1
|
Li W, Sigmund O, Zhang XS. Analytical realization of complex thermal meta-devices. Nat Commun 2024; 15:5527. [PMID: 39009559 PMCID: PMC11250795 DOI: 10.1038/s41467-024-49630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024] Open
Abstract
Fourier's law dictates that heat flows from warm to cold. Nevertheless, devices can be tailored to cloak obstacles or even reverse the heat flow. Mathematical transformation yields closed-form equations for graded, highly anisotropic thermal metamaterial distributions needed for obtaining such functionalities. For simple geometries, devices can be realized by regular conductor distributions; however, for complex geometries, physical realizations have so far been challenging, and sub-optimal solutions have been obtained by expensive numerical approaches. Here we suggest a straightforward and highly efficient analytical de-homogenization approach that uses optimal multi-rank laminates to provide closed-form solutions for any imaginable thermal manipulation device. We create thermal cloaks, rotators, and concentrators in complex domains with close-to-optimal performance and esthetic elegance. The devices are fabricated using metal 3D printing, and their omnidirectional thermal functionalities are investigated numerically and validated experimentally. The analytical approach enables next-generation free-form thermal meta-devices with efficient synthesis, near-optimal performance, and concise patterns.
Collapse
Affiliation(s)
- Weichen Li
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 205 North Mathews Ave, Urbana, IL, 61801, USA
| | - Ole Sigmund
- Department of Civil and Mechanical Engineering, Technical University of Denmark, Koppels Allé, Building 404, Kongens Lyngby, 2800, Denmark
| | - Xiaojia Shelly Zhang
- Department of Civil and Environmental Engineering, University of Illinois Urbana-Champaign, 205 North Mathews Ave, Urbana, IL, 61801, USA.
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, 1206 W. Green St, Urbana, IL, 61801, USA.
- National Center for Supercomputing Applications, Urbana, USA.
| |
Collapse
|
2
|
Zhu C, Bamidele EA, Shen X, Zhu G, Li B. Machine Learning Aided Design and Optimization of Thermal Metamaterials. Chem Rev 2024; 124:4258-4331. [PMID: 38546632 PMCID: PMC11009967 DOI: 10.1021/acs.chemrev.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 04/11/2024]
Abstract
Artificial Intelligence (AI) has advanced material research that were previously intractable, for example, the machine learning (ML) has been able to predict some unprecedented thermal properties. In this review, we first elucidate the methodologies underpinning discriminative and generative models, as well as the paradigm of optimization approaches. Then, we present a series of case studies showcasing the application of machine learning in thermal metamaterial design. Finally, we give a brief discussion on the challenges and opportunities in this fast developing field. In particular, this review provides: (1) Optimization of thermal metamaterials using optimization algorithms to achieve specific target properties. (2) Integration of discriminative models with optimization algorithms to enhance computational efficiency. (3) Generative models for the structural design and optimization of thermal metamaterials.
