1
|
Matsuda K, Jung W, Sato Y, Kobayashi T, Yamagishi M, Kim T, Yajima J. Myosin-induced F-actin fragmentation facilitates contraction of actin networks. Cytoskeleton (Hoboken) 2024; 81:339-355. [PMID: 38456577 PMCID: PMC11333167 DOI: 10.1002/cm.21848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 01/19/2024] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
Mechanical forces play a crucial role in diverse physiological processes, such as cell migration, cytokinesis, and morphogenesis. The actin cytoskeleton generates a large fraction of the mechanical forces via molecular interactions between actin filaments (F-actins) and myosin motors. Recent studies have shown that the common tendency of actomyosin networks to contract into a smaller structure deeply involves F-actin buckling induced by motor activities, fragmentation of F-actins, and the force-dependent unbinding of cross-linkers that inter-connect F-actins. The fragmentation of F-actins was shown to originate from either buckling or tensile force from previous single-molecule experiments. While the role of buckling in network contraction has been studied extensively, to date, the role of tension-induced F-actin fragmentation in network contraction has not been investigated. In this study, we employed in vitro experiments and an agent-based computational model to illuminate when and how the tension-induced F-actin fragmentation facilitates network contraction. Our experiments demonstrated that F-actins can be fragmented due to tensile forces, immediately followed by catastrophic rupture and contraction of networks. Using the agent-based model, we showed that F-actin fragmentation by tension results in distinct rupture dynamics different from that observed in networks only with cross-linker unbinding. Moreover, we found that tension-induced F-actin fragmentation is particularly important for the contraction of networks with high connectivity. Results from our study shed light on an important regulator of the contraction of actomyosin networks which has been neglected. In addition, our results provide insights into the rupture mechanisms of polymeric network structures and bio-inspired materials.
Collapse
Affiliation(s)
- Kyohei Matsuda
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Yusei Sato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Takuya Kobayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
| | - Masahiko Yamagishi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
- Faculty of Science and Technology, Keio University, Kohoku Ward, Yokohama 223-0061, Japan
| | - Junichiro Yajima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo, 153-8902, Japan
- Komaba Institute for Science, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
- Research Center for Complex Systems Biology, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Gonzalez Rodriguez S, Wirshing AC, Goodman AL, Goode BL. Cytosolic concentrations of actin binding proteins and the implications for in vivo F-actin turnover. J Cell Biol 2023; 222:e202306036. [PMID: 37801069 PMCID: PMC10558290 DOI: 10.1083/jcb.202306036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023] Open
Abstract
Understanding how numerous actin-binding proteins (ABPs) work in concert to control the assembly, organization, and turnover of the actin cytoskeleton requires quantitative information about the levels of each component. Here, we measured the cellular concentrations of actin and the majority of the conserved ABPs in Saccharomyces cerevisiae, as well as the free (cytosolic) fractions of each ABP. The cellular concentration of actin is estimated to be 13.2 µM, with approximately two-thirds in the F-actin form and one-third in the G-actin form. Cellular concentrations of ABPs range from 12.4 to 0.85 µM (Tpm1> Pfy1> Cof1> Abp1> Srv2> Abp140> Tpm2> Aip1> Cap1/2> Crn1> Sac6> Twf1> Arp2/3> Scp1). The cytosolic fractions of all ABPs are unexpectedly high (0.6-0.9) and remain so throughout the cell cycle. Based on these numbers, we speculate that F-actin binding sites are limited in vivo, which leads to high cytosolic levels of ABPs, and in turn helps drive the rapid assembly and turnover of cellular F-actin structures.
Collapse
Affiliation(s)
- Sofia Gonzalez Rodriguez
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Alison C.E. Wirshing
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| | - Anya L. Goodman
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
- Department of Chemistry and Biochemistry, California Polytechnic State University SLO, San Luis Obispo, CA, USA
| | - Bruce L. Goode
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, MA, USA
| |
Collapse
|
3
|
Baldauf L, van Buren L, Fanalista F, Koenderink GH. Actomyosin-Driven Division of a Synthetic Cell. ACS Synth Biol 2022; 11:3120-3133. [PMID: 36164967 PMCID: PMC9594324 DOI: 10.1021/acssynbio.2c00287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Indexed: 01/24/2023]
Abstract
One of the major challenges of bottom-up synthetic biology is rebuilding a minimal cell division machinery. From a reconstitution perspective, the animal cell division apparatus is mechanically the simplest and therefore attractive to rebuild. An actin-based ring produces contractile force to constrict the membrane. By contrast, microbes and plant cells have a cell wall, so division requires concerted membrane constriction and cell wall synthesis. Furthermore, reconstitution of the actin division machinery helps in understanding the physical and molecular mechanisms of cytokinesis in animal cells and thus our own cells. In this review, we describe the state-of-the-art research on reconstitution of minimal actin-mediated cytokinetic machineries. Based on the conceptual requirements that we obtained from the physics of the shape changes involved in cell division, we propose two major routes for building a minimal actin apparatus capable of division. Importantly, we acknowledge both the passive and active roles that the confining lipid membrane can play in synthetic cytokinesis. We conclude this review by identifying the most pressing challenges for future reconstitution work, thereby laying out a roadmap for building a synthetic cell equipped with a minimal actin division machinery.
