1
|
Letourneau A, Savu V, Lhuillier D, Lasserre T, Materna T, Mention G, Mougeot X, Onillon A, Perisse L, Vivier M. Origin of the Reactor Antineutrino Anomalies in Light of a New Summation Model with Parametrized β^{-} Transitions. PHYSICAL REVIEW LETTERS 2023; 130:021801. [PMID: 36706416 DOI: 10.1103/physrevlett.130.021801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/19/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
We investigate the possible origins of the reactor antineutrino anomalies in norm and shape within the framework of a summation model where β^{-} transitions are simulated by a phenomenological model of Gamow-Teller decay strength. The general trends of divergence from the Huber-Mueller model on the antineutrino side can be reproduced in both norm and shape. From the exact electron-antineutrino correspondence of the summation model, we predict similar distortions in the electron spectra, suggesting that biases on the reference spectra of fission electrons could be the cause of the anomalies.
Collapse
Affiliation(s)
- A Letourneau
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - V Savu
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - D Lhuillier
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - T Lasserre
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - T Materna
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - G Mention
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - X Mougeot
- Université Paris-Saclay, CEA, List, Laboratoire National Henri Becquerel (LNE-LNHB), F-91120 Palaiseau, France
| | - A Onillon
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - L Perisse
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - M Vivier
- IRFU, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Ang WE, Lee S, Prasad S. Improvements in Antineutrino Spectrum by Including Fission Product Corrections and Calculation of Scatter-based Pulse Height Distributions. NUCL SCI ENG 2022. [DOI: 10.1080/00295639.2022.2103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
3
|
An FP, Bai WD, Balantekin AB, Bishai M, Blyth S, Cao GF, Cao J, Chang JF, Chang Y, Chen HS, Chen HY, Chen SM, Chen Y, Chen YX, Cheng J, Cheng ZK, Cherwinka JJ, Chu MC, Cummings JP, Dalager O, Deng FS, Ding YY, Diwan MV, Dohnal T, Dolzhikov D, Dove J, Dwyer DA, Gallo JP, Gonchar M, Gong GH, Gong H, Gu WQ, Guo JY, Guo L, Guo XH, Guo YH, Guo Z, Hackenburg RW, Hans S, He M, Heeger KM, Heng YK, Hor YK, Hsiung YB, Hu BZ, Hu JR, Hu T, Hu ZJ, Huang HX, Huang JH, Huang XT, Huang YB, Huber P, Jaffe DE, Jen KL, Ji XL, Ji XP, Johnson RA, Jones D, Kang L, Kettell SH, Kohn S, Kramer M, Langford TJ, Lee J, Lee JHC, Lei RT, Leitner R, Leung JKC, Li F, Li HL, Li JJ, Li QJ, Li RH, Li S, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin S, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu JC, Liu JL, Liu JX, Lu C, Lu HQ, Luk KB, Ma BZ, Ma XB, Ma XY, Ma YQ, Mandujano RC, Marshall C, McDonald KT, McKeown RD, Meng Y, Napolitano J, Naumov D, Naumova E, Nguyen TMT, Ochoa-Ricoux JP, Olshevskiy A, Pan HR, Park J, Patton S, Peng JC, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren J, Morales Reveco C, Rosero R, Roskovec B, Ruan XC, Steiner H, Sun JL, Tmej T, Treskov K, Tse WH, Tull CE, Viren B, Vorobel V, Wang CH, Wang J, Wang M, Wang NY, Wang RG, Wang W, Wang X, Wang Y, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wei LH, Wen LJ, Whisnant K, White CG, Wong HLH, Worcester E, Wu DR, Wu Q, Wu WJ, Xia DM, Xie ZQ, Xing ZZ, Xu HK, Xu JL, Xu T, Xue T, Yang CG, Yang L, Yang YZ, Yao HF, Ye M, Yeh M, Young BL, Yu HZ, Yu ZY, Yue BB, Zavadskyi V, Zeng S, Zeng Y, Zhan L, Zhang C, Zhang FY, Zhang HH, Zhang JL, Zhang JW, Zhang QM, Zhang SQ, Zhang XT, Zhang YM, Zhang YX, Zhang YY, Zhang ZJ, Zhang ZP, Zhang ZY, Zhao J, Zhao RZ, Zhou L, Zhuang HL, Zou JH. First Measurement of High-Energy Reactor Antineutrinos at Daya Bay. PHYSICAL REVIEW LETTERS 2022; 129:041801. [PMID: 35939015 DOI: 10.1103/physrevlett.129.041801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 06/05/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
This Letter reports the first measurement of high-energy reactor antineutrinos at Daya Bay, with nearly 9000 inverse beta decay candidates in the prompt energy region of 8-12 MeV observed over 1958 days of data collection. A multivariate analysis is used to separate 2500 signal events from background statistically. The hypothesis of no reactor antineutrinos with neutrino energy above 10 MeV is rejected with a significance of 6.2 standard deviations. A 29% antineutrino flux deficit in the prompt energy region of 8-11 MeV is observed compared to a recent model prediction. We provide the unfolded antineutrino spectrum above 7 MeV as a data-based reference for other experiments. This result provides the first direct observation of the production of antineutrinos from several high-Q_{β} isotopes in commercial reactors.
Collapse
Affiliation(s)
- F P An
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - W D Bai
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | | | - M Bishai
- Brookhaven National Laboratory, Upton, New York 11973
| | - S Blyth
- Department of Physics, National Taiwan University, Taipei
| | - G F Cao
- Institute of High Energy Physics, Beijing
| | - J Cao
- Institute of High Energy Physics, Beijing
| | - J F Chang
- Institute of High Energy Physics, Beijing
| | - Y Chang
- National United University, Miao-Li
| | - H S Chen
- Institute of High Energy Physics, Beijing
| | - H Y Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - S M Chen
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Y Chen
- Sun Yat-Sen (Zhongshan) University, Guangzhou
- Shenzhen University, Shenzhen
| | - Y X Chen
- North China Electric Power University, Beijing
| | - J Cheng
- North China Electric Power University, Beijing
| | - Z K Cheng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | | | - M C Chu
- Chinese University of Hong Kong, Hong Kong
| | | | - O Dalager
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - F S Deng
- University of Science and Technology of China, Hefei
| | - Y Y Ding
- Institute of High Energy Physics, Beijing
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York 11973
| | - T Dohnal
- Charles University, Faculty of Mathematics and Physics, Prague
| | - D Dolzhikov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - J Dove
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - D A Dwyer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J P Gallo
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - M Gonchar
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - G H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H Gong
- Department of Engineering Physics, Tsinghua University, Beijing
| | - W Q Gu
- Brookhaven National Laboratory, Upton, New York 11973
| | - J Y Guo
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | - X H Guo
- Beijing Normal University, Beijing
| | - Y H Guo
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - Z Guo
- Department of Engineering Physics, Tsinghua University, Beijing
| | | | - S Hans
- Brookhaven National Laboratory, Upton, New York 11973
| | - M He
- Institute of High Energy Physics, Beijing
| | - K M Heeger
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - Y K Heng
- Institute of High Energy Physics, Beijing
| | - Y K Hor
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y B Hsiung
- Department of Physics, National Taiwan University, Taipei
| | - B Z Hu
- Department of Physics, National Taiwan University, Taipei
| | - J R Hu
- Institute of High Energy Physics, Beijing
| | - T Hu
- Institute of High Energy Physics, Beijing
| | - Z J Hu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H X Huang
- China Institute of Atomic Energy, Beijing
| | - J H Huang
- Institute of High Energy Physics, Beijing
| | | | - Y B Huang
- Guangxi University, No. 100 Daxue East Road, Nanning
| | - P Huber
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York 11973
| | - K L Jen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - X L Ji
- Institute of High Energy Physics, Beijing
| | - X P Ji
- Brookhaven National Laboratory, Upton, New York 11973
| | - R A Johnson
- Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221
| | - D Jones
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - L Kang
- Dongguan University of Technology, Dongguan
| | - S H Kettell
- Brookhaven National Laboratory, Upton, New York 11973
| | - S Kohn
- Department of Physics, University of California, Berkeley, California 94720
| | - M Kramer
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - T J Langford
- Wright Laboratory and Department of Physics, Yale University, New Haven, Connecticut 06520
| | - J Lee
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J H C Lee
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - R T Lei
- Dongguan University of Technology, Dongguan
| | - R Leitner
- Charles University, Faculty of Mathematics and Physics, Prague
| | - J K C Leung
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Li
- Institute of High Energy Physics, Beijing
| | - H L Li
- Institute of High Energy Physics, Beijing
| | - J J Li
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Q J Li
- Institute of High Energy Physics, Beijing
| | - R H Li
- Institute of High Energy Physics, Beijing
| | - S Li
- Dongguan University of Technology, Dongguan
| | - S C Li
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - W D Li