Collapse
Affiliation(s)
- Changliang Zhu
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, P.R. China
| | - Emmanuel Anuoluwa Bamidele
- Materials
Science and Engineering Program, University
of Colorado, Boulder, Colorado 80309, United States
| | - Xiangying Shen
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, P.R. China
| | - Guimei Zhu
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen 518055, P.R. China
| | - Baowen Li
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, P.R. China
- School
of Microelectronics, Southern University
of Science and Technology, Shenzhen 518055, P.R. China
- Department
of Physics, Southern University of Science
and Technology, Shenzhen 518055, P.R. China
- Shenzhen
International Quantum Academy, Shenzhen 518048, P.R. China
- Paul M. Rady
Department of Mechanical Engineering and Department of Physics, University of Colorado, Boulder 80309, United States
| |
Collapse
|
3
|
Jin P, Xu L, Xu G, Li J, Qiu CW, Huang J. Deep Learning-Assisted Active Metamaterials with Heat-Enhanced Thermal Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305791. [PMID: 37869962 DOI: 10.1002/adma.202305791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Indexed: 10/24/2023]
Abstract
Heat management is crucial for state-of-the-art applications such as passive radiative cooling, thermally adjustable wearables, and camouflage systems. Their adaptive versions, to cater to varied requirements, lean on the potential of adaptive metamaterials. Existing efforts, however, feature with highly anisotropic parameters, narrow working-temperature ranges, and the need for manual intervention, which remain long-term and tricky obstacles for the most advanced self-adaptive metamaterials. To surmount these barriers, heat-enhanced thermal diffusion metamaterials powered by deep learning is introduced. Such active metamaterials can automatically sense ambient temperatures and swiftly, as well as continuously, adjust their thermal functions with a high degree of tunability. They maintain robust thermal performance even when external thermal fields change direction, and both simulations and experiments demonstrate exceptional results. Furthermore, two metadevices with on-demand adaptability, performing distinctive features with isotropic materials, wide working temperatures, and spontaneous response are designed. This work offers a framework for the design of intelligent thermal diffusion metamaterials and can be expanded to other diffusion fields, adapting to increasingly complex and dynamic environments.
Collapse
Affiliation(s)
- Peng Jin
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, 200438, China
| | - Liujun Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Graduate School of China Academy of Engineering Physics, Beijing, 100193, China
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Jiaxin Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, 200438, China
| |
Collapse
|
4
|
Zhou X, Xu X, Huang J. Adaptive multi-temperature control for transport and storage containers enabled by phase-change materials. Nat Commun 2023; 14:5449. [PMID: 37673906 PMCID: PMC10482904 DOI: 10.1038/s41467-023-40988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/16/2023] [Indexed: 09/08/2023] Open
Abstract
The transportation of essential items, such as food and vaccines, often requires adaptive multi-temperature control to maintain high safety and efficiency. While existing methods utilizing phase change materials have shown promise, challenges related to heat transfer and materials' physicochemical properties remain. In this study, we present an adaptive multi-temperature control system using liquid-solid phase transitions to achieve highly effective thermal management using a pair of heat and cold sources. By leveraging the properties of stearic acid and distilled water, we fabricated a multi-temperature maintenance container and demonstrated temperature variations of only 0.14-2.05% over a two-hour period, underscoring the efficacy of our approach. Our findings offer a practical solution to address critical challenges in reliable transportation of goods, with potential implications for various fields in physical, engineering, and life sciences.
Collapse
Affiliation(s)
- Xinchen Zhou
- Department of Physics, Fudan University, Shanghai, 200438, China
- State Key Laboratory of Surface Physics, Fudan University, Shanghai, 200438, China
- Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, 200438, China
| | - Xiang Xu
- Key Lab of Smart Prevention and Mitigation of Civil Engineering Disasters of the Ministry of Industry and Information Technology, Harbin Institute of Technology, Harbin, 150090, China
- Key Lab of Structures Dynamic Behavior and Control of the Ministry of Education, Harbin Institute of Technology, Harbin, 150090, China
| | - Jiping Huang
- Department of Physics, Fudan University, Shanghai, 200438, China.
- State Key Laboratory of Surface Physics, Fudan University, Shanghai, 200438, China.
- Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai, 200438, China.
| |
Collapse
|
5
|
Xu L, Xu G, Li J, Li Y, Huang J, Qiu CW. Thermal Willis Coupling in Spatiotemporal Diffusive Metamaterials. PHYSICAL REVIEW LETTERS 2022; 129:155901. [PMID: 36269965 DOI: 10.1103/physrevlett.129.155901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Willis coupling generically stems from bianisotropy or chirality in wave systems. Nevertheless, those schemes are naturally unavailable in diffusion systems described by a single constitutive relation governed by the Fourier law. Here, we report spatiotemporal diffusive metamaterials by modulating thermal conductivity and mass density in heat transfer. The Fourier law should be modified after homogenizing spatiotemporal parameters, featuring thermal Willis coupling between heat flux and temperature change rate. Thermal Willis coupling drives asymmetric heat diffusion, and the diffusion direction is reversible at a critical point determined by the degree of spatiotemporal modulation. Moreover, thermal Willis coupling stands robustly even when only thermal conductivity is modulated. These results may have potential applications for directional diffusion and offer insights into asymmetric manipulation of nonequilibrium mass and energy transfer.
