properties of the mixed system based on its constituents. These considerations are particularly significant for understanding realistic bacterial swarms, which typically develop heterogeneities even when grown from a single cell. Here, mixed swarms of cells with different aspect ratios are studied both experimentally and in simulations. In contrast with previous theory, there is no macroscopic phase segregation. However, locally, long cells act as nucleation cites, around which aggregates of short, rapidly moving cells can form, resulting in enhanced swarming speeds. On the other hand, high fractions of long cells form a bottleneck for efficient swarming. Our results suggest a physical advantage for the spontaneous heterogeneity of bacterial swarm populations.
Collapse
Affiliation(s)
- Shlomit Peled
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Shawn D Ryan
- Department of Mathematics and Statistics, Cleveland State University, Cleveland, Ohio 44115, USA
- Center for Applied Data Analysis and Modeling, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Sebastian Heidenreich
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Markus Bär
- Department of Mathematical Modelling and Data Analysis, Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Abbestrasse 2-12, D-10587 Berlin, Germany
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev 84105, Beer-Sheva, Israel
| |
Collapse
|
14
|
Ali A, Ovais M, Cui X, Rui Y, Chen C. Safety Assessment of Nanomaterials for Antimicrobial Applications. Chem Res Toxicol 2020; 33:1082-1109. [DOI: 10.1021/acs.chemrestox.9b00519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Arbab Ali
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xuejing Cui
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
| | - YuKui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, P.R. China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P.R. China
- University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- GBA Research Innovation Institute for Nanotechnology, Guangdong 510700, China
| |
Collapse
|
15
|
Dynamic motility selection drives population segregation in a bacterial swarm. Proc Natl Acad Sci U S A 2020; 117:4693-4700. [PMID: 32060120 DOI: 10.1073/pnas.1917789117] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Population expansion in space, or range expansion, is widespread in nature and in clinical settings. Space competition among heterogeneous subpopulations during range expansion is essential to population ecology, and it may involve the interplay of multiple factors, primarily growth and motility of individuals. Structured microbial communities provide model systems to study space competition during range expansion. Here we use bacterial swarms to investigate how single-cell motility contributes to space competition among heterogeneous bacterial populations during range expansion. Our results revealed that motility heterogeneity can promote the spatial segregation of subpopulations via a dynamic motility selection process. The dynamic motility selection is enabled by speed-dependent persistence time bias of single-cell motion, which presumably arises from physical interaction between cells in a densely packed swarm. We further showed that the dynamic motility selection may contribute to collective drug tolerance of swarming colonies by segregating subpopulations with transient drug tolerance to the colony edge. Our results illustrate that motility heterogeneity, or "motility fitness," can play a greater role than growth rate fitness in determining the short-term spatial structure of expanding populations.
Collapse
|
16
|
Yang J, Arratia PE, Patteson AE, Gopinath A. Quenching active swarms: effects of light exposure on collective motility in swarming Serratia marcescens. J R Soc Interface 2019; 16:20180960. [PMID: 31311436 DOI: 10.1098/rsif.2018.0960] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Swarming colonies of the light-responsive bacteria Serratia marcescens grown on agar exhibit robust fluctuating large-scale flows that include arrayed vortices, jets and sinuous streamers. We study the immobilization and quenching of these collective flows when the moving swarm is exposed to intense wide-spectrum light with a substantial ultraviolet component. We map the emergent response of the swarm to light in terms of two parameters-light intensity and duration of exposure-and identify the conditions under which collective motility is impacted. For small exposure times and/or low intensities, we find collective motility to be negligibly affected. Increasing exposure times and/or intensity to higher values suppresses collective motility but only temporarily. Terminating exposure allows bacteria to recover and eventually reestablish collective flows similar to that seen in unexposed swarms. For long exposure times or at high intensities, exposed bacteria become paralysed and form aligned, jammed regions where macroscopic speeds reduce to zero. The effective size of the quenched region increases with time and saturates to approximately the extent of the illuminated region. Post-exposure, active bacteria dislodge immotile bacteria; initial dissolution rates are strongly dependent on duration of exposure. Based on our experimental observations, we propose a minimal Brownian dynamics model to examine the escape of exposed bacteria from the region of exposure. Our results complement studies on planktonic bacteria, inform models of patterning in gradated illumination and provide a starting point for the study of specific wavelengths on swarming bacteria.