Collapse
Affiliation(s)
| | | | - Federico Fanalista
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| | - Gijsje Hendrika Koenderink
- Department of Bionanoscience,
Kavli Institute of Nanoscience Delft, Delft
University of Technology, 2629 HZ Delft, The Netherlands
| |
Collapse
|
4
|
Tam AKY, Mogilner A, Oelz DB. F-actin bending facilitates net actomyosin contraction By inhibiting expansion with plus-end-located myosin motors. J Math Biol 2022; 85:4. [PMID: 35788426 PMCID: PMC9252981 DOI: 10.1007/s00285-022-01737-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 11/30/2022]
Abstract
Contraction of actomyosin networks underpins important cellular processes including motility and division. The mechanical origin of actomyosin contraction is not fully-understood. We investigate whether contraction arises on the scale of individual filaments, without needing to invoke network-scale interactions. We derive discrete force-balance and continuum partial differential equations for two symmetric, semi-flexible actin filaments with an attached myosin motor. Assuming the system exists within a homogeneous background material, our method enables computation of the stress tensor, providing a measure of contractility. After deriving the model, we use a combination of asymptotic analysis and numerical solutions to show how F-actin bending facilitates contraction on the scale of two filaments. Rigid filaments exhibit polarity-reversal symmetry as the motor travels from the minus to plus-ends, such that contractile and expansive components cancel. Filament bending induces a geometric asymmetry that brings the filaments closer to parallel as a myosin motor approaches their plus-ends, decreasing the effective spring force opposing motor motion. The reduced spring force enables the motor to move faster close to filament plus-ends, which reduces expansive stress and gives rise to net contraction. Bending-induced geometric asymmetry provides both new understanding of actomyosin contraction mechanics, and a hypothesis that can be tested in experiments.
Collapse
Affiliation(s)
- Alexander K Y Tam
- UniSA STEM, The University of South Australia, Mawson Lakes Campus, Mawson Lakes, SA 5095, Australia. .,School of Mathematics and Physics, The University of Queensland, St Lucia Campus, St Lucia, 4072, Queensland, Australia.
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences, New York University, New York, 10012-1185, NY, USA
| | - Dietmar B Oelz
- School of Mathematics and Physics, The University of Queensland, St Lucia Campus, St Lucia, 4072, Queensland, Australia
| |
Collapse
|
5
|
Protein friction and filament bending facilitate contraction of disordered actomyosin networks. Biophys J 2021; 120:4029-4040. [PMID: 34390686 DOI: 10.1016/j.bpj.2021.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/21/2021] [Accepted: 08/06/2021] [Indexed: 12/23/2022] Open
Abstract
We use mathematical modeling and computation to investigate how protein friction facilitates contraction of disordered actomyosin networks. We simulate two-dimensional networks using an agent-based model, consisting of a system of force-balance equations for myosin motor proteins and semiflexible actin filaments. A major advantage of our approach is that it enables direct calculation of the network stress tensor, which provides a quantitative measure of contractility. Exploiting this, we use repeated simulations of disordered networks to confirm that both protein friction and actin filament bending are required for contraction. We then use simulations of elementary two-filament systems to show that filament bending flexibility can facilitate contraction on the microscopic scale. Finally, we show that actin filament turnover is necessary to sustain contraction and prevent filament aggregation. Simulations with and without turnover also exhibit contractile pulses. However, these pulses are aperiodic, suggesting that periodic pulsation can only arise because of additional regulatory mechanisms or more complex mechanical behavior.
Collapse
|
6
|
The Actomyosin Cortex of Cells: A Thin Film of Active Matter. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-020-00220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Jung W, Li J, Chaudhuri O, Kim T. Nonlinear Elastic and Inelastic Properties of Cells. J Biomech Eng 2020; 142:100806. [PMID: 32253428 PMCID: PMC7477719 DOI: 10.1115/1.4046863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 03/27/2020] [Indexed: 12/15/2022]
Abstract
Mechanical forces play an important role in various physiological processes, such as morphogenesis, cytokinesis, and migration. Thus, in order to illuminate mechanisms underlying these physiological processes, it is crucial to understand how cells deform and respond to external mechanical stimuli. During recent decades, the mechanical properties of cells have been studied extensively using diverse measurement techniques. A number of experimental studies have shown that cells are far from linear elastic materials. Cells exhibit a wide variety of nonlinear elastic and inelastic properties. Such complicated properties of cells are known to emerge from unique mechanical characteristics of cellular components. In this review, we introduce major cellular components that largely govern cell mechanical properties and provide brief explanations of several experimental techniques used for rheological measurements of cell mechanics. Then, we discuss the representative nonlinear elastic and inelastic properties of cells. Finally, continuum and discrete computational models of cell mechanics, which model both nonlinear elastic and inelastic properties of cells, will be described.
Collapse
Affiliation(s)
- Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, 440 Escondido Mall, Stanford, CA 94305
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, IN 47907
| |
Collapse
|
8
|
Tug-of-war between actomyosin-driven antagonistic forces determines the positioning symmetry in cell-sized confinement. Nat Commun 2020; 11:3063. [PMID: 32541780 PMCID: PMC7295813 DOI: 10.1038/s41467-020-16677-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Symmetric or asymmetric positioning of intracellular structures including the nucleus and mitotic spindle steers various biological processes such as cell migration, division, and embryogenesis. In typical animal cells, both a sparse actomyosin meshwork in the cytoplasm and a dense actomyosin cortex underneath the cell membrane participate in the intracellular positioning. However, it remains unclear how these coexisting actomyosin structures regulate the positioning symmetry. To reveal the potential mechanism, we construct an in vitro model composed of cytoplasmic extracts and nucleus-like clusters confined in droplets. Here we find that periodic centripetal actomyosin waves contract from the droplet boundary push clusters to the center in large droplets, while network percolation of bulk actomyosin pulls clusters to the edge in small droplets. An active gel model quantitatively reproduces molecular perturbation experiments, which reveals that the tug-of-war between two distinct actomyosin networks with different maturation time-scales determines the positioning symmetry.
