1
|
Han H, Park Y, Kim Y, Ding F, Shin HJ. Controlled dissolution of a single ion from a salt interface. Nat Commun 2024; 15:2401. [PMID: 38493203 PMCID: PMC10944500 DOI: 10.1038/s41467-024-46704-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
Interactions between monatomic ions and water molecules are fundamental to understanding the hydration of complex polyatomic ions and ionic process. Among the simplest and well-established ion-related reactions is dissolution of salt in water, which is an endothermic process requiring an increase in entropy. Extensive efforts have been made to date; however, most studies at single-ion level have been limited to theoretical approaches. Here, we demonstrate the salt dissolution process by manipulating a single water molecule at an under-coordinated site of a sodium chloride film. Manipulation of molecule in a controlled manner enables us to understand ion-water interaction as well as dynamics of water molecules at NaCl interfaces, which are responsible for the selective dissolution of anions. The water dipole polarizes the anion in the NaCl ionic crystal, resulting in strong anion-water interaction and weakening of the ionic bonds. Our results provide insights into a simple but important elementary step of the single-ion chemistry, which may be useful in ion-related sciences and technologies.
Collapse
Affiliation(s)
- Huijun Han
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Yunjae Park
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Yohan Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Feng Ding
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, 518055, China.
| | - Hyung-Joon Shin
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
2
|
Okabayashi N, Frederiksen T, Liebig A, Giessibl FJ. Dynamic Friction Unraveled by Observing an Unexpected Intermediate State in Controlled Molecular Manipulation. PHYSICAL REVIEW LETTERS 2023; 131:148001. [PMID: 37862665 DOI: 10.1103/physrevlett.131.148001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/26/2023] [Accepted: 08/30/2023] [Indexed: 10/22/2023]
Abstract
The pervasive phenomenon of friction has been studied at the nanoscale via a controlled manipulation of single atoms and molecules with a metallic tip, which enabled a precise determination of the static friction force necessary to initiate motion. However, little is known about the atomic dynamics during manipulation. Here, we reveal the complete manipulation process of a CO molecule on a Cu(110) surface at low temperatures using a combination of noncontact atomic force microscopy and density functional theory simulations. We found that an intermediate state, inaccessible for the far-tip position, is enabled in the reaction pathway for the close-tip position, which is crucial to understanding the manipulation process, including dynamic friction. Our results show how friction forces can be controlled and optimized, facilitating new fundamental insights for tribology.
Collapse
Affiliation(s)
- Norio Okabayashi
- Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa 920-1192, Japan
| | - Thomas Frederiksen
- Donostia International Physics Center (DIPC), San Sebastián 20018, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain
| | - Alexander Liebig
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg D-93053, Germany
| | - Franz J Giessibl
- Institute of Experimental and Applied Physics, University of Regensburg, Regensburg D-93053, Germany
| |
Collapse
|
3
|
Liang K, Bi L, Zhu Q, Zhou H, Li S. Ultrafast Dynamics Revealed with Time-Resolved Scanning Tunneling Microscopy: A Review. ACS APPLIED OPTICAL MATERIALS 2023; 1:924-938. [PMID: 37260467 PMCID: PMC10227725 DOI: 10.1021/acsaom.2c00169] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 06/02/2023]
Abstract
A scanning tunneling microscope (STM) capable of performing pump-probe spectroscopy integrates unmatched atomic-scale resolution with high temporal resolution. In recent years, the union of electronic, terahertz, or visible/near-infrared pulses with STM has contributed to our understanding of the atomic-scale processes that happen between milliseconds and attoseconds. This time-resolved STM (TR-STM) technique is evolving into an unparalleled approach for exploring the ultrafast nuclear, electronic, or spin dynamics of molecules, low-dimensional structures, and material surfaces. Here, we review the recent advancements in TR-STM; survey its application in measuring the dynamics of three distinct systems, nucleus, electron, and spin; and report the studies on these transient processes in a series of materials. Besides the discussion on state-of-the-art techniques, we also highlight several emerging research topics about the ultrafast processes in nanoscale objects where we anticipate that the TR-STM can help broaden our knowledge.