- Institute of High Energy Physics, Beijing
| | - X N Li
- Institute of High Energy Physics, Beijing
| | - X Q Li
- School of Physics, Nankai University, Tianjin
| | - Y F Li
- Institute of High Energy Physics, Beijing
| | - Z B Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - H Liang
- University of Science and Technology of China, Hefei
| | - C J Lin
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - G L Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - S Lin
- Dongguan University of Technology, Dongguan
| | - J J Ling
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J M Link
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - L Littenberg
- Brookhaven National Laboratory, Upton, New York 11973
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - J C Liu
- Institute of High Energy Physics, Beijing
| | - J L Liu
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - J X Liu
- Institute of High Energy Physics, Beijing
| | - C Lu
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - H Q Lu
- Institute of High Energy Physics, Beijing
| | - K B Luk
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - B Z Ma
- Shandong University, Jinan
| | - X B Ma
- North China Electric Power University, Beijing
| | - X Y Ma
- Institute of High Energy Physics, Beijing
| | - Y Q Ma
- Institute of High Energy Physics, Beijing
| | - R C Mandujano
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - C Marshall
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - K T McDonald
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544
| | - R D McKeown
- California Institute of Technology, Pasadena, California 91125
- College of William and Mary, Williamsburg, Virginia 23187
| | - Y Meng
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - J Napolitano
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122
| | - D Naumov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - E Naumova
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - T M T Nguyen
- Institute of Physics, National Chiao-Tung University, Hsinchu
| | - J P Ochoa-Ricoux
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - A Olshevskiy
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - H-R Pan
- Department of Physics, National Taiwan University, Taipei
| | - J Park
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia 24061
| | - S Patton
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J C Peng
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - C S J Pun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong
| | - F Z Qi
- Institute of High Energy Physics, Beijing
| | - M Qi
- Nanjing University, Nanjing
| | - X Qian
- Brookhaven National Laboratory, Upton, New York 11973
| | - N Raper
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - J Ren
- China Institute of Atomic Energy, Beijing
| | - C Morales Reveco
- Department of Physics and Astronomy, University of California, Irvine, California 92697
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York 11973
| | - B Roskovec
- Charles University, Faculty of Mathematics and Physics, Prague
| | - X C Ruan
- China Institute of Atomic Energy, Beijing
| | - H Steiner
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - J L Sun
- China General Nuclear Power Group, Shenzhen
| | - T Tmej
- Charles University, Faculty of Mathematics and Physics, Prague
| | - K Treskov
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - W-H Tse
- Chinese University of Hong Kong, Hong Kong
| | - C E Tull
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - B Viren
- Brookhaven National Laboratory, Upton, New York 11973
| | - V Vorobel
- Charles University, Faculty of Mathematics and Physics, Prague
| | - C H Wang
- National United University, Miao-Li
| | - J Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - M Wang
- Shandong University, Jinan
| | - N Y Wang
- Beijing Normal University, Beijing
| | - R G Wang
- Institute of High Energy Physics, Beijing
| | - W Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
- College of William and Mary, Williamsburg, Virginia 23187
| | - X Wang
- College of Electronic Science and Engineering, National University of Defense Technology, Changsha
| | - Y Wang
- Nanjing University, Nanjing
| | - Y F Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Institute of High Energy Physics, Beijing
| | - Z Wang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - Z M Wang
- Institute of High Energy Physics, Beijing
| | - H Y Wei
- Brookhaven National Laboratory, Upton, New York 11973
| | - L H Wei
- Institute of High Energy Physics, Beijing
| | - L J Wen
- Institute of High Energy Physics, Beijing
| | | | - C G White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois 60616
| | - H L H Wong
- Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Department of Physics, University of California, Berkeley, California 94720
| | - E Worcester
- Brookhaven National Laboratory, Upton, New York 11973
| | - D R Wu
- Institute of High Energy Physics, Beijing
| | - Q Wu
- Shandong University, Jinan
| | - W J Wu
- Institute of High Energy Physics, Beijing
| | - D M Xia
- Chongqing University, Chongqing
| | - Z Q Xie
- Institute of High Energy Physics, Beijing
| | - Z Z Xing
- Institute of High Energy Physics, Beijing
| | - H K Xu
- Institute of High Energy Physics, Beijing
| | - J L Xu
- Institute of High Energy Physics, Beijing
| | - T Xu
- Department of Engineering Physics, Tsinghua University, Beijing
| | - T Xue
- Department of Engineering Physics, Tsinghua University, Beijing
| | - C G Yang
- Institute of High Energy Physics, Beijing
| | - L Yang
- Dongguan University of Technology, Dongguan
| | - Y Z Yang
- Department of Engineering Physics, Tsinghua University, Beijing
| | - H F Yao
- Institute of High Energy Physics, Beijing
| | - M Ye
- Institute of High Energy Physics, Beijing
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York 11973
| | - B L Young
- Iowa State University, Ames, Iowa 50011
| | - H Z Yu
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Z Y Yu
- Institute of High Energy Physics, Beijing
| | - B B Yue
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - V Zavadskyi
- Joint Institute for Nuclear Research, Dubna, Moscow Region
| | - S Zeng
- Institute of High Energy Physics, Beijing
| | - Y Zeng
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - L Zhan
- Institute of High Energy Physics, Beijing
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York 11973
| | - F Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - H H Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | | | - J W Zhang
- Institute of High Energy Physics, Beijing
| | - Q M Zhang
- Department of Nuclear Science and Technology, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an
| | - S Q Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - X T Zhang
- Institute of High Energy Physics, Beijing
| | - Y M Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou
| | - Y X Zhang
- China General Nuclear Power Group, Shenzhen
| | - Y Y Zhang
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai Laboratory for Particle Physics and Cosmology, Shanghai
| | - Z J Zhang
- Dongguan University of Technology, Dongguan
| | - Z P Zhang
- University of Science and Technology of China, Hefei
| | - Z Y Zhang
- Institute of High Energy Physics, Beijing
| | - J Zhao
- Institute of High Energy Physics, Beijing
| | - R Z Zhao
- Institute of High Energy Physics, Beijing
| | - L Zhou
- Institute of High Energy Physics, Beijing
| | - H L Zhuang
- Institute of High Energy Physics, Beijing
| | - J H Zou
- Institute of High Energy Physics, Beijing
| |
Collapse
|
4
|
Li YF, Xin Z. Model-independent determination of isotopic cross sections per fission for reactor antineutrinos. Int J Clin Exp Med 2022. [DOI: 10.1103/physrevd.105.073003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Estienne M, Fallot M, Algora A, Briz-Monago J, Bui VM, Cormon S, Gelletly W, Giot L, Guadilla V, Jordan D, Le Meur L, Porta A, Rice S, Rubio B, Taín JL, Valencia E, Zakari-Issoufou AA. Updated Summation Model: An Improved Agreement with the Daya Bay Antineutrino Fluxes. PHYSICAL REVIEW LETTERS 2019; 123:022502. [PMID: 31386517 DOI: 10.1103/physrevlett.123.022502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/02/2019] [Indexed: 06/10/2023]
Abstract
A new summation method model of the reactor antineutrino energy spectrum is presented. It is updated with the most recent evaluated decay databases and with our total absorption gamma-ray spectroscopy measurements performed during the last decade. For the first time, the spectral measurements from the Daya Bay experiment are compared with the antineutrino energy spectrum computed with the updated summation method without any renormalization. The results exhibit a better agreement than is obtained with the Huber-Mueller model in the 2-5 MeV range, the region that dominates the detected flux. A systematic trend is found in which the antineutrino flux computed with the summation model decreases with the inclusion of more pandemonium-free data. The calculated flux obtained now lies only 1.9% above that detected in the Daya Bay experiment, a value that may be reduced with forthcoming new pandemonium-free data, leaving less room for a reactor anomaly. Eventually, the new predictions of individual antineutrino spectra for the ^{235}U, ^{239}Pu, ^{241}Pu, and ^{238}U are used to compute the dependence of the reactor antineutrino spectral shape on the fission fractions.