Collapse
Affiliation(s)
- Liujun Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Jiaxin Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| | - Ying Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310027, China
- International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices & Smart Systems of Zhejiang, The Electromagnetics Academy of Zhejiang University, Zhejiang University, Haining 314400, China
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
6
|
Zhuang P, Wang J, Yang S, Huang J. Nonlinear thermal responses in geometrically anisotropic metamaterials. Phys Rev E 2022; 106:044203. [PMID: 36397564 DOI: 10.1103/physreve.106.044203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Nonlinear metamaterials have great potential in heat management, which has aroused intensive research interest in both theory and application, especially for their response to surroundings. However, most existing works focus on geometrically isotropic (circular) structures, limiting the potential versatile functionalities. On the other hand, anisotropy in architecture promisingly offers an additional degree of freedom in modulating directional heat transfer. Here, we investigate nonlinear composition effects in geometrically anisotropic (confocal elliptical) thermal medium under the framework of effective medium approximation, and deduce a series of general formulas for quantitatively predicting nonlinearity enhancement. Enhancement coefficients are analytically derived by the Taylor expansion method in different nonlinearity cases. In particular, we find that some coupling conditions can greatly promote the nonlinear modulation coefficients, introducing stronger enhancement beyond isotropic construction. Our theoretical predictions are verified by finite-element simulation, and feasible experimental suggestions are also given. For extending these results to practical scenes, two intelligent thermal metadevices are designed in proof of concept and demonstrated by numerical simulation. Our works provide a unified theory for anisotropic nonlinear thermal metamaterial design and may benefit flexible applications in self-adaptive thermal management, such as switchable cloaks, concentrators, or macroscopic thermal diodes.
Collapse
Affiliation(s)
- Pengfei Zhuang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| | - Jun Wang
- School of Physics, East China University of Science and Technology, Shanghai 200237, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Shuai Yang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
7
|
Heat transfer control using a thermal analogue of coherent perfect absorption. Nat Commun 2022; 13:2683. [PMID: 35562335 PMCID: PMC9106689 DOI: 10.1038/s41467-022-30023-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Recent investigations on non-Hermitian physics have unlocked new possibilities to manipulate wave scattering on lossy materials. Coherent perfect absorption is such an effect that enables all-light control by incorporating a suitable amount of loss. On the other hand, controlling heat transfer with heat may empower a distinct paradigm other than using thermal metamaterials. However, since heat neither propagates nor carries any momentum, almost all concepts in wave scattering are ill-defined for steady-state heat diffusion, making it formidable to understand or utilize any coherent effect. Here, we establish a scattering theory for heat diffusion by introducing an imitated momentum for thermal fields. The thermal analogue of coherent perfect absorption is thus predicted and demonstrated as the perfect absorption of exergy fluxes and undisturbed temperature fields. Unlike its photonic counterpart, thermal coherent perfect absorption can be realized for regular thermal materials, and be generalized for various objects. A thermal analogue of coherent perfect absorption would allow to control heat transfer using heat, but the lack of momentum propagation in a thermal field seems to prevent any role for coherence. Here, the authors allow this by introducing an imitated momentum for steady-state heat diffusion.