Collapse
|
9
|
Banerjee S, Gardel ML, Schwarz US. The Actin Cytoskeleton as an Active Adaptive Material. ANNUAL REVIEW OF CONDENSED MATTER PHYSICS 2020; 11:421-439. [PMID: 33343823 PMCID: PMC7748259 DOI: 10.1146/annurev-conmatphys-031218-013231] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Actin is the main protein used by biological cells to adapt their structure and mechanics to their needs. Cellular adaptation is made possible by molecular processes that strongly depend on mechanics. The actin cytoskeleton is also an active material that continuously consumes energy. This allows for dynamical processes that are possible only out of equilibrium and opens up the possibility for multiple layers of control that have evolved around this single protein.Here we discuss the actin cytoskeleton from the viewpoint of physics as an active adaptive material that can build structures superior to man-made soft matter systems. Not only can actin be used to build different network architectures on demand and in an adaptive manner, but it also exhibits the dynamical properties of feedback systems, like excitability, bistability, or oscillations. Therefore, it is a prime example of how biology couples physical structure and information flow and a role model for biology-inspired metamaterials.
Collapse
Affiliation(s)
- Shiladitya Banerjee
- Department of Physics and Astronomy and Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Margaret L Gardel
- Department of Physics, James Franck Institute, and Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
10
|
Das A, Bhat A, Sknepnek R, Köster D, Mayor S, Rao M. Stratification relieves constraints from steric hindrance in the generation of compact actomyosin asters at the membrane cortex. SCIENCE ADVANCES 2020; 6:eaay6093. [PMID: 32195346 PMCID: PMC7065884 DOI: 10.1126/sciadv.aay6093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/16/2019] [Indexed: 06/10/2023]
Abstract
Recent in vivo studies reveal that several membrane proteins are driven to form nanoclusters by active contractile flows arising from localized dynamic patterning of F-actin and myosin at the cortex. Since myosin-II assemble as minifilaments with tens of myosin heads, one might worry that steric considerations would obstruct the emergence of nanoclustering. Using coarse-grained, agent-based simulations that account for steric constraints, we find that the patterns exhibited by actomyosin in two dimensions, do not resemble the steady-state patterns in our in vitro reconstitution of actomyosin on a supported bilayer. We perform simulations in a thin rectangular slab, separating the layer of actin filaments from myosin-II minifilaments. This recapitulates the observed features of in vitro patterning. Using super resolution microscopy, we find evidence for such stratification in our in vitro system. Our study suggests that molecular stratification may be an important organizing feature of the cortical cytoskeleton in vivo.
Collapse
Affiliation(s)
- Amit Das
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - Abrar Bhat
- National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - Rastko Sknepnek
- School of Science and Engineering and School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Darius Köster
- National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - Satyajit Mayor
- National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| | - Madan Rao
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore 560065, India
| |
Collapse
|
11
|
Jung W, Tabatabai AP, Thomas JJ, Tabei SMA, Murrell MP, Kim T. Dynamic motions of molecular motors in the actin cytoskeleton. Cytoskeleton (Hoboken) 2019; 76:517-531. [PMID: 31758841 DOI: 10.1002/cm.21582] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/14/2019] [Accepted: 11/19/2019] [Indexed: 12/23/2022]
Abstract
During intracellular transport, cellular cargos, such as organelles, vesicles, and proteins, are transported within cells. Intracellular transport plays an important role in diverse cellular functions. Molecular motors walking on the cytoskeleton facilitate active intracellular transport, which is more efficient than diffusion-based passive transport. Active transport driven by kinesin and dynein walking on microtubules has been studied well during recent decades. However, mechanisms of active transport occurring in disorganized actin networks via myosin motors remain elusive. To provide physiologically relevant insights, we probed motions of myosin motors in actin networks under various conditions using our well-established computational model that rigorously accounts for the mechanical and dynamical behaviors of the actin cytoskeleton. We demonstrated that myosin motions can be confined due to three different reasons in the absence of F-actin turnover. We verified mechanisms of motor stalling using in vitro reconstituted actomyosin networks. We also found that with F-actin turnover, motors consistently move for a long time without significant confinement. Our study sheds light on the importance of F-actin turnover for effective active transport in the actin cytoskeleton.
Collapse
Affiliation(s)
- Wonyeong Jung
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| | - A Pasha Tabatabai
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut.,Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut
| | - Jacob J Thomas
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| | - S M Ali Tabei
- Department of Physics, University of Northern Iowa, 215 Begeman Hall, Cedar Falls, Iowa
| | - Michael P Murrell
- Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut.,Department of Biomedical Engineering, Yale University, 55 Prospect Street, New Haven, Connecticut.,Department of Physics, Yale University. 217 Prospect Street, New Haven, Connecticut
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, 206 S. Martin Jischke Drive, West Lafayette, Indiana
| |
Collapse
|
12
|
Bächer C, Gekle S. Computational modeling of active deformable membranes embedded in three-dimensional flows. Phys Rev E 2019; 99:062418. [PMID: 31330647 DOI: 10.1103/physreve.99.062418] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 06/10/2023]
Abstract
Active gel theory has recently been very successful in describing biologically active materials such as actin filaments or moving bacteria in temporally fixed and simple geometries such as cubes or spheres. Here we develop a computational algorithm to compute the dynamic evolution of an arbitrarily shaped, deformable thin membrane of active material embedded in a three-dimensional flowing liquid. For this, our algorithm combines active gel theory with the classical theory of thin elastic shells. To compute the actual forces resulting from active stresses, we apply a parabolic fitting procedure to the triangulated membrane surface. Active forces are then dynamically coupled via an immersed-boundary method to the surrounding fluid whose dynamics can be solved by any standard, e.g., Lattice-Boltzmann, flow solver. We validate our algorithm using the Green's functions of Berthoumieux et al. [New J. Phys. 16, 065005 (2014)10.1088/1367-2630/16/6/065005] for an active cylindrical membrane subjected (i) to a locally increased active stress and (ii) to a homogeneous active stress. For the latter scenario, we predict in addition a nonaxisymmetric instability. We highlight the versatility of our method by analyzing the flow field inside an actively deforming cell embedded in external shear flow. Further applications may be cytoplasmic streaming or active membranes in blood flows.