Collapse
Affiliation(s)
- M Estienne
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - M Fallot
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - A Algora
- Instituto de Física Corpuscular, CSIC-Universitat de València, E-46071 València, Spain
- Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4026 Debrecen, Hungary
| | - J Briz-Monago
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - V M Bui
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - S Cormon
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - W Gelletly
- Department of Physics, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - L Giot
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - V Guadilla
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - D Jordan
- Instituto de Física Corpuscular, CSIC-Universitat de València, E-46071 València, Spain
| | - L Le Meur
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - A Porta
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - S Rice
- Department of Physics, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - B Rubio
- Instituto de Física Corpuscular, CSIC-Universitat de València, E-46071 València, Spain
| | - J L Taín
- Instituto de Física Corpuscular, CSIC-Universitat de València, E-46071 València, Spain
| | - E Valencia
- Instituto de Física Corpuscular, CSIC-Universitat de València, E-46071 València, Spain
| | - A-A Zakari-Issoufou
- SUBATECH, IMT Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| |
Collapse
|
6
|
Bak G, Choi JH, Jang HI, Jang JS, Jeon SH, Joo KK, Ju K, Jung DE, Kim JG, Kim JH, Kim JY, Kim SB, Kim SY, Kim W, Kwon E, Lee DH, Lee HG, Lee YC, Lim IT, Moon DH, Pac MY, Park YS, Rott C, Seo H, Seo JW, Seo SH, Shin CD, Yang JY, Yoo J, Yu I. Fuel-Composition Dependent Reactor Antineutrino Yield at RENO. PHYSICAL REVIEW LETTERS 2019; 122:232501. [PMID: 31298906 DOI: 10.1103/physrevlett.122.232501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 05/16/2019] [Indexed: 06/10/2023]
Abstract
We report a fuel-dependent reactor electron antineutrino (ν[over ¯]_{e}) yield using six 2.8 GW_{th} reactors in the Hanbit nuclear power plant complex, Yonggwang, Korea. The analysis uses 850 666 ν[over ¯]_{e} candidate events with a background fraction of 2.0% acquired through inverse beta decay (IBD) interactions in the near detector for 1807.9 live days from August 2011 to February 2018. Based on multiple fuel cycles, we observe a fuel ^{235}U dependent variation of measured IBD yields with a slope of (1.51±0.23)×10^{-43} cm^{2}/fission and measure a total average IBD yield of (5.84±0.13)×10^{-43} cm^{2}/fission. The hypothesis of no fuel-dependent IBD yield is ruled out at 6.6σ. The observed IBD yield variation over ^{235}U isotope fraction does not show significant deviation from the Huber-Mueller (HM) prediction at 1.3 σ. The measured fuel-dependent variation determines IBD yields of (6.15±0.19)×10^{-43} and (4.18±0.26)×10^{-43} cm^{2}/fission for two dominant fuel isotopes ^{235}U and ^{239}Pu, respectively. The measured IBD yield per ^{235}U fission shows the largest deficit relative to the HM prediction. Reevaluation of the ^{235}U IBD yield per fission may mostly solve the reactor antineutrino anomaly (RAA) while ^{239}Pu is not completely ruled out as a possible contributor to the anomaly. We also report a 2.9 σ correlation between the fractional change of the 5 MeV excess and the reactor fuel isotope fraction of ^{235}U.
Collapse
Affiliation(s)
- G Bak
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - J H Choi
- Institute for High Energy Physics, Dongshin University, Naju 58245, Korea
| | - H I Jang
- Department of Fire Safety, Seoyeong University, Gwangju 61268, Korea
| | - J S Jang
- GIST College, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - S H Jeon
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - K K Joo
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - K Ju
- Department of Physics, KAIST, Daejeon 34141, Korea
| | - D E Jung
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - J G Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - J H Kim
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - J Y Kim
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - S B Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - S Y Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - W Kim
- Department of Physics, Kyungpook National University, Daegu 41566, Korea
| | - E Kwon
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - D H Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - H G Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - Y C Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - I T Lim
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - D H Moon
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - M Y Pac
- Institute for High Energy Physics, Dongshin University, Naju 58245, Korea
| | - Y S Park
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - C Rott
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - H Seo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - J W Seo
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - S H Seo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - C D Shin
- Institute for Universe and Elementary Particles, Chonnam National University, Gwangju 61186, Korea
| | - J Y Yang
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Korea
| | - J Yoo
- Institute for Basic Science, Daejeon 34047, Korea
- Department of Physics, KAIST, Daejeon 34141, Korea
| | - I Yu
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
7
|
Guadilla V, Algora A, Tain JL, Estienne M, Fallot M, Sonzogni AA, Agramunt J, Äystö J, Briz JA, Cucoanes A, Eronen T, Fraile LM, Ganioğlu E, Gelletly W, Gorelov D, Hakala J, Jokinen A, Jordan D, Kankainen A, Kolhinen V, Koponen J, Lebois M, Le Meur L, Martinez T, Monserrate M, Montaner-Pizá A, Moore I, Nácher E, Orrigo SEA, Penttilä H, Pohjalainen I, Porta A, Reinikainen J, Reponen M, Rinta-Antila S, Rubio B, Rytkönen K, Shiba T, Sonnenschein V, Valencia E, Vedia V, Voss A, Wilson JN, Zakari-Issoufou AA. Large Impact of the Decay of Niobium Isomers on the Reactor ν[over ¯]_{e} Summation Calculations. PHYSICAL REVIEW LETTERS 2019; 122:042502. [PMID: 30768318 DOI: 10.1103/physrevlett.122.042502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The β-intensity distributions of ^{100gs,100m}Nb and ^{102gs,102m}Nb β decays have been determined using the total absorption γ-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyväskylä. Here, the double Penning trap system JYFLTRAP was employed to disentangle the β decay of the isomeric states. The new data obtained in this challenging measurement have a large impact in antineutrino summation calculations. For the first time the discrepancy between the summation model and the reactor antineutrino measurements in the region of the shape distortion has been reduced.