Collapse
Affiliation(s)
- Kangkai Liang
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Liya Bi
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Qingyi Zhu
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
| | - Hao Zhou
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| | - Shaowei Li
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093-0309, United States
- Materials
Science and Engineering Program, University
of California, San Diego, La Jolla, California 92093-0418, United States
| |
Collapse
|
4
|
Schied M, Prezzi D, Liu D, Kowarik S, Jacobson PA, Corni S, Tour JM, Grill L. Chirality-Specific Unidirectional Rotation of Molecular Motors on Cu(111). ACS NANO 2023; 17:3958-3965. [PMID: 36757212 PMCID: PMC9979643 DOI: 10.1021/acsnano.2c12720] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Molecular motors have chemical properties that enable unidirectional motion, thus breaking microscopic reversibility. They are well studied in solution, but much less is known regarding their behavior on solid surfaces. Here, single motor molecules adsorbed on a Cu(111) surface are excited by voltages pulses from an STM tip, which leads to their rotation around a fixed pivot point. Comparison with calculations shows that this axis results from a chemical bond of a sulfur atom in the chemical structure and a metal atom of the surface. While statistics show approximately equal rotations in both directions, clockwise and anticlockwise, a detailed study reveals that these motions are enantiomer-specific. Hence, the rotation direction of each individual molecule depends on its chirality, which can be determined from STM images. At first glance, these dynamics could be assigned to the activation of the motor molecule, but our results show that this is unlikely as the molecule remains in the same conformation after rotation. Additionally, a control molecule, although it lacks unidirectional rotation in solution, also shows unidirectional rotation for each enantiomer. Hence, it seems that the unidirectional rotation is not specifically related to the motor property of the molecule. The calculated energy barriers for motion show that the propeller-like motor activity requires higher energy than the simple rotation of the molecule as a rigid object, which is therefore preferred.
Collapse
Affiliation(s)
- Monika Schied
- Department
of Physical Chemistry, Institute of Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Deborah Prezzi
- Nanoscience
Institute of the National Research Council (CNR-NANO), via G. Campi 213/a, 41125 Modena, Italy
| | - Dongdong Liu
- Departments
of Chemistry and Materials Science and NanoEngineering, the Smalley
Institute for Nanoscale Science and Technology, the Welch Institute
for Advanced Materials and the NanoCarbon Laboratory, Rice University, Houston, Texas 77005, United States
| | - Stefan Kowarik
- Department
of Physical Chemistry, Institute of Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Peter A. Jacobson
- Department
of Physical Chemistry, Institute of Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| | - Stefano Corni
- Nanoscience
Institute of the National Research Council (CNR-NANO), via G. Campi 213/a, 41125 Modena, Italy
- Dipartimento
di Scienze Chimiche, Università di
Padova, Padova I-35131, Italy
| | - James M. Tour
- Departments
of Chemistry and Materials Science and NanoEngineering, the Smalley
Institute for Nanoscale Science and Technology, the Welch Institute
for Advanced Materials and the NanoCarbon Laboratory, Rice University, Houston, Texas 77005, United States
| | - Leonhard Grill
- Department
of Physical Chemistry, Institute of Chemistry, University of Graz, Heinrichstraße 28, 8010 Graz, Austria
| |
Collapse
|
5
|
Zhu Q, Sugawara Y, Li Y. Exploration of CO movement characteristics on rutile TiO2(110) surface. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Li S, Czap G, Li J, Zhang Y, Yu A, Yuan D, Kimura H, Wu R, Ho W. Confinement-Induced Catalytic Dissociation of Hydrogen Molecules in a Scanning Tunneling Microscope. J Am Chem Soc 2022; 144:9618-9623. [PMID: 35486711 DOI: 10.1021/jacs.2c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The catalytic scission of single chemical bonds has been induced by the nanoscale confinement in a scanning tunneling microscope (STM) junction. Individual hydrogen molecules sandwiched between the STM tip and a copper substrate can be dissociated solely by the reciprocating movement of the tip. The reaction rate depends sensitively on the local molecular environment, as exemplified by the effects of a nearby carbon monoxide molecule or a gold adatom. Detailed mechanisms and the nature of the transition states are revealed by density functional theory (DFT) calculations. This work provides insights into chemical reactions at the atomic scale induced by localized confinement applied by the STM tip. Furthermore, a single diatomic molecule can act as a molecular catalyst to enhance the reaction rate on a surface.