Collapse
Affiliation(s)
- Christian Bächer
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| | - Stephan Gekle
- Biofluid Simulation and Modeling, Theoretische Physik VI, Universität Bayreuth, Universitätsstrasse 30, Bayreuth, Germany
| |
Collapse
|
13
|
Malik-Garbi M, Ierushalmi N, Jansen S, Abu-Shah E, Goode BL, Mogilner A, Keren K. Scaling behaviour in steady-state contracting actomyosin networks. NATURE PHYSICS 2019; 15:509-516. [PMID: 31754369 PMCID: PMC6871652 DOI: 10.1038/s41567-018-0413-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 12/20/2018] [Indexed: 05/25/2023]
Abstract
Contractile actomyosin network flows are crucial for many cellular processes including cell division and motility, morphogenesis and transport. How local remodeling of actin architecture tunes stress production and dissipation and regulates large-scale network flows remains poorly understood. Here, we generate contracting actomyosin networks with rapid turnover in vitro, by encapsulating cytoplasmic Xenopus egg extracts into cell-sized 'water-in-oil' droplets. Within minutes, the networks reach a dynamic steady-state with continuous inward flow. The networks exhibit homogeneous, density-independent contraction for a wide range of physiological conditions, implying that the myosin-generated stress driving contraction and the effective network viscosity have similar density dependence. We further find that the contraction rate is roughly proportional to the network turnover rate, but this relation breaks down in the presence of excessive crosslinking or branching. Our findings suggest that cells use diverse biochemical mechanisms to generate robust, yet tunable, actin flows by regulating two parameters: turnover rate and network geometry.
Collapse
Affiliation(s)
- Maya Malik-Garbi
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Niv Ierushalmi
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Silvia Jansen
- Department of Biology, Brandeis University, Waltham, MA, USA
- Department of Cell Biology and Physiology, Washington University St. Louis, St. Louis, MO, USA
| | - Enas Abu-Shah
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA, USA
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York University, New York, NY 10012, USA
| | - Kinneret Keren
- Department of Physics, Technion- Israel Institute of Technology, Haifa 32000, Israel
- Network Biology Research Laboratories and Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
14
|
Rickman J, Nédélec F, Surrey T. Effects of spatial dimensionality and steric interactions on microtubule-motor self-organization. Phys Biol 2019; 16:046004. [PMID: 31013252 PMCID: PMC7655122 DOI: 10.1088/1478-3975/ab0fb1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Active networks composed of filaments and motor proteins can self-organize into a
variety of architectures. Computer simulations in two or three spatial
dimensions and including or omitting steric interactions between filaments can
be used to model active networks. Here we examine how these modelling choices
affect the state space of network self-organization. We compare the networks
generated by different models of a system of dynamic microtubules and
microtubule-crosslinking motors. We find that a thin 3D model that includes
steric interactions between filaments is the most versatile, capturing a variety
of network states observed in recent experiments. In contrast, 2D models either
with or without steric interactions which prohibit microtubule crossings can
produce some, but not all, observed network states. Our results provide
guidelines for the most appropriate choice of model for the study of different
network types and elucidate mechanisms of active network organization.
Collapse
Affiliation(s)
- Jamie Rickman
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, United Kingdom. Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, University College London, London WC1 6BT, United Kingdom
| | | | | |
Collapse
|
15
|
Ravichandran A, Duman Ö, Hoore M, Saggiorato G, Vliegenthart GA, Auth T, Gompper G. Chronology of motor-mediated microtubule streaming. eLife 2019; 8:e39694. [PMID: 30601119 PMCID: PMC6338466 DOI: 10.7554/elife.39694] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022] Open
Abstract
We introduce a filament-based simulation model for coarse-grained, effective motor-mediated interaction between microtubule pairs to study the time-scales that compose cytoplasmic streaming. We characterise microtubule dynamics in two-dimensional systems by chronologically arranging five distinct processes of varying duration that make up streaming, from microtubule pairs to collective dynamics. The structures found were polarity sorted due to the propulsion of antialigned microtubules. This also gave rise to the formation of large polar-aligned domains, and streaming at the domain boundaries. Correlation functions, mean squared displacements, and velocity distributions reveal a cascade of processes ultimately leading to microtubule streaming and advection, spanning multiple microtubule lengths. The characteristic times for the processes extend over three orders of magnitude from fast single-microtubule processes to slow collective processes. Our approach can be used to directly test the importance of molecular components, such as motors and crosslinking proteins between microtubules, on the collective dynamics at cellular scale.