Collapse
Affiliation(s)
- V Guadilla
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - A Algora
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
- Institute of Nuclear Research of the Hungarian Academy of Sciences, Debrecen H-4026, Hungary
| | - J L Tain
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - M Estienne
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - M Fallot
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - A A Sonzogni
- NNDC, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - J Agramunt
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - J Äystö
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - J A Briz
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - A Cucoanes
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - T Eronen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - L M Fraile
- Universidad Complutense, Grupo de Física Nuclear and UPARCOS, CEI Moncloa, E-28040 Madrid, Spain
| | - E Ganioğlu
- Department of Physics, Istanbul University, 34134 Istanbul, Turkey
| | - W Gelletly
- Department of Physics, University of Surrey, GU2 7XH Guildford, United Kingdom
| | - D Gorelov
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - J Hakala
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - A Jokinen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - D Jordan
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - A Kankainen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - V Kolhinen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - J Koponen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - M Lebois
- Institut de Physique Nuclèaire d'Orsay, 91406 Orsay, France
| | - L Le Meur
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - T Martinez
- Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, E-28040 Madrid, Spain
| | - M Monserrate
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - A Montaner-Pizá
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - I Moore
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - E Nácher
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
- Instituto de Estructura de la Materia, CSIC, E-28006 Madrid, Spain
| | - S E A Orrigo
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - H Penttilä
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - I Pohjalainen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - A Porta
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | - J Reinikainen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - M Reponen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | | | - B Rubio
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - K Rytkönen
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - T Shiba
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| | | | - E Valencia
- Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
| | - V Vedia
- Universidad Complutense, Grupo de Física Nuclear and UPARCOS, CEI Moncloa, E-28040 Madrid, Spain
| | - A Voss
- University of Jyväskylä, FIN-40014 Jyväskylä, Finland
| | - J N Wilson
- Institut de Physique Nuclèaire d'Orsay, 91406 Orsay, France
| | - A-A Zakari-Issoufou
- Subatech, IMT-Atlantique, Université de Nantes, CNRS-IN2P3, F-44307 Nantes, France
| |
Collapse
|
8
|
Estienne M, Fallot M, Giot L, Guadilla-Gomez V, Le Meur L, Porta A, Algora A, Taìn JL, Briz JA, Agramunt J, Äystö J, Cormon S, Cucoanes A, Eronen T, Fraile LM, Ganogliu E, Gelletly W, Gorelov D, Hakala J, Jokinen A, Jordan MD, Kankainen A, Kolhinen VS, Koponen J, Lebois M, Martinez T, Monserrate M, Montaner-Pizá A, Moore I, Nácher E, Orrigo SEA, Penttilä H, Pohjalainen I, Reinikainen J, Reponen M, Rinta-Antila S, Rytkönen K, Rubio B, Shiba T, Sonnenschein V, Sonzogni AA, Valencia E, Vedia V, Voss A, Weber C, Wilson JN, Zakari-Issoufou AA. Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases. EPJ WEB OF CONFERENCES 2019. [DOI: 10.1051/epjconf/201921101001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three observables of interest for present and future reactors depend on the β decay properties of the fission products: antineutrinos from reactors, the reactor decay heat and delayed neutron emission. In these proceedings, we present new results from summation calculations of the first two quantities quoted above, performed with evolved independent yields coupled with fission product decay data, from various nuclear data bases or models. New TAGS results from the latest experiment of the TAGS collaboration at the JYFL facility of Jyväskylä will be displayed as well as their impact on the antineutrino spectra and the decay heat associated to fission pulses of the main actinides.
Collapse
|
9
|
Uncertainty assessment on the calculated decay heat of the ASTRID basic design core based on the DARWIN-2.3 package. ANN NUCL ENERGY 2018. [DOI: 10.1016/j.anucene.2018.05.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Hayes AC, Jungman G, McCutchan EA, Sonzogni AA, Garvey GT, Wang XB. Analysis of the Daya Bay Reactor Antineutrino Flux Changes with Fuel Burnup. PHYSICAL REVIEW LETTERS 2018; 120:022503. [PMID: 29376701 DOI: 10.1103/physrevlett.120.022503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 11/13/2017] [Indexed: 06/07/2023]
Abstract
We investigate the recent Daya Bay results on the changes in the antineutrino flux and spectrum with the burnup of the reactor fuel. We find that the discrepancy between current model predictions and the Daya Bay results can be traced to the original measured ^{235}U/^{239}Pu ratio of the fission β spectra that were used as a base for the expected antineutrino fluxes. An analysis of the antineutrino spectra that is based on a summation over all fission fragment β decays, using nuclear database input, explains all of the features seen in the Daya Bay evolution data. However, this summation method still allows for an anomaly. We conclude that there is currently not enough information to use the antineutrino flux changes to rule out the possible existence of sterile neutrinos.
Collapse
Affiliation(s)
- A C Hayes
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Gerard Jungman
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - E A McCutchan
- National Nuclear Data Center, Brookhaven National Laboratory, Building 817, Upton, New York 1197e-500, USA
| | - A A Sonzogni
- National Nuclear Data Center, Brookhaven National Laboratory, Building 817, Upton, New York 1197e-500, USA
| | - G T Garvey
- University of Washington, Seattle, Washington 98195, USA
| | - X B Wang
- School of Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|
11
|
Estienne M, Fallot M, Giot L, Le Meur L, Porta A. Recent advances in beta decay measurements. EPJ NUCLEAR SCIENCES & TECHNOLOGIES 2018. [DOI: 10.1051/epjn/2018034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Three observables of interest for present and future reactors depend on the β decay data of the fission products: the reactor decay heat, antineutrinos from reactors and delayed neutron emission. Concerning the decay heat, significant discrepancies still exist between summation calculations in − their two main ingredients: the decay data and the fission yields − performed using the most recent evaluated databases available. It has been recently shown that the associated uncertainties are dominated by the ones on the decay data. But the results subtantially differ taking into account or not the correlations between the fission products. So far the uncertainty propagation does not include as well systematic effects on nuclear data such as the Pandemonium effect which impacts a large number of nuclei contributing to the decay heat. The list of nuclei deserving new TAGS measurements has been updated recently in the frame of IAEA working groups. The issues listed above impact in the same way the predicted energy spectra of the antineutrinos from reactors computed with the summation method, the interest of which has been recently reinforced by the Daya Bay latest publication. Nuclear data should definitely contribute to refine and better control these calculations. Lastly, a lot of nuclear data related to delayed neutrons are missing in nuclear databases. Despite the progresses already done these last years with new measurements now requiring to be included in evaluated databases, the experimental efforts which still need to be done are significant. These different issues will be addressed here before to comment on recent experimental results and on their impacts on the quoted observables. Some perspectives will also be presented. Solving the issues listed above will require to bring together experimental, simulation, evaluation and theoretical activities.
Collapse
|
12
|
Sonzogni AA, McCutchan EA, Hayes AC. Dissecting Reactor Antineutrino Flux Calculations. PHYSICAL REVIEW LETTERS 2017; 119:112501. [PMID: 28949211 DOI: 10.1103/physrevlett.119.112501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Current predictions for the antineutrino yield and spectra from a nuclear reactor rely on the experimental electron spectra from ^{235}U, ^{239}Pu, ^{241}Pu and a numerical method to convert these aggregate electron spectra into their corresponding antineutrino ones. In the present work we investigate quantitatively some of the basic assumptions and approximations used in the conversion method, studying first the compatibility between two recent approaches for calculating electron and antineutrino spectra. We then explore different possibilities for the disagreement between the measured Daya Bay and the Huber-Mueller antineutrino spectra, including the ^{238}U contribution as well as the effective charge and the allowed shape assumption used in the conversion method. We observe that including a shape correction of about +6% MeV^{-1} in conversion calculations can better describe the Daya Bay spectrum. Because of a lack of experimental data, this correction cannot be ruled out, concluding that in order to confirm the existence of the reactor neutrino anomaly, or even quantify it, precisely measured electron spectra for about 50 relevant fission products are needed. With the advent of new rare ion facilities, the measurement of shape factors for these nuclides, for many of which precise beta intensity data from TAGS experiments already exist, would be highly desirable.
Collapse
Affiliation(s)
- A A Sonzogni
- National Nuclear Data Center, Building. 817, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - E A McCutchan
- National Nuclear Data Center, Building. 817, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - A C Hayes
- T-2 Theoretical Division MS283, Los Alamos National Laboratory, Los Alamos, New Mexico 8545, USA
| |
Collapse
|
13
|
Kellett MA, Bersillon O. The Decay Data Evaluation Project (DDEP) and the JEFF-3.3 radioactive decay data library: Combining international collaborative efforts on evaluated decay data. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714602009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Fijałkowska A, Karny M, Rykaczewski KP, Rasco BC, Grzywacz R, Gross CJ, Wolińska-Cichocka M, Goetz KC, Stracener DW, Bielewski W, Goans R, Hamilton JH, Johnson JW, Jost C, Madurga M, Miernik K, Miller D, Padgett SW, Paulauskas SV, Ramayya AV, Zganjar EF. Impact of Modular Total Absorption Spectrometer measurements of β decay of fission products on the decay heat and reactor ν[over ¯]_{e} flux calculation. PHYSICAL REVIEW LETTERS 2017; 119:052503. [PMID: 28949741 DOI: 10.1103/physrevlett.119.052503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 06/07/2023]
Abstract
We report the results of a β-decay study of fission products ^{86}Br, ^{89}Kr, ^{89}Rb, ^{90gs}Rb, ^{90m}Rb, ^{90}Kr, ^{92}Rb, ^{139}Xe, and ^{142}Cs performed with the Modular Total Absorption Spectrometer (MTAS) and on-line mass-separated ion beams. These radioactivities were assessed by the Nuclear Energy Agency as having high priority for decay heat analysis during a nuclear fuel cycle. We observe a substantial increase in β feeding to high excited states in all daughter isotopes in comparison to earlier data. This increases the average γ-ray energy emitted by the decay of fission fragments during the first 10 000 s after fission of ^{235}U and ^{239}Pu by approximately 2% and 1%, respectively, improving agreement between results of calculations and direct observations. New MTAS results reduce the reference reactor ν[over ¯]_{e} flux used to analyze reactor ν[over ¯]_{e} interaction with detector matter. The reduction determined by the ab initio method for the four nuclear fuel components, ^{235}U, ^{238}U, ^{239}Pu, and ^{241}Pu, amounts to 0.976, 0.986, 0.983, and 0.984, respectively.