Collapse
Affiliation(s)
- Shaowei Li
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Gregory Czap
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Jie Li
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Yanxing Zhang
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States.,College of Physics and Electrical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Arthur Yu
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Dingwang Yuan
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States.,College of Materials Science and Engineering, Hunan University, Changsha, Hunan 410082, China
| | - Hikari Kimura
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Ruqian Wu
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - W Ho
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States.,Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
7
|
Yesilpinar D, Schulze Lammers B, Timmer A, Hu Z, Ji W, Amirjalayer S, Fuchs H, Mönig H. Mechanical and Chemical Interactions in Atomically Defined Contacts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101637. [PMID: 34288402 DOI: 10.1002/smll.202101637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Providing fundamental insights in atomic interactions, dedicated methods in atomic force microscopy allow measuring the threshold forces needed to move single adsorbed atoms or molecules. However, the chemical and structural properties of the probe-tip can drastically influence the results. Establishing atomically defined contacts in such experiments, the tips in the present study are functionalized with various chemically and structurally different terminations. Xenon atoms are moved along an atomically defined metal/metal-oxide boundary where all tips show a pulling mechanism and slight force variations, which are assigned to polarization effects within the tip-sample junction. Detaching Xe atoms from the boundary involves a significantly higher energy barrier where chemical reactive Cu-tips cause Xe pickup before any lateral manipulation. Passivating the tip by inert probe particles (Xe or CO) allows further approaching the surface Xe atom. Yet, the small vertical attraction and pronounced tip relaxations prevent reaching sufficient threshold forces inducing manipulation. In contrast, the high structural rigidity of oxygen-terminated Cu-tips allows manipulations even beyond the threshold where they evolve from initial pulling, via sliding to pushing mode. The detailed quantitative analysis of the processes in the atomically defined junctions emphasizes the mechanical and chemical interactions for highly controlled experiments with piconewton sensitivity.
Collapse
Affiliation(s)
- Damla Yesilpinar
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Bertram Schulze Lammers
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Alexander Timmer
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Zhixin Hu
- Center for Joint Quantum Studies and Department of Physics, Tianjin University, Tianjin, 300350, China
| | - Wei Ji
- Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials and Micro-Nano Devices, Renmin University of China, Beijing, 100872, China
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
- Center for Multiscale Theory and Computation, 48149, Münster, Germany
| | - Harald Fuchs
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| | - Harry Mönig
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149, Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149, Münster, Germany
| |
Collapse
|
8
|
Single hydrogen atom manipulation for reversible deprotonation of water on a rutile TiO 2 (110) surface. Commun Chem 2021; 4:5. [PMID: 36697495 PMCID: PMC9814442 DOI: 10.1038/s42004-020-00444-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/07/2020] [Indexed: 01/28/2023] Open
Abstract
The discovery of hydrogen atoms on the TiO2 surface is crucial for many practical applications, including photocatalytic water splitting. Electronically activating interfacial hydrogen atoms on the TiO2 surface is a common way to control their reactivity. Modulating the potential landscape is another way, but dedicated studies for such an activation are limited. Here we show the single hydrogen atom manipulation, and on-surface facilitated water deprotonation process on a rutile TiO2 (110) surface using low temperature atomic force microscopy and Kelvin probe force spectroscopy. The configuration of the hydrogen atom is manipulated on this surface step by step using the local field. Furthermore, we quantify the force needed to relocate the hydrogen atom on this surface using force spectroscopy and density functional theory. Reliable control of hydrogen atoms provides a new mechanistic insight of the water molecules on a metal oxide surface.