Collapse
Affiliation(s)
- Arvind Ravichandran
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| | - Özer Duman
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| | - Masoud Hoore
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| | - Guglielmo Saggiorato
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| | - Gerard A Vliegenthart
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| | - Thorsten Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced SimulationForschungszentrum JülichJülichGermany
| |
Collapse
|
16
|
Cortes DB, Dawes A, Liu J, Nickaeen M, Strychalski W, Maddox AS. Unite to divide - how models and biological experimentation have come together to reveal mechanisms of cytokinesis. J Cell Sci 2018; 131:131/24/jcs203570. [PMID: 30563924 DOI: 10.1242/jcs.203570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Cytokinesis is the fundamental and ancient cellular process by which one cell physically divides into two. Cytokinesis in animal and fungal cells is achieved by contraction of an actomyosin cytoskeletal ring assembled in the cell cortex, typically at the cell equator. Cytokinesis is essential for the development of fertilized eggs into multicellular organisms and for homeostatic replenishment of cells. Correct execution of cytokinesis is also necessary for genome stability and the evasion of diseases including cancer. Cytokinesis has fascinated scientists for well over a century, but its speed and dynamics make experiments challenging to perform and interpret. The presence of redundant mechanisms is also a challenge to understand cytokinesis, leaving many fundamental questions unresolved. For example, how does a disordered cytoskeletal network transform into a coherent ring? What are the long-distance effects of localized contractility? Here, we provide a general introduction to 'modeling for biologists', and review how agent-based modeling and continuum mechanics modeling have helped to address these questions.
Collapse
Affiliation(s)
- Daniel B Cortes
- Department of Biology, University of North Carolina at Chapel Hill, 407 Fordham Hall, Chapel Hill, NC 27599, USA
| | - Adriana Dawes
- Departments of Mathematics and of Molecular Genetics, The Ohio State University, 100 Math Tower, 231 West 18th Avenue, Columbus, OH 43210, USA
| | - Jian Liu
- National Heart, Lung and Blood Institute, Biochemistry and Biophysics Center, 50 South Drive, NIH, Bethesda, MD 20892, USA
| | - Masoud Nickaeen
- Richard D. Berlin Center for Cell Analysis and Modeling, University of Connecticut Health Center, Department of Cell Biology, 263 Farmington Avenue, Farmington, CT 06030-6406, USA
| | - Wanda Strychalski
- Department of Mathematics, Applied Mathematics, and Statistics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Amy Shaub Maddox
- Department of Biology, University of North Carolina at Chapel Hill, 407 Fordham Hall, Chapel Hill, NC 27599, USA
| |
Collapse
|
17
|
Yu Q, Li J, Murrell MP, Kim T. Balance between Force Generation and Relaxation Leads to Pulsed Contraction of Actomyosin Networks. Biophys J 2018; 115:2003-2013. [PMID: 30389091 PMCID: PMC6303541 DOI: 10.1016/j.bpj.2018.10.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/23/2018] [Accepted: 10/05/2018] [Indexed: 01/07/2023] Open
Abstract
Actomyosin contractility regulates various biological processes, including cell migration and cytokinesis. The cell cortex underlying the membrane of eukaryote cells exhibits dynamic contractile behaviors facilitated by actomyosin contractility. Interestingly, the cell cortex shows reversible aggregation of actin and myosin called "pulsed contraction" in diverse cellular phenomena, such as embryogenesis and tissue morphogenesis. Although contractile behaviors of actomyosin machinery have been studied extensively in several in vitro experiments and computational studies, none of them successfully reproduced the pulsed contraction observed in vivo. Recent experiments have suggested the pulsed contraction is dependent upon the spatiotemporal expression of a small GTPase protein called RhoA. This only indicates the significance of biochemical signaling pathways during the pulsed contraction. In this study, we reproduced the pulsed contraction with only the mechanical and dynamic behaviors of cytoskeletal elements. First, we observed that small pulsed clusters or clusters with fluctuating sizes may appear when there is subtle balance between force generation from motors and force relaxation induced by actin turnover. However, the size and duration of these clusters differ from those of clusters observed during the cellular phenomena. We found that clusters with physiologically relevant size and duration can appear only with both actin turnover and angle-dependent F-actin severing resulting from buckling induced by motor activities. We showed how parameters governing F-actin severing events regulate the size and duration of pulsed clusters. Our study sheds light on the underestimated significance of F-actin severing for the pulsed contraction observed in physiological processes.
Collapse
Affiliation(s)
- Qilin Yu
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Jing Li
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana
| | - Michael P Murrell
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut; Systems Biology Institute, Yale University, West Haven, Connecticut
| | - Taeyoon Kim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana.
| |
Collapse
|
18
|
Freedman SL, Hocky GM, Banerjee S, Dinner AR. Nonequilibrium phase diagrams for actomyosin networks. SOFT MATTER 2018; 14:7740-7747. [PMID: 30204203 PMCID: PMC6192427 DOI: 10.1039/c8sm00741a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Living cells dynamically modulate the local morphologies of their actin networks to perform biological functions, including force transduction, intracellular transport, and cell division. A major challenge is to understand how diverse structures of the actin cytoskeleton are assembled from a limited set of molecular building blocks. Here we study the spontaneous self-assembly of a minimal model of cytoskeletal materials, consisting of semiflexible actin filaments, crosslinkers, and molecular motors. Using coarse-grained simulations, we demonstrate that by changing concentrations and kinetics of crosslinkers and motors, as well as filament lengths, we can generate three distinct structural phases of actomyosin assemblies: bundled, polarity-sorted, and contracted. We introduce new metrics to distinguish these structural phases and demonstrate their functional roles. We find that the binding kinetics of motors and crosslinkers can be tuned to optimize contractile force generation, motor transport, and mechanical response. By quantitatively characterizing the relationships between the modes of cytoskeletal self-assembly, the resulting structures, and their functional consequences, our work suggests new principles for the design of active materials.