Collapse
|
8
|
Guo J, Xu G, Tian D, Qu Z, Qiu CW. Passive Ultra-Conductive Thermal Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200329. [PMID: 35243695 DOI: 10.1002/adma.202200329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/24/2022] [Indexed: 06/14/2023]
Abstract
Ultra-conductive heat transport showcases significant potentials in popular thermal managements with convection, phase change, and heat source. However, it is captivated impossible for passive thermal manipulation, usually bounded by intrinsic thermal conductivities of natural materials, to outperform these active recipes in need of extra energy payload. Here, a robust recipe to create passive ultra-conductive thermal metamaterials consisting of nothing but bulk natural materials is reported. Thanks to the local thermal resistance regulation by vertical thermal transport channel, the proof-of-concept thermal metamaterials experimentally demonstrate extreme effective conductivity (1915 W m-1 K-1 ) solely with naturally occurring materials. The purely conductive modulation without any external energy is comparable to active counterparts, and further reveals its robustness and unexpected convenience. The findings construct a high-efficient paradigm of passive thermal management with ultra-conductive heat transport, and further hint potentials in other Laplace fields, e.g., DC and magnetostatics.
Collapse
Affiliation(s)
- Jun Guo
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Singapore
| | - Guoqiang Xu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Singapore
| | - Di Tian
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhiguo Qu
- MOE Key Laboratory of Thermo-Fluid Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Singapore
| |
Collapse
|
9
|
Reciprocity of thermal diffusion in time-modulated systems. Nat Commun 2022; 13:167. [PMID: 35013296 PMCID: PMC8748696 DOI: 10.1038/s41467-021-27903-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
The reciprocity principle governs the symmetry in transmission of electromagnetic and acoustic waves, as well as the diffusion of heat between two points in space, with important consequences for thermal management and energy harvesting. There has been significant recent interest in materials with time-modulated properties, which have been shown to efficiently break reciprocity for light, sound, and even charge diffusion. However, time modulation may not be a plausible approach to break thermal reciprocity, in contrast to the usual perception. We establish a theoretical framework to accurately describe the behavior of diffusive processes under time modulation, and prove that thermal reciprocity in dynamic materials is generally preserved by the continuity equation, unless some external bias or special material is considered. We then experimentally demonstrate reciprocal heat transfer in a time-modulated device. Our findings correct previous misconceptions regarding reciprocity breaking for thermal diffusion, revealing the generality of symmetry constraints in heat transfer, and clarifying its differences from other transport processes in what concerns the principles of reciprocity and microscopic reversibility.
Collapse
|
10
|
Su Y, Li Y, Yang T, Han T, Sun Y, Xiong J, Wu L, Qiu CW. Path-Dependent Thermal Metadevice beyond Janus Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2003084. [PMID: 33306245 DOI: 10.1002/adma.202003084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Janus metamaterials, metasurfaces, and monolayers have received intensive attention in nanophotonics and 2D materials. Their core concept is to introduce asymmetry along the wave propagation direction, by stacking different materials or layers of meta-atoms, or breaking out-of-plane mirror asymmetry with external biases. Nevertheless, it has been hitherto elusive to realize a diffusive Janus metadevice, since scalar diffusion systems such as heat conduction normally operate in the absence of polarization control, spin manipulation, or electric-field stimuli, which all are widely used in achieving optical Janus devices. It is even more challenging, if not impossible, for a single diffusive metadevice to exhibit more than two thermal functions. Here a path-dependent thermal metadevice beyond Janus characteristics is proposed, which can exhibit three distinct thermal behaviors (cloaking, concentrating, and transparency) under different directions of heat flow. The rotation transformation mechanism of thermal conductivity provides a robust platform to assign a specific thermal behavior in any direction. The proof-of-concept experiment of anisotropic in-plane conduction successfully validates such a path-dependent trifunction thermal metamaterial device. It is anticipated that this path-dependent strategy can provide a new dimension for multifunctional metamaterial devices in the thermal field, as well as for a more general diffusion process.