Collapse
Affiliation(s)
- A Fijałkowska
- Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland
- Department of Physics and Astronomy, Rutgers University, New Brunswick, New Jersey 08903, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - M Karny
- Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - K P Rykaczewski
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - B C Rasco
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - R Grzywacz
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - C J Gross
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M Wolińska-Cichocka
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Heavy Ion Laboratory, University of Warsaw, PL-02-093 Warsaw, Poland
| | - K C Goetz
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
- CIRE Bredesen Center, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - D W Stracener
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - W Bielewski
- Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland
| | - R Goans
- Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831, USA
| | - J H Hamilton
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - J W Johnson
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - C Jost
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - M Madurga
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - K Miernik
- Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - D Miller
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - S W Padgett
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - S V Paulauskas
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - A V Ramayya
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - E F Zganjar
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
15
|
Huber P. NEOS Data and the Origin of the 5 MeV Bump in the Reactor Antineutrino Spectrum. PHYSICAL REVIEW LETTERS 2017; 118:042502. [PMID: 28186816 DOI: 10.1103/physrevlett.118.042502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 06/06/2023]
Abstract
We perform a combined analysis of recent NEOS and Daya Bay data on the reactor antineutrino spectrum. This analysis includes approximately 1.5 million antineutrino events, which is the largest neutrino event sample analyzed to date. We use a double ratio which cancels flux model dependence and related uncertainties as well as the effects of the detector response model. We find at 3-4 standard deviation significance level, that plutonium-239 and plutonium-241 are disfavored as the single source for the so-called 5 MeV bump. This analysis method has general applicability and, in particular, with higher statistics data sets, will be able to shed significant light on the issue of the bump. With some caveats, this should also allow us to improve the sensitivity for sterile neutrino searches in NEOS.
Collapse
Affiliation(s)
- Patrick Huber
- Center of Neutrino Physics, Virginia Tech, Blacksburg, Virgina 24061, USA
| |
Collapse
|
16
|
Wolińska-Cichocka M, Rasco BC, Rykaczewski KP, Brewer NT, Stracener D, Grzywacz R, Gross CJ, kowska AF, Goetz KC, Karny M, King T, Go S, McCutchan EA, Nesaraja C, Sonzogni AA, Wang E, Winger JA, Xiao Y, Zachary CJ, Zganjar EF. Beta-strength and anti-neutrino spectra from total absorption spectroscopy of a decay chain 142Cs→ 142Ba→ 142La. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714610005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Fallot M, Porta A, Meur LL, Briz J, Zakari-Issoufou AA, Guadilla V, Algora A, Taìn JL, Valencia E, Rice S, Bui V, Cormon S, Estienne M, Agramunt J, Äystö J, Batist L, Bowry M, Caballero-Folch R, Cano-Ott D, Cucoanes A, Elomaa VV, Eronen T, Estévez E, Farrelly G, Fraile L, Fleming M, Ganogliu E, Garcia A, Gelletly W, Gomez-Hornillos M, Gorelov D, Gorlychev V, Hakala J, Jokinen A, Jordan M, Kankainen A, Karvonen P, Kolhinen V, Kondev F, Koponen J, Lebois M, Martinez T, Mason P, Mendoza E, Molina F, Monserrate M, Montaner-Pizá A, Moore I, Nácher E, Orrigo S, Penttilä H, Perez A, Podolyák Z, Pohjalainen I, Regan P, Reinikainen J, Reponen M, Rinta-Antila S, Rissanen J, Rubio B, Shiba T, Sonnenschein V, Sonzogni A, Sublet JC, Vedia V, Voss A, Weber C, Wilson J. Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714610002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Dhal A, Mukherjee G, Bhattacharjee M, Naik V, Mukhopadhyay S, Pandit D, Pal S, Mondal D, Karmakar P, Roy T, Asgar M, Bhattacharya S, Bhattacharyya S, Bhattacharya C, Banerjee S, Chakrabarti A. Decay measurements of 43K( β−) 43Ca by HRS and TAS. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714610013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Algora A, Rice S, Guadilla V, Tain J, Valencia E, Zakari-Issoufou AA, Agramunt J, Äystö J, Batist L, Briz J, Bowry M, Bui V, Caballero-Folch R, Cano-Ott D, Cucoanes A, Eronen T, Elomaa V, Estevez E, Estienne M, Fallot M, Farrelly G, Fraile L, Fleming M, Ganioglu E, Garcia A, Gelletly W, Gómez-Hornillos B, Gorelov D, Gorlychev V, Hakala J, Jokinen A, Jordan D, Kankainen A, Kolhinen V, Kondev F, Koponen J, Lebois M, Martinez T, Mason P, Mendoza E, Monserrate M, Montaner-Pizá A, Moore I, Nácher E, Orrigo S, Penttilä H, Podolyák Z, Pohjalainen I, Porta A, Regan P, Reinikainen J, Reponen M, Rinta-Antila S, Rissanen J, Rubio B, Rytkönen K, Shiba T, Sonnenschein V, Sonzogni A, Sublet JC, Vedia V, Voss A, Wilson J. Total absorption studies of high priority decays for reactor applications: 86Br and 91Rb. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714610001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
20
|
Guadilla V, Algora A, Tain J, Agramunt J, Äystö J, Briz J, Cucoanes A, Eronen T, Estienne M, Fallot M, Fraile L, Ganioğlu E, Gelletly W, Gorelov D, Hakala J, Jokinen A, Jordan D, Kankainen A, Kolhinen V, Koponen J, Lebois M, Martinez T, Monserrate M, Montaner-Pizá A, Moore I, Nácher E, Orrigo S, Penttilä H, Pohjalainen I, Porta A, Reinikainen J, Reponen M, Rinta-Antila S, Rubio B, Rytkönen K, Shiba T, Sonnenschein V, Sonzogni A, Valencia E, Vedia V, Voss A, Wilson J, Zakari-Issoufou AA. TAGS measurements of 100Nb ground and isomeric states and 140Cs for neutrino physics with the new DTAS detector. EPJ WEB OF CONFERENCES 2017. [DOI: 10.1051/epjconf/201714610010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Rasco BC, Wolińska-Cichocka M, Fijałkowska A, Rykaczewski KP, Karny M, Grzywacz RK, Goetz KC, Gross CJ, Stracener DW, Zganjar EF, Batchelder JC, Blackmon JC, Brewer NT, Go S, Heffron B, King T, Matta JT, Miernik K, Nesaraja CD, Paulauskas SV, Rajabali MM, Wang EH, Winger JA, Xiao Y, Zachary CJ. Decays of the Three Top Contributors to the Reactor ν[over ¯]_{e} High-Energy Spectrum, ^{92}Rb, ^{96gs}Y, and ^{142}Cs, Studied with Total Absorption Spectroscopy. PHYSICAL REVIEW LETTERS 2016; 117:092501. [PMID: 27610847 DOI: 10.1103/physrevlett.117.092501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 06/06/2023]
Abstract
We report total absorption spectroscopy measurements of ^{92}Rb, ^{96gs}Y, and ^{142}Cs β decays, which are the most important contributors to the high energy ν[over ¯]_{e} spectral shape in nuclear reactors. These three β decays contribute 43% of the ν[over ¯]_{e} flux near 5.5 MeV emitted by nuclear reactors. This ν[over ¯]_{e} energy is particularly interesting due to spectral features recently observed in several experiments including the Daya Bay, Double Chooz, and RENO Collaborations. Measurements were conducted at Oak Ridge National Laboratory by means of proton-induced fission of ^{238}U with on-line mass separation of fission fragments and the Modular Total Absorption Spectrometer. We observe a β-decay pattern that is similar to recent measurements of ^{92}Rb, with a ground-state to ground-state β feeding of 91(3)%. We verify the ^{96gs}Y ground-state to ground-state β feeding of 95.5(20)%. Our measurements substantially modify the β-decay feedings of ^{142}Cs, reducing the β feeding to ^{142}Ba states below 2 MeV by 32% when compared with the latest evaluations. Our results increase the discrepancy between the observed and the expected reactor ν[over ¯]_{e} flux between 5 and 7 MeV, the maximum excess increases from ∼10% to ∼12%.