Collapse
Affiliation(s)
- Junyi Yang
- Department of Bioengineering, University of California Merced, Merced, CA, USA
| | - Paulo E Arratia
- Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Arvind Gopinath
- Department of Bioengineering, University of California Merced, Merced, CA, USA
| |
Collapse
|
17
|
Knebel D, Ayali A, Guershon M, Ariel G. Intra- versus intergroup variance in collective behavior. SCIENCE ADVANCES 2019; 5:eaav0695. [PMID: 30613780 PMCID: PMC6314827 DOI: 10.1126/sciadv.aav0695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Abstract
Animal collective motion arises from the intricate interactions between the natural variability among individuals, and the homogenizing effect of the group, working to generate synchronization and maintain coherence. Here, these interactions were studied using marching locust nymphs under controlled laboratory settings. A novel experimental approach compared single animals, small groups, and virtual groups composed of randomly shuffled real members. We found that the locust groups developed unique, group-specific behavioral characteristics, reflected in large intergroup and small intragroup variance (compared with the shuffled groups). Behavioral features that differed between single animals and groups, but not between group types, were classified as essential for swarm formation. Comparison with Markov chain models showed that individual tendencies and the interaction network among animals dictate the group characteristics. Deciphering the bidirectional interactions between individual and group properties is essential for understanding the swarm phenomenon and predicting large-scale swarm behaviors.
Collapse
Affiliation(s)
- D. Knebel
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Department of Mathematics, Bar Ilan University, Ramat-Gan, Israel
| | - A. Ayali
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - M. Guershon
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel Aviv 69778, Israel
| | - G. Ariel
- Department of Mathematics, Bar Ilan University, Ramat-Gan, Israel
| |
Collapse
|
18
|
Be’er A, Ariel G. A statistical physics view of swarming bacteria. MOVEMENT ECOLOGY 2019; 7:9. [PMID: 30923619 PMCID: PMC6419441 DOI: 10.1186/s40462-019-0153-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/18/2019] [Indexed: 05/18/2023]
Abstract
Bacterial swarming is a collective mode of motion in which cells migrate rapidly over surfaces, forming dynamic patterns of whirls and jets. This review presents a physical point of view of swarming bacteria, with an emphasis on the statistical properties of the swarm dynamics as observed in experiments. The basic physical principles underlying the swarm and their relation to contemporary theories of collective motion and active matter are reviewed and discussed in the context of the biological properties of swarming cells. We suggest a paradigm according to which bacteria have optimized some of their physical properties as a strategy for rapid surface translocation. In other words, cells take advantage of favorable physics, enabling efficient expansion that enhances survival under harsh conditions.
Collapse
Affiliation(s)
- Avraham Be’er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990 Midreshet Ben-Gurion, Israel
- Department of Physics, Ben-Gurion University of the Negev, 84105 Beer Sheva, Israel
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, 52000 Ramat Gan, Israel
| |
Collapse
|
19
|
Partridge JD, Ariel G, Schvartz O, Harshey RM, Be'er A. The 3D architecture of a bacterial swarm has implications for antibiotic tolerance. Sci Rep 2018; 8:15823. [PMID: 30361680 PMCID: PMC6202419 DOI: 10.1038/s41598-018-34192-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 10/11/2018] [Indexed: 12/04/2022] Open
Abstract
Swarming bacteria are an example of a complex, active biological system, where high cell density and super-diffusive cell mobility confer survival advantages to the group as a whole. Previous studies on the dynamics of the swarm have been limited to easily observable regions at the advancing edge of the swarm where cells are restricted to a plane. In this study, using defocused epifluorescence video imaging, we have tracked the motion of fluorescently labeled individuals within the interior of a densely packed three-dimensional (3D) region of a swarm. Our analysis reveals a novel 3D architecture, where bacteria are constrained by inter-particle interactions, sandwiched between two distinct boundary conditions. We find that secreted biosurfactants keep bacteria away from the swarm-air upper boundary, and added antibiotics at the lower swarm-surface boundary lead to their migration away from this boundary. Formation of the antibiotic-avoidance zone is dependent on a functional chemotaxis signaling system, in the absence of which the swarm loses its high tolerance to the antibiotics.