Collapse
|
9
|
Giessibl FJ. The qPlus sensor, a powerful core for the atomic force microscope. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:011101. [PMID: 30709191 DOI: 10.1063/1.5052264] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 12/25/2018] [Indexed: 05/27/2023]
Abstract
Atomic force microscopy (AFM) was introduced in 1986 and has since made its way into surface science, nanoscience, chemistry, biology, and material science as an imaging and manipulating tool with a rising number of applications. AFM can be employed in ambient and liquid environments as well as in vacuum and at low and ultralow temperatures. The technique is an offspring of scanning tunneling microscopy (STM), where the tunneling tip of the STM is replaced by using a force sensor with an attached tip. Measuring the tiny chemical forces that act between the tip and the sample is more difficult than measuring the tunneling current in STM. Therefore, even 30 years after the introduction of AFM, progress in instrumentation is substantial. Here, we focus on the core of the AFM, the force sensor with its tip and detection mechanism. Initially, force sensors were mainly micro-machined silicon cantilevers, mainly using optical methods to detect their deflection. The qPlus sensor, originally based on a quartz tuning fork and now custom built from quartz, is self-sensing by utilizing the piezoelectricity of quartz. The qPlus sensor allows us to perform STM and AFM in parallel, and the spatial resolution of its AFM channel has reached the subatomic level, exceeding the resolution of STM. Frequency modulation AFM (FM-AFM), where the frequency of an oscillating cantilever is altered by the gradient of the force that acts between the tip and the sample, has emerged over the years as the method that provides atomic and subatomic spatial resolution as well as force spectroscopy with sub-piconewton sensitivity. FM-AFM is precise; because of all physical observables, time and frequency can be measured by far with the greatest accuracy. By design, FM-AFM clearly separates conservative and dissipative interactions where conservative forces induce a frequency shift and dissipative interactions alter the power needed to maintain a constant oscillation amplitude of the cantilever. As it operates in a noncontact mode, it enables simultaneous AFM and STM measurements. The frequency stability of quartz and the small oscillation amplitudes that are possible with stiff quartz sensors optimize the signal to noise ratio. Here, we discuss the operating principles, the assembly of qPlus sensors, amplifiers, limiting factors, and applications. Applications encompass unprecedented subatomic spatial resolution, the measurement of forces that act in atomic manipulation, imaging and spectroscopy of spin-dependent forces, and atomic resolution of organic molecules, graphite, graphene, and oxides.
Collapse
Affiliation(s)
- Franz J Giessibl
- Institute of Experimental and Applied Physics, University of Regensburg, Universitätsstrasse 31, D-93040 Regensburg, Germany
| |
Collapse
|
10
|
Nazriq NKM, Minamitani E, Yamada TK. CO-tip manipulation using repulsive interactions. NANOTECHNOLOGY 2018; 29:495701. [PMID: 30207541 DOI: 10.1088/1361-6528/aae0df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the interactions between a tip apex and a target atom or molecule is crucial for the manipulation of individual molecules with precise control by using scanning tunnelling microscopy (STM) and atomic force microscopy. Herein, we demonstrate the manipulation of target CO molecules on a Cu(111) substrate using a CO-functionalized W tip with atomic-scale accuracy. All experiments were performed in a home-built ultra-high vacuum STM system at 5 K. The CO-tip was fabricated by picking up a single CO molecule from a Cu(111) surface. In contrast to a metal tip, repulsive interactions occur between the CO-tip and the target CO molecule. This repulsive interaction promises perfect lateral hopping without any vertical hopping. Hopping events were directly monitored as sudden current drops in the simultaneously measured I-z curves. A larger barrier height between the CO-tip and the target CO (∼9.5 eV) was found from the slope of the I-z curve, which decreases the electron tunnelling probability between the tip and sample. Therefore, electron-driven manipulation cannot be a major trigger for the CO-CO repulsive manipulation. The CO-tip is able to manipulate only the target CO molecule, even when another CO molecule was located ∼0.5 nm away. Statistical measurements revealed that the nearest neighbour atop site is the energetically stable position after hopping. However, if the CO target has another CO molecule in a neighbouring position (denoted as a 'pair'), the target CO hops more than twice as far. This means that the CO-tip experiences a larger repulsive interaction from the pair. These observations of CO-tip manipulation are useful for the design of two-dimensional artificial molecular networks as well as for developing a better understanding of catalytic oxidation processes.
Collapse
Affiliation(s)
- Nana K M Nazriq
- Department of Materials Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | | | | |
Collapse
|
11
|
Shiotari A, Odani T, Sugimoto Y. Torque-Induced Change in Configuration of a Single NO Molecule on Cu(110). PHYSICAL REVIEW LETTERS 2018; 121:116101. [PMID: 30265092 DOI: 10.1103/physrevlett.121.116101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Indexed: 05/27/2023]
Abstract
We demonstrated that a nitric oxide (NO) molecule on Cu(110) acts as an "ON-OFF-ON toggle switch" that can be turned on and off by repulsive force and electron injection, respectively. On the surface, NO molecules exist in three configurations: flat along the [001] direction (ON), upright (OFF), and flat along [001[over ¯]] (ON). An NO-functionalized tip, which was characterized by scanning tunneling microscopy and inelastic electron tunneling spectroscopy, can convert an upright NO adsorbate into a flat-lying NO. Atomic force microscopy and a simulation of the interactions between the NO molecules reveal that a repulsive force not aligned with the N-O bond provides the torque that detrudes the NO toggle; i.e., the upright NO adsorbate is tilted away from the tip. Therefore, the NO adsorbate behaves as a nonvolatile sensor for the detection of locally applied repulsive torque.