Collapse
Affiliation(s)
- B C Rasco
- JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - M Wolińska-Cichocka
- JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Heavy Ion Laboratory, University of Warsaw, PL-02-093 Warsaw, Poland
| | - A Fijałkowska
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
- Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland
| | - K P Rykaczewski
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - M Karny
- JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland
| | - R K Grzywacz
- JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - K C Goetz
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
- CIRE Bredesen Center, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - C J Gross
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - D W Stracener
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - E F Zganjar
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 USA
| | - J C Batchelder
- JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Nuclear Engineering, University of California, Berkeley, Berkeley California 94720, USA
| | - J C Blackmon
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 USA
| | - N T Brewer
- JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - S Go
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - B Heffron
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - T King
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - J T Matta
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - K Miernik
- JINPA, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Faculty of Physics, University of Warsaw, PL-02-093 Warsaw, Poland
| | - C D Nesaraja
- Physics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - S V Paulauskas
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - M M Rajabali
- Department of Physics, Tennessee Technological University, Cookeville, Tennessee 38505, USA
| | - E H Wang
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - J A Winger
- Department of Physics and Astronomy, Mississippi State University, Mississippi State, Mississippi 39762, USA
| | - Y Xiao
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37966, USA
| | - C J Zachary
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
| |
Collapse
|
22
|
Sonzogni AA, McCutchan EA, Johnson TD, Dimitriou P. Effects of Fission Yield Data in the Calculation of Antineutrino Spectra for ^{235}U(n,fission) at Thermal and Fast Neutron Energies. PHYSICAL REVIEW LETTERS 2016; 116:132502. [PMID: 27081973 DOI: 10.1103/physrevlett.116.132502] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 06/05/2023]
Abstract
Fission yields form an integral part of the prediction of antineutrino spectra generated by nuclear reactors, but little attention has been paid to the quality and reliability of the data used in current calculations. Following a critical review of the thermal and fast ENDF/B-VII.1 ^{235}U fission yields, deficiencies are identified and improved yields are obtained, based on corrections of erroneous yields, consistency between decay and fission yield data, and updated isomeric ratios. These corrected yields are used to calculate antineutrino spectra using the summation method. An anomalous value for the thermal fission yield of ^{86}Ge generates an excess of antineutrinos at 5-7 MeV, a feature which is no longer present when the corrected yields are used. Thermal spectra calculated with two distinct fission yield libraries (corrected ENDF/B and JEFF) differ by up to 6% in the 0-7 MeV energy window, allowing for a basic estimate of the uncertainty involved in the fission yield component of summation calculations. Finally, the fast neutron antineutrino spectrum is calculated, which at the moment can only be obtained with the summation method and may be relevant for short baseline reactor experiments using highly enriched uranium fuel.
Collapse
Affiliation(s)
- A A Sonzogni
- National Nuclear Data Center, Building 817, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - E A McCutchan
- National Nuclear Data Center, Building 817, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - T D Johnson
- National Nuclear Data Center, Building 817, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
| | - P Dimitriou
- NAPC-Nuclear Data Section, International Atomic Energy Agency, P.O. Box 100, Vienna A-1400, Austria
| |
Collapse
|
23
|
An FP, Balantekin AB, Band HR, Bishai M, Blyth S, Butorov I, Cao D, Cao GF, Cao J, Cen WR, Chan YL, Chang JF, Chang LC, Chang Y, Chen HS, Chen QY, Chen SM, Chen YX, Chen Y, Cheng JH, Cheng J, Cheng YP, Cherwinka JJ, Chu MC, Cummings JP, de Arcos J, Deng ZY, Ding XF, Ding YY, Diwan MV, Dove J, Draeger E, Dwyer DA, Edwards WR, Ely SR, Gill R, Gonchar M, Gong GH, Gong H, Grassi M, Gu WQ, Guan MY, Guo L, Guo XH, Hackenburg RW, Han R, Hans S, He M, Heeger KM, Heng YK, Higuera A, Hor YK, Hsiung YB, Hu BZ, Hu LM, Hu LJ, Hu T, Hu W, Huang EC, Huang HX, Huang XT, Huber P, Hussain G, Jaffe DE, Jaffke P, Jen KL, Jetter S, Ji XP, Ji XL, Jiao JB, Johnson RA, Kang L, Kettell SH, Kohn S, Kramer M, Kwan KK, Kwok MW, Kwok T, Langford TJ, Lau K, Lebanowski L, Lee J, Lei RT, Leitner R, Leung KY, Leung JKC, Lewis CA, Li DJ, Li F, Li GS, Li QJ, Li SC, Li WD, Li XN, Li XQ, Li YF, Li ZB, Liang H, Lin CJ, Lin GL, Lin PY, Lin SK, Ling JJ, Link JM, Littenberg L, Littlejohn BR, Liu DW, Liu H, Liu JL, Liu JC, Liu SS, Lu C, Lu HQ, Lu JS, Luk KB, Ma QM, Ma XY, Ma XB, Ma YQ, Martinez Caicedo DA, McDonald KT, McKeown RD, Meng Y, Mitchell I, Monari Kebwaro J, Nakajima Y, Napolitano J, Naumov D, Naumova E, Ngai HY, Ning Z, Ochoa-Ricoux JP, Olshevski A, Pan HR, Park J, Patton S, Pec V, Peng JC, Piilonen LE, Pinsky L, Pun CSJ, Qi FZ, Qi M, Qian X, Raper N, Ren B, Ren J, Rosero R, Roskovec B, Ruan XC, Shao BB, Steiner H, Sun GX, Sun JL, Tang W, Taychenachev D, Tsang KV, Tull CE, Tung YC, Viaux N, Viren B, Vorobel V, Wang CH, Wang M, Wang NY, Wang RG, Wang W, Wang WW, Wang X, Wang YF, Wang Z, Wang Z, Wang ZM, Wei HY, Wen LJ, Whisnant K, White CG, Whitehead L, Wise T, Wong HLH, Wong SCF, Worcester E, Wu Q, Xia DM, Xia JK, Xia X, Xing ZZ, Xu JY, Xu JL, Xu J, Xu Y, Xue T, Yan J, Yang CG, Yang L, Yang MS, Yang MT, Ye M, Yeh M, Young BL, Yu GY, Yu ZY, Zang SL, Zhan L, Zhang C, Zhang HH, Zhang JW, Zhang QM, Zhang YM, Zhang YX, Zhang YM, Zhang ZJ, Zhang ZY, Zhang ZP, Zhao J, Zhao QW, Zhao YF, Zhao YB, Zheng L, Zhong WL, Zhou L, Zhou N, Zhuang HL, Zou JH. Measurement of the Reactor Antineutrino Flux and Spectrum at Daya Bay. PHYSICAL REVIEW LETTERS 2016; 116:061801. [PMID: 26918980 DOI: 10.1103/physrevlett.116.061801] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Indexed: 06/05/2023]
Abstract
This Letter reports a measurement of the flux and energy spectrum of electron antineutrinos from six 2.9 GWth nuclear reactors with six detectors deployed in two near (effective baselines 512 and 561 m) and one far (1579 m) underground experimental halls in the Daya Bay experiment. Using 217 days of data, 296 721 and 41 589 inverse β decay (IBD) candidates were detected in the near and far halls, respectively. The measured IBD yield is (1.55±0.04) ×10(-18) cm(2) GW(-1) day(-1) or (5.92±0.14) ×10(-43) cm(2) fission(-1). This flux measurement is consistent with previous short-baseline reactor antineutrino experiments and is 0.946±0.022 (0.991±0.023) relative to the flux predicted with the Huber-Mueller (ILL-Vogel) fissile antineutrino model. The measured IBD positron energy spectrum deviates from both spectral predictions by more than 2σ over the full energy range with a local significance of up to ∼4σ between 4-6 MeV. A reactor antineutrino spectrum of IBD reactions is extracted from the measured positron energy spectrum for model-independent predictions.