Collapse
Affiliation(s)
- Yishu Su
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - Ying Li
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Zhejiang University, Hangzhou, 310027, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Tianzhi Yang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Tiancheng Han
- National Engineering Research Center of Electromagnetic Radiation Control Materials, State Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yuguo Sun
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - Jian Xiong
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - Linzhi Wu
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150001, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
11
|
Abstract
Thermal metamaterials have amazing properties in heat transfer beyond naturally occurring materials owing to their well-designed artificial structures. The idea of thermal metamaterial has completely subverted the design of thermal functional devices and makes it possible to manipulate heat flow at will. In this perspective, we review the up-to-date progress of thermal metamaterials starting from 2008. We focus on both the key theoretical fundamentals and techniques for applications and give a perspective of scale-based classification on thermal metamaterials' theories and applications. We also discuss the junction between macroscale and microscale design methods and propose some prospects for the future trend of this field.
Collapse
Affiliation(s)
- Jun Wang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| | - Gaole Dai
- School of Sciences, Nantong University, Nantong 226019, China
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200438, China
| |
Collapse
|
12
|
Kobayashi W. Thermal-rectification coefficients in solid-state thermal rectifiers. Phys Rev E 2020; 102:032142. [PMID: 33075935 DOI: 10.1103/physreve.102.032142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/10/2020] [Indexed: 11/07/2022]
Abstract
The thermal rectifier is an analog of the electrical rectifier, in which heat flux in a forward direction is larger than that in the reverse direction. Owing to the controllability of the heat flux, the solid-state thermal rectifier is promising from both theoretical and applicational points of view. In this paper, we examine analytical expressions of thermal-rectification coefficients R for thermal rectifiers with typical linear and nonlinear model functions as nonuniform thermal conductivities against temperature T. For the thermal rectifier with linear (quadratic) temperature-dependent thermal conductivity, a maximum value of R is calculated to be 3 (≃14). With use of a structural-phase-transition material, a maximum value of R is found to ideally reach to κ_{2}/κ_{1}, where κ_{1} (κ_{2}) is the minimum (maximum) value of its κ(T). Values of R for the thermal rectifiers with an inverse T-dependent function and an exponential function of κ are also analytically examined.
Collapse
Affiliation(s)
- Wataru Kobayashi
- Division of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8571, Japan and Tsukuba Research Center for Energy Materials Science, University of Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
13
|
Li J, Li Y, Cao PC, Yang T, Zhu XF, Wang W, Qiu CW. A Continuously Tunable Solid-Like Convective Thermal Metadevice on the Reciprocal Line. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2003823. [PMID: 32902007 DOI: 10.1002/adma.202003823] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
The emerging thermal metamaterials and metadevices demonstrate significant potential to transform thermal conduction. However, the thermal conductivities of existing devices are all restricted at fixed values if the configuration or constituent materials are static. Thermal convection provides an additional tool to boost and flexibly modify the heat transfer in moving matter, but it is essentially distinct from thermal conduction since the Onsager reciprocity is generally broken in the former but preserved in the latter. Therefore, it is difficult to use convective components for sophisticated control of conductive heat. Here, it is shown that a convective system can be made undistinguishable from a conductive one in principle, by discovering and operating on the reciprocal line of mechanically rotating systems. The realized thermal metadevice can thus mimic a solid-like material whose thermal conductivity dynamically covers a wide range. It offers great possibilities of real-time smooth control over heat transfer for broad applications.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Ying Li
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Science and Technology Innovation Center, Key Lab. of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Zhejiang University, Hangzhou, 310027, China
| | - Pei-Chao Cao
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Tianzhi Yang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China
| | - Xue-Feng Zhu
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wuyi Wang
- School of Mechatronics Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| |
Collapse
|
14
|
Wang J, Dai G, Yang F, Huang J. Designing bistability or multistability in macroscopic diffusive systems. Phys Rev E 2020; 101:022119. [PMID: 32168594 DOI: 10.1103/physreve.101.022119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 01/30/2020] [Indexed: 06/10/2023]
Abstract
We theoretically design a kind of diffusion bistability (and even multistability) in the macroscopic scale, which has a similar phenomenon but different underlying mechanism from its microscopic counterpart [Phys. Rev. Lett. 101, 267203 (2008)10.1103/PhysRevLett.101.267203]; the latter has been extensively investigated in literature, e.g., for building nanometer-scale memory components. By introducing second- and third-order nonlinear terms (that opposite in sign) into diffusion coefficient matrices, a bistable energy or mass diffusion occurs with two different steady states identified as "0" and "1." In particular, we study heat conduction in a two-terminal three-body system and show that this bistable system exhibits a macroscale thermal memory effect with tailored nonlinear thermal conductivities. The theoretical analysis is confirmed by finite-element simulations. Also, we suggest experiments with metamaterials based on shape memory alloys. This theoretical framework blazes a trail on constructing intrinsic bistability or multistability in diffusive systems for macroscopic energy or mass management.