Collapse
Affiliation(s)
- Simon L. Freedman
- Department of Physics, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Glen M. Hocky
- James Franck Institute & Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA, Chicago, IL, USA;
| | - Shiladitya Banerjee
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E-6BT
| | - Aaron R. Dinner
- James Franck Institute & Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA, Chicago, IL, USA;
| |
Collapse
|
19
|
Kemp JP, Brieher WM. The actin filament bundling protein α-actinin-4 actually suppresses actin stress fibers by permitting actin turnover. J Biol Chem 2018; 293:14520-14533. [PMID: 30049798 DOI: 10.1074/jbc.ra118.004345] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/21/2018] [Indexed: 01/07/2023] Open
Abstract
Cells organize actin filaments into contractile bundles known as stress fibers that resist mechanical stress, increase cell adhesion, remodel the extracellular matrix, and maintain tissue integrity. α-actinin is an actin filament bundling protein that is thought to be essential for stress fiber formation and stability. However, previous studies have also suggested that α-actinin might disrupt fibers, making the true function of this biomolecule unclear. Here we use fluorescence imaging to show that kidney epithelial cells depleted of α-actinin-4 via shRNA or CRISPR/Cas9, or expressing a disruptive mutant make more massive stress fibers that are less dynamic than those in WT cells, leading to defects in cell motility and wound healing. The increase in stress fiber mass and stability can be explained, in part, by increased loading of the filament component tropomyosin onto stress fibers in the absence of α-actinin, as monitored via immunofluorescence. We show using imaging and cosedimentation that α-actinin and tropomyosin compete for binding to F-actin and that tropomyosin shields actin filaments from cofilin-mediated disassembly in vitro and in cells. Perturbing tropomyosin in cells lacking α-actinin-4 results in a complete loss of stress fibers. Our results with α-actinin-4 on stress fiber organization are the opposite of what might have been predicted from previous in vitro biochemistry and further highlight how the complex interactions of multiple proteins competing for filament binding lead to unexpected functions for actin-binding proteins in cells.
Collapse
Affiliation(s)
| | - William M Brieher
- From the Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
20
|
Abstract
Precisely controlled cell deformations are key to cell migration, division and tissue morphogenesis, and have been implicated in cell differentiation during development, as well as cancer progression. In animal cells, shape changes are primarily driven by the cellular cortex, a thin actomyosin network that lies directly underneath the plasma membrane. Myosin-generated forces create tension in the cortical network, and gradients in tension lead to cellular deformations. Recent studies have provided important insight into the molecular control of cortical tension by progressively unveiling cortex composition and organization. In this Cell Science at a Glance article and the accompanying poster, we review our current understanding of cortex composition and architecture. We then discuss how the microscopic properties of the cortex control cortical tension. While many open questions remain, it is now clear that cortical tension can be modulated through both cortex composition and organization, providing multiple levels of regulation for this key cellular property during cell and tissue morphogenesis. Summary: A summary of the composition, architecture, mechanics and function of the cellular actin cortex, which determines the shape of animal cells, and, thus, provides the foundation for cell and tissue morphogenesis.
Collapse
Affiliation(s)
- Priyamvada Chugh
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
| | - Ewa K Paluch
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK .,Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.,Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK
| |
Collapse
|
21
|
Architecture shapes contractility in actomyosin networks. Curr Opin Cell Biol 2018; 50:79-85. [PMID: 29482169 DOI: 10.1016/j.ceb.2018.01.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 01/30/2018] [Indexed: 01/03/2023]
Abstract
Myosin-driven contraction of the actin cytoskeleton is at the base of cell and tissue morphogenesis. At the molecular level, myosin motors drive contraction by sliding actin filaments past one another using energy produced by ATP hydrolysis. How this microscopic sliding activity gives rise to cell-scale contractions has been an active research question first in muscle cells, and over the last few decades in non-muscle cells. While many early investigations focused on myosin motor activity, increasingly, the nanoscale architecture of the actin network emerges as a key regulator of contractility. Here we review theoretical and in vitro reconstitution studies that have uncovered some of the key mechanisms by which actin network organization controls contractile tension generation. We then discuss recent findings indicating that similar principles apply in cells.
Collapse
|
22
|
Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex. PLoS Comput Biol 2017. [DOI: 10.1371/journal.pcbi.1005811 doi:10.1371/journal.pcbi.1005811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
23
|
McFadden WM, McCall PM, Gardel ML, Munro EM. Filament turnover tunes both force generation and dissipation to control long-range flows in a model actomyosin cortex. PLoS Comput Biol 2017; 13:e1005811. [PMID: 29253848 PMCID: PMC5757993 DOI: 10.1371/journal.pcbi.1005811] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 01/08/2018] [Accepted: 10/09/2017] [Indexed: 11/23/2022] Open
Abstract
Actomyosin-based cortical flow is a fundamental engine for cellular morphogenesis. Cortical flows are generated by cross-linked networks of actin filaments and myosin motors, in which active stress produced by motor activity is opposed by passive resistance to network deformation. Continuous flow requires local remodeling through crosslink unbinding and and/or filament disassembly. But how local remodeling tunes stress production and dissipation, and how this in turn shapes long range flow, remains poorly understood. Here, we study a computational model for a cross-linked network with active motors based on minimal requirements for production and dissipation of contractile stress: Asymmetric filament compliance, spatial heterogeneity of motor activity, reversible cross-links and filament turnover. We characterize how the production and dissipation of network stress depend, individually, on cross-link dynamics and filament turnover, and how these dependencies combine to determine overall rates of cortical flow. Our analysis predicts that filament turnover is required to maintain active stress against external resistance and steady state flow in response to external stress. Steady state stress increases with filament lifetime up to a characteristic time τm, then decreases with lifetime above τm. Effective viscosity increases with filament lifetime up to a characteristic time τc, and then becomes independent of filament lifetime and sharply dependent on crosslink dynamics. These individual dependencies of active stress and effective viscosity define multiple regimes of steady state flow. In particular our model predicts that when filament lifetimes are shorter than both τc and τm, the dependencies of effective viscosity and steady state stress on filament turnover cancel one another, such that flow speed is insensitive to filament turnover, and shows a simple dependence on motor activity and crosslink dynamics. These results provide a framework for understanding how animal cells tune cortical flow through local control of network remodeling.