Collapse
Affiliation(s)
- F P An
- Institute of Modern Physics, East China University of Science and Technology, Shanghai, China
| | | | - H R Band
- Department of Physics, Yale University, New Haven, Connecticut, USA
| | - M Bishai
- Brookhaven National Laboratory, Upton, New York, USA
| | - S Blyth
- Department of Physics, National Taiwan University, Taipei, Taiwan
- National United University, Miao-Li, Taiwan
| | - I Butorov
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - D Cao
- Nanjing University, Nanjing, China
| | - G F Cao
- Institute of High Energy Physics, Beijing, China
| | - J Cao
- Institute of High Energy Physics, Beijing, China
| | - W R Cen
- Institute of High Energy Physics, Beijing, China
| | - Y L Chan
- Chinese University of Hong Kong, Hong Kong, China
| | - J F Chang
- Institute of High Energy Physics, Beijing, China
| | - L C Chang
- Institute of Physics, National Chiao-Tung University, Hsinchu, Taiwan
| | - Y Chang
- National United University, Miao-Li, Taiwan
| | - H S Chen
- Institute of High Energy Physics, Beijing, China
| | - Q Y Chen
- Shandong University, Jinan, China
| | - S M Chen
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Y X Chen
- North China Electric Power University, Beijing, China
| | - Y Chen
- Shenzhen University, Shenzhen, China
| | - J H Cheng
- Institute of Physics, National Chiao-Tung University, Hsinchu, Taiwan
| | - J Cheng
- Shandong University, Jinan, China
| | - Y P Cheng
- Institute of High Energy Physics, Beijing, China
| | | | - M C Chu
- Chinese University of Hong Kong, Hong Kong, China
| | | | - J de Arcos
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois, USA
| | - Z Y Deng
- Institute of High Energy Physics, Beijing, China
| | - X F Ding
- Institute of High Energy Physics, Beijing, China
| | - Y Y Ding
- Institute of High Energy Physics, Beijing, China
| | - M V Diwan
- Brookhaven National Laboratory, Upton, New York, USA
| | - J Dove
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - E Draeger
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois, USA
| | - D A Dwyer
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - W R Edwards
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - S R Ely
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - R Gill
- Brookhaven National Laboratory, Upton, New York, USA
| | - M Gonchar
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - G H Gong
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - H Gong
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - M Grassi
- Institute of High Energy Physics, Beijing, China
| | - W Q Gu
- Shanghai Jiao Tong University, Shanghai, China
| | - M Y Guan
- Institute of High Energy Physics, Beijing, China
| | - L Guo
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - X H Guo
- Beijing Normal University, Beijing, China
| | | | - R Han
- North China Electric Power University, Beijing, China
| | - S Hans
- Brookhaven National Laboratory, Upton, New York, USA
| | - M He
- Institute of High Energy Physics, Beijing, China
| | - K M Heeger
- Department of Physics, Yale University, New Haven, Connecticut, USA
| | - Y K Heng
- Institute of High Energy Physics, Beijing, China
| | - A Higuera
- Department of Physics, University of Houston, Houston, Texas, USA
| | - Y K Hor
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia, USA
| | - Y B Hsiung
- Department of Physics, National Taiwan University, Taipei, Taiwan
| | - B Z Hu
- Department of Physics, National Taiwan University, Taipei, Taiwan
| | - L M Hu
- Brookhaven National Laboratory, Upton, New York, USA
| | - L J Hu
- Beijing Normal University, Beijing, China
| | - T Hu
- Institute of High Energy Physics, Beijing, China
| | - W Hu
- Institute of High Energy Physics, Beijing, China
| | - E C Huang
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - H X Huang
- China Institute of Atomic Energy, Beijing, China
| | | | - P Huber
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia, USA
| | - G Hussain
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - D E Jaffe
- Brookhaven National Laboratory, Upton, New York, USA
| | - P Jaffke
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia, USA
| | - K L Jen
- Institute of Physics, National Chiao-Tung University, Hsinchu, Taiwan
| | - S Jetter
- Institute of High Energy Physics, Beijing, China
| | - X P Ji
- Department of Engineering Physics, Tsinghua University, Beijing, China
- School of Physics, Nankai University, Tianjin, China
| | - X L Ji
- Institute of High Energy Physics, Beijing, China
| | - J B Jiao
- Shandong University, Jinan, China
| | - R A Johnson
- Department of Physics, University of Cincinnati, Cincinnati, Ohio, USA
| | - L Kang
- Dongguan University of Technology, Dongguan, China
| | - S H Kettell
- Brookhaven National Laboratory, Upton, New York, USA
| | - S Kohn
- Department of Physics, University of California, Berkeley, California, USA
| | - M Kramer
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Physics, University of California, Berkeley, California, USA
| | - K K Kwan
- Chinese University of Hong Kong, Hong Kong, China
| | - M W Kwok
- Chinese University of Hong Kong, Hong Kong, China
| | - T Kwok
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - T J Langford
- Department of Physics, Yale University, New Haven, Connecticut, USA
| | - K Lau
- Department of Physics, University of Houston, Houston, Texas, USA
| | - L Lebanowski
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - J Lee
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - R T Lei
- Dongguan University of Technology, Dongguan, China
| | - R Leitner
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - K Y Leung
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - J K C Leung
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - C A Lewis
- University of Wisconsin, Madison, Wisconsin, USA
| | - D J Li
- University of Science and Technology of China, Hefei, China
| | - F Li
- Institute of High Energy Physics, Beijing, China
| | - G S Li
- Shanghai Jiao Tong University, Shanghai, China
| | - Q J Li
- Institute of High Energy Physics, Beijing, China
| | - S C Li
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - W D Li
- Institute of High Energy Physics, Beijing, China
| | - X N Li
- Institute of High Energy Physics, Beijing, China
| | - X Q Li
- School of Physics, Nankai University, Tianjin, China
| | - Y F Li
- Institute of High Energy Physics, Beijing, China
| | - Z B Li
- Sun Yat-Sen (Zhongshan) University, Guangzhou, China
| | - H Liang
- University of Science and Technology of China, Hefei, China
| | - C J Lin
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - G L Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu, Taiwan
| | - P Y Lin
- Institute of Physics, National Chiao-Tung University, Hsinchu, Taiwan
| | - S K Lin
- Department of Physics, University of Houston, Houston, Texas, USA
| | - J J Ling
- Brookhaven National Laboratory, Upton, New York, USA
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Sun Yat-Sen (Zhongshan) University, Guangzhou, China
| | - J M Link
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia, USA
| | - L Littenberg
- Brookhaven National Laboratory, Upton, New York, USA
| | - B R Littlejohn
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois, USA
- Department of Physics, University of Cincinnati, Cincinnati, Ohio, USA
| | - D W Liu
- Department of Physics, University of Houston, Houston, Texas, USA
| | - H Liu
- Department of Physics, University of Houston, Houston, Texas, USA
| | - J L Liu
- Shanghai Jiao Tong University, Shanghai, China
| | - J C Liu
- Institute of High Energy Physics, Beijing, China
| | - S S Liu
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - C Lu
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey, USA
| | - H Q Lu
- Institute of High Energy Physics, Beijing, China
| | - J S Lu
- Institute of High Energy Physics, Beijing, China
| | - K B Luk
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Physics, University of California, Berkeley, California, USA
| | - Q M Ma
- Institute of High Energy Physics, Beijing, China
| | - X Y Ma
- Institute of High Energy Physics, Beijing, China