Collapse
Affiliation(s)
- Jun Wang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| | - Gaole Dai
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| | - Fubao Yang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
15
|
Multi-Physics Bi-Functional Intelligent Meta-Device Based on the Shape Memory Alloys. CRYSTALS 2019. [DOI: 10.3390/cryst9090438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Transformation theory, succeeding in multiple transportation systems, has enlightened researchers to manipulate the field distribution by tailoring the medium’s dominant parameters in certain situations. Therefore, the science community has witnessed a boom in designing metamaterials, whose abnormal properties are induced by artificial structures rather than the components’ characteristics. However, a majority of such meta-devices are restricted to the particular physical regimes and cannot sense the changes taking place in the surrounding environment and adjust its functions accordingly. In this article we propose a multi-physics bi-functional “intelligent” meta-device which can switch its functions between an invisible cloak and a concentrator in both thermal and DC electric conduction as the ambient temperature or voltage varies. The shape memory alloys are utilized in the design to form a moveable part, which plays the crucial role in the switching effect. This work paves the way for a practicable method for obtaining a controllable gradient of heat or electric potential, and also provides guidance for efficiently designing similar intelligent meta-devices by referring to the intriguing property of shape memory alloys.
Collapse
|
16
|
Choe HS, Prabhakar R, Wehmeyer G, Allen FI, Lee W, Jin L, Li Y, Yang P, Qiu CW, Dames C, Scott M, Minor A, Bahk JH, Wu J. Ion Write Microthermotics: Programing Thermal Metamaterials at the Microscale. NANO LETTERS 2019; 19:3830-3837. [PMID: 31059272 DOI: 10.1021/acs.nanolett.9b00984] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Considerable advances in manipulating heat flow in solids have been made through the innovation of artificial thermal structures such as thermal diodes, camouflages, and cloaks. Such thermal devices can be readily constructed only at the macroscale by mechanically assembling different materials with distinct values of thermal conductivity. Here, we extend these concepts to the microscale by demonstrating a monolithic material structure on which nearly arbitrary microscale thermal metamaterial patterns can be written and programmed. It is based on a single, suspended silicon membrane whose thermal conductivity is locally, continuously, and reversibly engineered over a wide range (between 2 and 65 W/m·K) and with fine spatial resolution (10-100 nm) by focused ion irradiation. Our thermal cloak demonstration shows how ion-write microthermotics can be used as a lithography-free platform to create thermal metamaterials that control heat flow at the microscale.