Collapse
Affiliation(s)
- Jonathan D Partridge
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat Gan, 52000, Israel
| | - Orly Schvartz
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel
| | - Rasika M Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, 78712, USA.
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Midreshet Ben-Gurion, Israel. .,Department of Physics, Ben-Gurion University of the Negev, 84105, Beer Sheva, Israel.
| |
Collapse
|
20
|
Agrawal A, Babu SB. Self-organization in a bimotility mixture of model microswimmers. Phys Rev E 2018; 97:020401. [PMID: 29548189 DOI: 10.1103/physreve.97.020401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Indexed: 06/08/2023]
Abstract
We study the cooperation and segregation dynamics in a bimotility mixture of microorganisms which swim at low Reynolds numbers via periodic deformations along the body. We employ a multiparticle collision dynamics method to simulate a two component mixture of artificial swimmers, termed as Taylor lines, which differ from each other only in the propulsion speed. The analysis reveals that a contribution of slower swimmers towards clustering, on average, is much larger as compared to the faster ones. We notice distinctive self-organizing dynamics, depending on the percentage difference in the speed of the two kinds. If this difference is large, the faster ones fragment the clusters of the slower ones in order to reach the boundary and form segregated clusters. Contrarily, when it is small, both kinds mix together at first, the faster ones usually leading the cluster and then gradually the slower ones slide out thereby also leading to segregation.
Collapse
Affiliation(s)
- Adyant Agrawal
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sujin B Babu
- Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
21
|
Abstract
Typical wild-type bacteria swimming in sparse suspensions exhibit a movement pattern called "run and tumble," characterized by straight trajectories (runs) interspersed by shorter, random reorientation (tumbles). This is achieved by rotating their flagella counterclockwise, or clockwise, respectively. The chemotaxis signaling network operates in controlling the frequency of tumbles, enabling navigation toward or away from desired regions in the medium. In contrast, while in dense populations, flagellated bacteria exhibit collective motion and form large dynamic clusters, whirls, and jets, with intricate dynamics that is fundamentally different than trajectories of sparsely swimming cells. Although collectively swarming cells do change direction at the level of the individual cell, often exhibiting reversals, it has been suggested that chemotaxis does not play a role in multicellular colony expansion, but the change in direction stems from clockwise flagellar rotation. In this paper, the effects of cell rotor switching (i.e., the ability to tumble) and chemotaxis on the collective statistics of swarming bacteria are studied experimentally in wild-type Bacillus subtilis and two mutants-one that does not tumble and one that tumbles independently of the chemotaxis system. We show that while several of the parameters examined are similar between the strains, other collective and individual characteristics are significantly different. The results demonstrate that tumbling and/or flagellar directional rotor switching has an important role on the dynamics of swarming, and imply that swarming models of self-propelled rods that do not take tumbling and/or rotor switching into account may be oversimplified.
Collapse
Affiliation(s)
- Marina Sidortsov
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Yakov Morgenstern
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| |
Collapse
|
22
|
Ryan SD, Ariel G, Be'er A. Anomalous Fluctuations in the Orientation and Velocity of Swarming Bacteria. Biophys J 2017; 111:247-55. [PMID: 27410751 DOI: 10.1016/j.bpj.2016.05.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/06/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022] Open
Abstract
Simultaneous acquisition of phase-contrast light microscopy and fluorescently labeled bacteria, moving within a dense swarm, reveals the intricate interactions between cells and the collective flow around them. By comparing wild-type and immotile cells embedded in a dense wild-type swarm, the effect of the active thrust generated by the flagella can be singled out. It is shown that while the distribution of angles among cell velocity, cell orientation, and the local flow around it is Gaussian-like for immotile bacteria, wild-type cells exhibit anomalous non-Gaussian deviations and are able to move in trajectories perpendicular to the collective flow. Thus, cells can maneuver or switch between local streams and jets. A minimal model describing bacteria as hydrodynamic force dipoles shows that steric effects, hydrodynamics interactions, and local alignments all have to be taken into account to explain the observed dynamics. These findings shed light on the physical mechanisms underlying bacterial swarming and the balance between individual and collective dynamics.