| | - X B Ma
- North China Electric Power University, Beijing, China
| | - Y Q Ma
- Institute of High Energy Physics, Beijing, China
| | | | - K T McDonald
- Joseph Henry Laboratories, Princeton University, Princeton, New Jersey, USA
| | - R D McKeown
- California Institute of Technology, Pasadena, California, USA
- College of William and Mary, Williamsburg, Virginia, USA
| | - Y Meng
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia, USA
| | - I Mitchell
- Department of Physics, University of Houston, Houston, Texas, USA
| | | | - Y Nakajima
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - J Napolitano
- Department of Physics, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, USA
| | - D Naumov
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - E Naumova
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - H Y Ngai
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Z Ning
- Institute of High Energy Physics, Beijing, China
| | - J P Ochoa-Ricoux
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A Olshevski
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - H-R Pan
- Department of Physics, National Taiwan University, Taipei, Taiwan
| | - J Park
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia, USA
| | - S Patton
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - V Pec
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - J C Peng
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - L E Piilonen
- Center for Neutrino Physics, Virginia Tech, Blacksburg, Virginia, USA
| | - L Pinsky
- Department of Physics, University of Houston, Houston, Texas, USA
| | - C S J Pun
- Department of Physics, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - F Z Qi
- Institute of High Energy Physics, Beijing, China
| | - M Qi
- Nanjing University, Nanjing, China
| | - X Qian
- Brookhaven National Laboratory, Upton, New York, USA
| | - N Raper
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York, USA
| | - B Ren
- Dongguan University of Technology, Dongguan, China
| | - J Ren
- China Institute of Atomic Energy, Beijing, China
| | - R Rosero
- Brookhaven National Laboratory, Upton, New York, USA
| | - B Roskovec
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - X C Ruan
- China Institute of Atomic Energy, Beijing, China
| | - B B Shao
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - H Steiner
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Physics, University of California, Berkeley, California, USA
| | - G X Sun
- Institute of High Energy Physics, Beijing, China
| | - J L Sun
- China General Nuclear Power Group, China
| | - W Tang
- Brookhaven National Laboratory, Upton, New York, USA
| | - D Taychenachev
- Joint Institute for Nuclear Research, Dubna, Moscow Region, Russia
| | - K V Tsang
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - C E Tull
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Y C Tung
- Department of Physics, National Taiwan University, Taipei, Taiwan
| | - N Viaux
- Instituto de Física, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - B Viren
- Brookhaven National Laboratory, Upton, New York, USA
| | - V Vorobel
- Charles University, Faculty of Mathematics and Physics, Prague, Czech Republic
| | - C H Wang
- National United University, Miao-Li, Taiwan
| | - M Wang
- Shandong University, Jinan, China
| | - N Y Wang
- Beijing Normal University, Beijing, China
| | - R G Wang
- Institute of High Energy Physics, Beijing, China
| | - W Wang
- Sun Yat-Sen (Zhongshan) University, Guangzhou, China
- College of William and Mary, Williamsburg, Virginia, USA
| | - W W Wang
- Nanjing University, Nanjing, China
| | - X Wang
- College of Electronic Science and Engineering, National University of Defense Technology, Changsha, China
| | - Y F Wang
- Institute of High Energy Physics, Beijing, China
| | - Z Wang
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Z Wang
- Institute of High Energy Physics, Beijing, China
| | - Z M Wang
- Institute of High Energy Physics, Beijing, China
| | - H Y Wei
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - L J Wen
- Institute of High Energy Physics, Beijing, China
| | | | - C G White
- Department of Physics, Illinois Institute of Technology, Chicago, Illinois, USA
| | - L Whitehead
- Department of Physics, University of Houston, Houston, Texas, USA
| | - T Wise
- University of Wisconsin, Madison, Wisconsin, USA
| | - H L H Wong
- Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Physics, University of California, Berkeley, California, USA
| | - S C F Wong
- Chinese University of Hong Kong, Hong Kong, China
- Sun Yat-Sen (Zhongshan) University, Guangzhou, China
| | - E Worcester
- Brookhaven National Laboratory, Upton, New York, USA
| | - Q Wu
- Shandong University, Jinan, China
| | - D M Xia
- Institute of High Energy Physics, Beijing, China
- Chongqing University, Chongqing, China
| | - J K Xia
- Institute of High Energy Physics, Beijing, China
| | - X Xia
- Shandong University, Jinan, China
| | - Z Z Xing
- Institute of High Energy Physics, Beijing, China
| | - J Y Xu
- Chinese University of Hong Kong, Hong Kong, China
| | - J L Xu
- Institute of High Energy Physics, Beijing, China
| | - J Xu
- Beijing Normal University, Beijing, China
| | - Y Xu
- School of Physics, Nankai University, Tianjin, China
| | - T Xue
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - J Yan
- Xi'an Jiaotong University, Xi'an, China
| | - C G Yang
- Institute of High Energy Physics, Beijing, China
| | - L Yang
- Dongguan University of Technology, Dongguan, China
| | - M S Yang
- Institute of High Energy Physics, Beijing, China
| | - M T Yang
- Shandong University, Jinan, China
| | - M Ye
- Institute of High Energy Physics, Beijing, China
| | - M Yeh
- Brookhaven National Laboratory, Upton, New York, USA
| | - B L Young
- Iowa State University, Ames, Iowa, USA
| | - G Y Yu
- Nanjing University, Nanjing, China
| | - Z Y Yu
- Institute of High Energy Physics, Beijing, China
| | - S L Zang
- Nanjing University, Nanjing, China
| | - L Zhan
- Institute of High Energy Physics, Beijing, China
| | - C Zhang
- Brookhaven National Laboratory, Upton, New York, USA
| | - H H Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou, China
| | - J W Zhang
- Institute of High Energy Physics, Beijing, China
| | - Q M Zhang
- Xi'an Jiaotong University, Xi'an, China
| | - Y M Zhang
- Department of Engineering Physics, Tsinghua University, Beijing, China
| | - Y X Zhang
- China General Nuclear Power Group, China
| | - Y M Zhang
- Sun Yat-Sen (Zhongshan) University, Guangzhou, China
| | - Z J Zhang
- Dongguan University of Technology, Dongguan, China
| | - Z Y Zhang
- Institute of High Energy Physics, Beijing, China
| | - Z P Zhang
- University of Science and Technology of China, Hefei, China
| | - J Zhao
- Institute of High Energy Physics, Beijing, China
| | - Q W Zhao
- Institute of High Energy Physics, Beijing, China
| | - Y F Zhao
- North China Electric Power University, Beijing, China
| | - Y B Zhao
- Institute of High Energy Physics, Beijing, China
| | - L Zheng
- University of Science and Technology of China, Hefei, China
| | - W L Zhong
- Institute of High Energy Physics, Beijing, China
| | - L Zhou
- Institute of High Energy Physics, Beijing, China
| | - N Zhou
- University of Science and Technology of China, Hefei, China
| | - H L Zhuang
- Institute of High Energy Physics, Beijing, China
| | - J H Zou
- Institute of High Energy Physics, Beijing, China
| |
Collapse
|
24
|
Porta A, Zakari-Issoufou AA, Fallot M, Algora A, Tain J, Valencia E, Rice S, Bui V, Cormon S, Estienne M, Agramunt J, Äystö J, Bowry M, Briz J, Caballero-Folch R, Cano-Ott D, Cucouanes A, Elomaa VV, Eronen T, Estévez E, Farrelly G, Garcia A, Gelletly W, Gomez-Hornillos M, Gorlychev V, Hakala J, Jokinen A, Jordan M, Kankainen A, Karvonen P, Kolhinen V, Kondev F, Martinez T, Mendoza E, Molina F, Moore I, Perez-Cerdán AB, Podolyák Z, Penttilä H, Regan P, Reponen M, Rissanen J, Rubio B, Shiba T, Sonzogni A, Weber C. Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations. EPJ WEB OF CONFERENCES 2016. [DOI: 10.1051/epjconf/201611108006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|