Collapse
Affiliation(s)
- William M. McFadden
- Biophysical Sciences Program, University of Chicago, Chicago, Illinois, United States of America
| | - Patrick M. McCall
- Department of Physics, University of Chicago, Chicago, Illinois, United States of America
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
| | - Margaret L. Gardel
- Department of Physics, University of Chicago, Chicago, Illinois, United States of America
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
- James Franck Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Edwin M. Munro
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois, United States of America
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
24
|
Ravichandran A, Vliegenthart GA, Saggiorato G, Auth T, Gompper G. Enhanced Dynamics of Confined Cytoskeletal Filaments Driven by Asymmetric Motors. Biophys J 2017; 113:1121-1132. [PMID: 28877494 DOI: 10.1016/j.bpj.2017.07.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/10/2017] [Accepted: 07/27/2017] [Indexed: 12/27/2022] Open
Abstract
Cytoskeletal filaments and molecular motors facilitate the micron-scale force generation necessary for the distribution of organelles and the restructuring of the cytoskeleton within eukaryotic cells. Although the mesoscopic structure and the dynamics of such filaments have been studied in vitro and in vivo, their connection with filament polarity-dependent motor-mediated force generation is not well understood. Using 2D Brownian dynamics simulations, we study a dense, confined mixture of rigid microtubules (MTs) and active springs that have arms that cross-link neighboring MT pairs and move unidirectionally on the attached MT. We simulate depletion interactions between MTs using an attractive potential. We show that dimeric motors, with a motile arm on only one of the two MTs, produce large polarity-sorted MT clusters, whereas tetrameric motors, with motile arms on both microtubules, produce bundles. Furthermore, dimeric motors induce, on average, higher velocities between antialigned MTs than tetrameric motors. Our results, where MTs move faster near the confining wall, are consistent with experimental observations in Drosophila oocytes where enhanced microtubule activity is found close to the confining plasma membrane.
Collapse
Affiliation(s)
- Arvind Ravichandran
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Gerrit A Vliegenthart
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| | - Guglielmo Saggiorato
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany; LPTMS, CNRS, University Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Thorsten Auth
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany.
| | - Gerhard Gompper
- Theoretical Soft Matter and Biophysics, Institute of Complex Systems and Institute for Advanced Simulation, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
25
|
Belmonte JM, Leptin M, Nédélec F. A theory that predicts behaviors of disordered cytoskeletal networks. Mol Syst Biol 2017; 13:941. [PMID: 28954810 PMCID: PMC5615920 DOI: 10.15252/msb.20177796] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022] Open
Abstract
Morphogenesis in animal tissues is largely driven by actomyosin networks, through tensions generated by an active contractile process. Although the network components and their properties are known, and networks can be reconstituted in vitro, the requirements for contractility are still poorly understood. Here, we describe a theory that predicts whether an isotropic network will contract, expand, or conserve its dimensions. This analytical theory correctly predicts the behavior of simulated networks, consisting of filaments with varying combinations of connectors, and reveals conditions under which networks of rigid filaments are either contractile or expansile. Our results suggest that pulsatility is an intrinsic behavior of contractile networks if the filaments are not stable but turn over. The theory offers a unifying framework to think about mechanisms of contractions or expansion. It provides the foundation for studying a broad range of processes involving cytoskeletal networks and a basis for designing synthetic networks.
Collapse
Affiliation(s)
- Julio M Belmonte
- Directors's Research/Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Maria Leptin
- Directors's Research/Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - François Nédélec
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
26
|
Alvarado J, Sheinman M, Sharma A, MacKintosh FC, Koenderink GH. Force percolation of contractile active gels. SOFT MATTER 2017; 13:5624-5644. [PMID: 28812094 DOI: 10.1039/c7sm00834a] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Living systems provide a paradigmatic example of active soft matter. Cells and tissues comprise viscoelastic materials that exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, an active gel of semiflexible filaments, crosslinks, and molecular motors inside cells. Although individual motors are only a few nm in size and exert minute forces of a few pN, cells spatially integrate the activity of an ensemble of motors to produce larger contractile forces (∼nN and greater) on cellular, tissue, and organismal length scales. Here we review experimental and theoretical studies on contractile active gels composed of actin filaments and myosin motors. Unlike other active soft matter systems, which tend to form ordered patterns, actin-myosin systems exhibit a generic tendency to contract. Experimental studies of reconstituted actin-myosin model systems have long suggested that a mechanical interplay between motor activity and the network's connectivity governs this contractile behavior. Recent theoretical models indicate that this interplay can be understood in terms of percolation models, extended to include effects of motor activity on the network connectivity. Based on concepts from percolation theory, we propose a state diagram that unites a large body of experimental observations. This framework provides valuable insights into the mechanisms that drive cellular shape changes and also provides design principles for synthetic active materials.