Collapse
Affiliation(s)
- Shawn D Ryan
- Department of Mathematical Sciences, Kent State University, Kent, Ohio
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat Gan, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion, Israel.
| |
Collapse
|
23
|
Ilkanaiv B, Kearns DB, Ariel G, Be'er A. Effect of Cell Aspect Ratio on Swarming Bacteria. PHYSICAL REVIEW LETTERS 2017; 118:158002. [PMID: 28452529 PMCID: PMC5525544 DOI: 10.1103/physrevlett.118.158002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Indexed: 05/29/2023]
Abstract
Swarming bacteria collectively migrate on surfaces using flagella, forming dynamic whirls and jets that consist of millions of individuals. Because some swarming bacteria elongate prior to actual motion, cell aspect ratio may play a significant role in the collective dynamics. Extensive research on self-propelled rodlike particles confirms that elongation promotes alignment, strongly affecting the dynamics. Here, we study experimentally the collective dynamics of variants of swarming Bacillus subtilis that differ in length. We show that the swarming statistics depends on the aspect ratio in a critical, fundamental fashion not predicted by theory. The fastest motion was obtained for the wild-type and variants that are similar in length. However, shorter and longer cells exhibit anomalous, non-Gaussian statistics and nonexponential decay of the autocorrelation function, indicating lower collective motility. These results suggest that the robust mechanisms to maintain aspect ratios may be important for efficient swarming motility. Wild-type cells are optimal in this sense.
Collapse
Affiliation(s)
- Bella Ilkanaiv
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Daniel B Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | - Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat Gan 52000, Israel
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| |
Collapse
|
24
|
Dynamics of Snake-like Swarming Behavior of Vibrio alginolyticus. Biophys J 2016; 110:981-92. [PMID: 26910435 DOI: 10.1016/j.bpj.2015.12.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/16/2015] [Accepted: 12/28/2015] [Indexed: 11/22/2022] Open
Abstract
Swarming represents a special case of bacterial behavior where motile bacteria migrate rapidly and collectively on surfaces. Swarming and swimming motility of bacteria has been studied well for rigid, self-propelled rods. In this study we report a strain of Vibrio alginolyticus, a species that exhibits similar collective motility but a fundamentally different cell morphology with highly flexible snake-like swarming cells. Investigating swarming dynamics requires high-resolution imaging of single cells with coverage over a large area: thousands of square microns. Researchers previously have employed various methods of motion analysis but largely for rod-like bacteria. We employ temporal variance analysis of a short time-lapse microscopic image series to capture the motion dynamics of swarming Vibrio alginolyticus at cellular resolution over hundreds of microns. Temporal variance is a simple and broadly applicable method for analyzing bacterial swarming behavior in two and three dimensions with both high-resolution and wide-spatial coverage. This study provides detailed insights into the swarming architecture and dynamics of Vibrio alginolyticus isolate B522 on carrageenan agar that may lay the foundation for swarming studies of snake-like, nonrod-shaped motile cell types.
Collapse
|
25
|
Lu S, Liu F, Xing B, Yeow EKL. Nontoxic colloidal particles impede antibiotic resistance of swarming bacteria by disrupting collective motion and speed. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:062706. [PMID: 26764726 DOI: 10.1103/physreve.92.062706] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Indexed: 06/05/2023]
Abstract
A monolayer of swarming B. subtilis on semisolid agar is shown to display enhanced resistance against antibacterial drugs due to their collective behavior and motility. The dynamics of swarming motion, visualized in real time using time-lapse microscopy, prevents the bacteria from prolonged exposure to lethal drug concentrations. The elevated drug resistance is significantly reduced when the collective motion of bacteria is judiciously disrupted using nontoxic polystyrene colloidal particles immobilized on the agar surface. The colloidal particles block and hinder the motion of the cells, and force large swarming rafts to break up into smaller packs in order to maneuver across narrow spaces between densely packed particles. In this manner, cohesive rafts rapidly lose their collectivity, speed, and group dynamics, and the cells become vulnerable to the drugs. The antibiotic resistance capability of swarming B. subtilis is experimentally observed to be negatively correlated with the number density of colloidal particles on the engineered surface. This relationship is further tested using an improved self-propelled particle model that takes into account interparticle alignment and hard-core repulsion. This work has pertinent implications on the design of optimal methods to treat drug resistant bacteria commonly found in swarming colonies.