Collapse
Affiliation(s)
- Akitoshi Shiotari
- Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Takafumi Odani
- Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Yoshiaki Sugimoto
- Department of Advanced Materials Science, The University of Tokyo, Kashiwa 277-8561, Japan
| |
Collapse
|
12
|
Abstract
The oscillation frequencies of a molecule on a surface are determined by the mass distribution in the molecule and the restoring forces that occur when the molecule bends. The restoring force originates from the atomic-scale interaction within the molecule and with the surface, which plays an essential role in the dynamics and reactivity of the molecule. In 1998, a combination of scanning tunneling microscopy with inelastic tunneling spectroscopy revealed the vibrational frequencies of single molecules adsorbed on a surface. However, the probe tip itself exerts forces on the molecule, changing its oscillation frequencies. Here, we combine atomic force microscopy with inelastic tunneling spectroscopy and measure the influence of the forces exerted by the tip on the lateral vibrational modes of a carbon monoxide molecule on a copper surface. Comparing the experimental data to a mechanical model of the vibrating molecule shows that the bonds within the molecule and with the surface are weakened by the proximity of the tip. This combination of techniques can be applied to analyze complex molecular vibrations and the mechanics of forming and loosening chemical bonds, as well as to study the mechanics of bond breaking in chemical reactions and atomic manipulation.
Collapse
|
13
|
Gustafsson A, Paulsson M. STM contrast of a CO dimer on a Cu(1 1 1) surface: a wave-function analysis. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:505301. [PMID: 29105647 DOI: 10.1088/1361-648x/aa986d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We present a method used to intuitively interpret the scanning tunneling microscopy (STM) contrast by investigating individual wave functions originating from the substrate and tip side. We use localized basis orbital density functional theory, and propagate the wave functions into the vacuum region at a real-space grid, including averaging over the lateral reciprocal space. Optimization by means of the method of Lagrange multipliers is implemented to perform a unitary transformation of the wave functions in the middle of the vacuum region. The method enables (i) reduction of the number of contributing tip-substrate wave function combinations used in the corresponding transmission matrix, and (ii) to bundle up wave functions with similar symmetry in the lateral plane, so that (iii) an intuitive understanding of the STM contrast can be achieved. The theory is applied to a CO dimer adsorbed on a Cu(1 1 1) surface scanned by a single-atom Cu tip, whose STM image is discussed in detail by the outlined method.
Collapse
Affiliation(s)
- Alexander Gustafsson
- Department of Physics and Electrical Engineering, Linnaeus University, 391 82 Kalmar, Sweden
| | | |
Collapse
|
14
|
Weymouth AJ. Non-contact lateral force microscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:323001. [PMID: 28714455 DOI: 10.1088/1361-648x/aa7984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The goal of atomic force microscopy (AFM) is to measure the short-range forces that act between the tip and the surface. The signal recorded, however, includes long-range forces that are often an unwanted background. Lateral force microscopy (LFM) is a branch of AFM in which a component of force perpendicular to the surface normal is measured. If we consider the interaction between tip and sample in terms of forces, which have both direction and magnitude, then we can make a very simple yet profound observation: over a flat surface, long-range forces that do not yield topographic contrast have no lateral component. Short-range interactions, on the other hand, do. Although contact-mode is the most common LFM technique, true non-contact AFM techniques can be applied to perform LFM without the tip depressing upon the sample. Non-contact lateral force microscopy (nc-LFM) is therefore ideal to study short-range forces of interest. One of the first applications of nc-LFM was the study of non-contact friction. A similar setup is used in magnetic resonance force microscopy to detect spin flipping. More recently, nc-LFM has been used as a true microscopy technique to systems unsuitable for normal force microscopy.
Collapse
Affiliation(s)
- A J Weymouth
- Universitaetsstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|