Collapse
Affiliation(s)
- Hwan Sung Choe
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Radhika Prabhakar
- Department of Electrical Engineering and Computer Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Geoff Wehmeyer
- Department of Mechanical Engineering , University of California , Berkeley , California 94720 , United States
| | - Frances I Allen
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
| | - Woochul Lee
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Lei Jin
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Ying Li
- Department of Electrical and Computer Engineering , National University of Singapore , Singapore , 117583
| | - Peidong Yang
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Chemistry , University of California , Berkeley , California 94720 , United States
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering , National University of Singapore , Singapore , 117583
| | - Chris Dames
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
- Department of Mechanical Engineering , University of California , Berkeley , California 94720 , United States
| | - Mary Scott
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Andrew Minor
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
- The Molecular Foundry , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - Je-Hyeong Bahk
- Department of Electrical Engineering and Computer Science , University of Cincinnati , Cincinnati , Ohio 45221 , United States
| | - Junqiao Wu
- Department of Materials Science and Engineering , University of California , Berkeley , California 94720 , United States
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
17
|
Hu R, Huang S, Wang M, Luo X, Shiomi J, Qiu CW. Encrypted Thermal Printing with Regionalization Transformation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1807849. [PMID: 31058371 DOI: 10.1002/adma.201807849] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/05/2019] [Indexed: 06/09/2023]
Abstract
Artificially structured thermal metamaterials provide an unprecedented possibility of molding heat flow that is drastically distinct from the conventional heat diffusion in naturally conductive materials. The Laplacian nature of heat conduction makes the transformation thermotics, as a design principle for thermal metadevices, compatible with transformation optics. Various functional thermal devices, such as thermal cloaks, concentrators, and rotators, have been successfully demonstrated. How far can it possible go beyond just realizing a heat-distribution function in a thermal metadevice? Herein, the concept of encrypted thermal printing is proposed and experimentally validated, which could conceal encrypted information under natural light and present static or dynamic messages in an infrared image. Regionalization transformation is developed for structuring thermal metamaterial-strokes as infrared signatures, enabling letters of the alphabet to be written, paintings to be drawn, movies to be made, and information to be displayed. This strategy successfully demonstrates an extreme level of manipulation of heat flow for encryption, illusions, and messaging.
Collapse
Affiliation(s)
- Run Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Shiyao Huang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Meng Wang
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaobing Luo
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Junichiro Shiomi
- Department of Mechanical Engineering, The University of Tokyo (UTOKYO), 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore (NUS), Kent Ridge, 117583, Republic of Singapore
| |
Collapse
|
18
|
Yang S, Xu L, Huang J. Metathermotics: Nonlinear thermal responses of core-shell metamaterials. Phys Rev E 2019; 99:042144. [PMID: 31108627 DOI: 10.1103/physreve.99.042144] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Indexed: 11/07/2022]
Abstract
Thermal metamaterials based on core-shell structures have aroused wide research interest, e.g., in thermal cloaks. However, almost all the relevant studies only discuss linear materials whose thermal conductivities are temperature-independent constants. Nonlinear materials (whose thermal conductivities depend on temperatures) have seldom been touched; however, they are important in practical applications. This situation largely results from the lack of a general theoretical framework for handling such nonlinear problems. Here we study the nonlinear responses of thermal metamaterials with a core-shell structure in two or three dimensions. By calculating the effective thermal conductivity, we derive the nonlinear modulation of a nonlinear core. Furthermore, we reveal two thermal coupling conditions, under which this nonlinear modulation can be efficiently manipulated. In particular, we reveal the phenomenon of nonlinearity enhancement. Then this theory helps us to design a kind of intelligent thermal transparency devices, which can respond to the direction of thermal fields. The theoretical results and finite-element simulations agree well with each other. This work not only offers a different mechanism to achieve nonlinearity modulation and enhancement in thermotics, but also suggests potential applications in thermal management, including illusion.
Collapse
Affiliation(s)
- Shuai Yang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| | - Liujun Xu
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Realization of a thermal cloak-concentrator using a metamaterial transformer. Sci Rep 2018; 8:2493. [PMID: 29410468 PMCID: PMC5802869 DOI: 10.1038/s41598-018-20753-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/23/2018] [Indexed: 11/24/2022] Open
Abstract
By combining rotating squares with auxetic properties, we developed a metamaterial transformer capable of realizing metamaterials with tunable functionalities. We investigated the use of a metamaterial transformer-based thermal cloak–concentrator that can change from a cloak to a concentrator when the device configuration is transformed. We established that the proposed dual-functional metamaterial can either thermally protect a region (cloak) or focus heat flux in a small region (concentrator). The dual functionality was verified by finite element simulations and validated by experiments with a specimen composed of copper, epoxy, and rotating squares. This work provides an effective and efficient method for controlling the gradient of heat, in addition to providing a reference for other thermal metamaterials to possess such controllable functionalities by adapting the concept of a metamaterial transformer.