Collapse
Affiliation(s)
- Shengtao Lu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Fang Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Bengang Xing
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Edwin K L Yeow
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
26
|
Ariel G, Rabani A, Benisty S, Partridge JD, Harshey RM, Be'er A. Swarming bacteria migrate by Lévy Walk. Nat Commun 2015; 6:8396. [PMID: 26403719 PMCID: PMC4598630 DOI: 10.1038/ncomms9396] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/19/2015] [Indexed: 12/24/2022] Open
Abstract
Individual swimming bacteria are known to bias their random trajectories in search of food and to optimize survival. The motion of bacteria within a swarm, wherein they migrate as a collective group over a solid surface, is fundamentally different as typical bacterial swarms show large-scale swirling and streaming motions involving millions to billions of cells. Here by tracking trajectories of fluorescently labelled individuals within such dense swarms, we find that the bacteria are performing super-diffusion, consistent with Lévy walks. Lévy walks are characterized by trajectories that have straight stretches for extended lengths whose variance is infinite. The evidence of super-diffusion consistent with Lévy walks in bacteria suggests that this strategy may have evolved considerably earlier than previously thought.
Collapse
Affiliation(s)
- Gil Ariel
- Department of Mathematics, Bar-Ilan University, Ramat Gan 52000, Israel
| | - Amit Rabani
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Sivan Benisty
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| | - Jonathan D. Partridge
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Rasika M. Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - Avraham Be'er
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus 84990, Midreshet Ben-Gurion, Israel
| |
Collapse
|
27
|
Harshey RM, Partridge JD. Shelter in a Swarm. J Mol Biol 2015; 427:3683-94. [PMID: 26277623 DOI: 10.1016/j.jmb.2015.07.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/29/2015] [Accepted: 07/31/2015] [Indexed: 01/04/2023]
Abstract
Flagella propel bacteria during both swimming and swarming, dispersing them widely. However, while swimming bacteria use chemotaxis to find nutrients and avoid toxic environments, swarming bacteria appear to suppress chemotaxis and to use the dynamics of their collective motion to continuously expand and acquire new territory, barrel through lethal chemicals in their path, carry along bacterial and fungal cargo that assists in exploration of new niches, and engage in group warfare for niche dominance. Here, we focus on two aspects of swarming, which, if understood, hold the promise of revealing new insights into microbial signaling and behavior, with ramifications beyond bacterial swarming. These are as follows: how bacteria sense they are on a surface and turn on programs that promote movement and how they override scarcity and adversity as dense packs.
Collapse
Affiliation(s)
- Rasika M Harshey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA.
| | - Jonathan D Partridge
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
28
|
Abstract
Swarming bacteria are challenged by the need to invade hostile environments. Swarms of the flagellated bacterium Paenibacillus vortex can collectively transport other microorganisms. Here we show that P. vortex can invade toxic environments by carrying antibiotic-degrading bacteria; this transport is mediated by a specialized, phenotypic subpopulation utilizing a process not dependent on cargo motility. Swarms of beta-lactam antibiotic (BLA)-sensitive P. vortex used beta-lactamase-producing, resistant, cargo bacteria to detoxify BLAs in their path. In the presence of BLAs, both transporter and cargo bacteria gained from this temporary cooperation; there was a positive correlation between BLA resistance and dispersal. P. vortex transported only the most beneficial antibiotic-resistant cargo (including environmental and clinical isolates) in a sustained way. P. vortex displayed a bet-hedging strategy that promoted the colonization of nontoxic niches by P. vortex alone; when detoxifying cargo bacteria were not needed, they were lost. This work has relevance for the dispersal of antibiotic-resistant microorganisms and for strategies for asymmetric cooperation with agricultural and medical implications. Antibiotic resistance is a major health threat. We show a novel mechanism for the local spread of antibiotic resistance. This involves interactions between different bacteria: one species provides an enzyme that detoxifies the antibiotic (a sessile cargo bacterium carrying a resistance gene), while the other (Paenibacillus vortex) moves itself and transports the cargo. P. vortex used a bet-hedging strategy, colonizing new environments alone when the cargo added no benefit, but cooperating when the cargo was needed. This work is of interest in an evolutionary context and sheds light on fundamental questions, such as how environmental antibiotic resistance may lead to clinical resistance and also microbial social organization, as well as the costs, benefits, and risks of dispersal in the environment.
Collapse
|