Collapse
Affiliation(s)
- José Alvarado
- Systems Biophysics Department, AMOLF, 1098 XG Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Torisawa T, Taniguchi D, Ishihara S, Oiwa K. Spontaneous Formation of a Globally Connected Contractile Network in a Microtubule-Motor System. Biophys J 2017; 111:373-385. [PMID: 27463139 PMCID: PMC4968425 DOI: 10.1016/j.bpj.2016.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 04/19/2016] [Accepted: 06/08/2016] [Indexed: 11/01/2022] Open
Abstract
Microtubule (MT) networks play key roles in cell division, intracellular transport, and cell motility. These functions of MT networks occur through interactions between MTs and various associated proteins, notably motor proteins that bundle and slide MTs. Our objective in this study was to address the question of how motors determine the nature of MT networks. We conducted in vitro assays using homotetrameric kinesin Eg5, a motor protein involved in the formation and maintenance of the mitotic spindle. The mixing of Eg5 and MTs produced a range of spatiotemporal dynamics depending on the motor/filament ratio. Low motor/filament ratios produced globally connected static MT networks with sparsely distributed contractile active nodes (motor-accumulating points with radially extending MTs). Increasing the motor/filament ratio facilitated the linking of contractile active nodes and led to a global contraction of the network. When the motor/filament ratio was further increased, densely distributed active nodes formed local clusters and segmented the network into pieces with their strong contractile forces. Altering the properties of the motor through the use of chimeric Eg5, which has kinesin-1 heads, resulted in the generation of many isolated asters. These results suggest that the spatial distribution of contractile active nodes determines the dynamics of MT-motor networks. We then developed a coarse-grained model of MT-motor networks and identified two essential features for reproducing the experimentally observed patterns: an accumulation of motors that form the active nodes necessary to generate contractile forces, and a nonlinear dependency of contractile force on motor densities. Our model also enabled us to characterize the mechanical properties of the contractile network. Our study provides insight into how local motor-MT interactions generate the spatiotemporal dynamics of macroscopic network structures.
Collapse
Affiliation(s)
- Takayuki Torisawa
- National Institute of Information and Communications Technology, Advanced ICT Research Institute, Kobe, Hyogo, Japan
| | | | - Shuji Ishihara
- Department of Physics, Meiji University, Kawasaki, Kanagawa, Japan
| | - Kazuhiro Oiwa
- National Institute of Information and Communications Technology, Advanced ICT Research Institute, Kobe, Hyogo, Japan.
| |
Collapse
|
28
|
Chugh P, Clark AG, Smith MB, Cassani DAD, Dierkes K, Ragab A, Roux PP, Charras G, Salbreux G, Paluch EK. Actin cortex architecture regulates cell surface tension. Nat Cell Biol 2017; 19:689-697. [PMID: 28530659 PMCID: PMC5536221 DOI: 10.1038/ncb3525] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 04/04/2017] [Indexed: 12/16/2022]
Abstract
Animal cell shape is largely determined by the cortex, a thin actin network underlying the plasma membrane in which myosin-driven stresses generate contractile tension. Tension gradients result in local contractions and drive cell deformations. Previous cortical tension regulation studies have focused on myosin motors. Here, we show that cortical actin network architecture is equally important. First, we observe that actin cortex thickness and tension are inversely correlated during cell-cycle progression. We then show that the actin filament length regulators CFL1, CAPZB and DIAPH1 regulate mitotic cortex thickness and find that both increasing and decreasing thickness decreases tension in mitosis. This suggests that the mitotic cortex is poised close to a tension maximum. Finally, using a computational model, we identify a physical mechanism by which maximum tension is achieved at intermediate actin filament lengths. Our results indicate that actin network architecture, alongside myosin activity, is key to cell surface tension regulation.
Collapse
Affiliation(s)
- Priyamvada Chugh
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Andrew G. Clark
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Matthew B. Smith
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Davide A. D. Cassani
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Kai Dierkes
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Anan Ragab
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| | - Philippe P. Roux
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, London WC1H 0AH, United Kingdom
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom
| | | | - Ewa K. Paluch
- MRC Laboratory for Molecular Cell Biology, University College
London, London WC1E 6BT, United Kingdom
| |
Collapse
|
29
|
Khalilgharibi N, Fouchard J, Recho P, Charras G, Kabla A. The dynamic mechanical properties of cellularised aggregates. Curr Opin Cell Biol 2016; 42:113-120. [PMID: 27371889 DOI: 10.1016/j.ceb.2016.06.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 06/14/2016] [Accepted: 06/16/2016] [Indexed: 01/13/2023]
Abstract
Cellularised materials are composed of cells interfaced through specialised intercellular junctions that link the cytoskeleton of one cell to that of its neighbours allowing for transmission of forces. Cellularised materials are common in early development and adult tissues where they can be found in the form of cell sheets, cysts, or amorphous aggregates and in pathophysiological conditions such as cancerous tumours. Given the growing realisation that forces can regulate cell physiology and developmental processes, understanding how cellularised materials deform under mechanical stress or dissipate stress appear as key biological questions. In this review, we will discuss the dynamic mechanical properties of cellularised materials devoid of extracellular matrix.
Collapse
Affiliation(s)
- Nargess Khalilgharibi
- London Centre for Nanotechnology, University College London, UK; CoMPLEX PhD Program, University College London, UK
| | | | - Pierre Recho
- Department of Mechanical Engineering, Cambridge University, UK
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, UK; Department of Cell and Developmental Biology, University College London, UK; Institute for the Physics of Living Systems, University College London, UK.
| | - Alexandre Kabla
- Department of Mechanical Engineering, Cambridge University, UK.
| |
Collapse
|