Collapse
|
20
|
Dai G, Shang J, Huang J. Theory of transformation thermal convection for creeping flow in porous media: Cloaking, concentrating, and camouflage. Phys Rev E 2018; 97:022129. [PMID: 29548100 DOI: 10.1103/physreve.97.022129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Indexed: 06/08/2023]
Abstract
Heat can transfer via thermal conduction, thermal radiation, and thermal convection. All the existing theories of transformation thermotics and optics can treat thermal conduction and thermal radiation, respectively. Unfortunately, thermal convection has seldom been touched in transformation theories due to the lack of a suitable theory, thus limiting applications associated with heat transfer through fluids (liquid or gas). Here, we develop a theory of transformation thermal convection by considering the convection-diffusion equation, the equation of continuity, and the Darcy law. By introducing porous media, we get a set of equations keeping their forms under coordinate transformation. As model applications, the theory helps to show the effects of cloaking, concentrating, and camouflage. Our finite-element simulations confirm the theoretical findings. This work offers a transformation theory for thermal convection, thus revealing novel behaviors associated with potential applications; it not only provides different hints on how to control heat transfer by combining thermal conduction, thermal convection, and thermal radiation, but also benefits mass diffusion and other related fields that contain a set of equations and need to transform velocities at the same time.
Collapse
Affiliation(s)
- Gaole Dai
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Jin Shang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Jiping Huang
- Department of Physics, State Key Laboratory of Surface Physics, and Key Laboratory of Micro and Nano Photonic Structures (MOE), Fudan University, Shanghai 200433, China and Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
21
|
Li Y, Bai X, Yang T, Luo H, Qiu CW. Structured thermal surface for radiative camouflage. Nat Commun 2018; 9:273. [PMID: 29348533 PMCID: PMC5773602 DOI: 10.1038/s41467-017-02678-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 12/18/2017] [Indexed: 12/23/2022] Open
Abstract
Thermal camouflage has been successful in the conductive regime, where thermal metamaterials embedded in a conductive system can manipulate heat conduction inside the bulk. Most reported approaches are background-dependent and not applicable to radiative heat emitted from the surface of the system. A coating with engineered emissivity is one option for radiative camouflage, but only when the background has uniform temperature. Here, we propose a strategy for radiative camouflage of external objects on a given background using a structured thermal surface. The device is non-invasive and restores arbitrary background temperature distributions on its top. For many practical candidates of the background material with similar emissivity as the device, the object can thereby be radiatively concealed without a priori knowledge of the host conductivity and temperature. We expect this strategy to meet the demands of anti-detection and thermal radiation manipulation in complex unknown environments and to inspire developments in phononic and photonic thermotronics. Thermal camouflaging techniques typically use bulky structures and require a well-defined and unchanging background. Here, the authors propose a strategy for thermal camouflage using a structured thermal surface, independent of the background material for many practical situations.
Collapse
Affiliation(s)
- Ying Li
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Republic of Singapore
| | - Xue Bai
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Republic of Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge, Singapore, 117456, Republic of Singapore
| | - Tianzhi Yang
- Department of Mechanics, Tianjin University, Tianjin, 300072, People's Republic of China.,Tianjin Key Laboratory of Nonlinear Dynamics and Chaos Control, 300072, Tianjin, People's Republic of China
| | - Hailu Luo
- Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha, 410082, People's Republic of China
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, Kent Ridge, Singapore, 117583, Republic of Singapore. .,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Kent Ridge, Singapore, 117456, Republic of Singapore.
| |
Collapse
|
22
|
Investigating the Thermodynamic Performances of TO-Based Metamaterial Tunable Cells with an Entropy Generation Approach. ENTROPY 2017. [DOI: 10.3390/e19100538] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|