1
|
Niu J, Li Y, Zhang L, Zhang J, Chu J, Huang J, Huang W, Nie L, Qiu J, Sun X, Tao Z, Wei W, Zhang J, Zhou Y, Chen Y, Hu L, Liu Y, Liu S, Zhong Y, Lu D, Yu D. Demonstrating Path-Independent Anyonic Braiding on a Modular Superconducting Quantum Processor. PHYSICAL REVIEW LETTERS 2024; 132:020601. [PMID: 38277590 DOI: 10.1103/physrevlett.132.020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/28/2024]
Abstract
Anyons, exotic quasiparticles in two-dimensional space exhibiting nontrivial exchange statistics, play a crucial role in universal topological quantum computing. One notable proposal to manifest the fractional statistics of anyons is the toric code model; however, scaling up its size through quantum simulation poses a serious challenge because of its highly entangled ground state. In this Letter, we demonstrate that a modular superconducting quantum processor enables hardware-pragmatic implementation of the toric code model. Through in-parallel control across separate modules, we generate a 10-qubit toric code ground state in four steps and realize six distinct braiding paths to benchmark the performance of anyonic statistics. The path independence of the anyonic braiding statistics is verified by correlation measurements in an efficient and scalable fashion. Our modular approach, serving as a hardware embodiment of the toric code model, offers a promising avenue toward scalable simulation of topological phases, paving the way for quantum simulation in a distributed fashion.
Collapse
Affiliation(s)
- Jingjing Niu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
| | - Yishan Li
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Libo Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiajian Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji Chu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaxiang Huang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Huang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lifu Nie
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Qiu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuandong Sun
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziyu Tao
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiwei Wei
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxuan Zhou
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanzhen Chen
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Hu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
| | - Youpeng Zhong
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
| | - Dawei Lu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Harle N, Shtanko O, Movassagh R. Observing and braiding topological Majorana modes on programmable quantum simulators. Nat Commun 2023; 14:2286. [PMID: 37085488 PMCID: PMC10121601 DOI: 10.1038/s41467-023-37725-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/24/2023] [Indexed: 04/23/2023] Open
Abstract
Electrons are indivisible elementary particles, yet paradoxically a collection of them can act as a fraction of a single electron, exhibiting exotic and useful properties. One such collective excitation, known as a topological Majorana mode, is naturally stable against perturbations, such as unwanted local noise, and can thereby robustly store quantum information. As such, Majorana modes serve as the basic primitive of topological quantum computing, providing resilience to errors. However, their demonstration on quantum hardware has remained elusive. Here, we demonstrate a verifiable identification and braiding of topological Majorana modes using a superconducting quantum processor as a quantum simulator. By simulating fermions on a one-dimensional lattice subject to a periodic drive, we confirm the existence of Majorana modes localized at the edges, and distinguish them from other trivial modes. To simulate a basic logical operation of topological quantum computing known as braiding, we propose a non-adiabatic technique, whose implementation reveals correct braiding statistics in our experiments. This work could further be used to study topological models of matter using circuit-based simulations, and shows that long-sought quantum phenomena can be realized by anyone in cloud-run quantum simulations, whereby accelerating fundamental discoveries in quantum science and technology.
Collapse
Affiliation(s)
- Nikhil Harle
- Department of Physics, Yale University, New Haven, CT, 06520, USA
- IBM Quantum, MIT-IBM Watson AI lab, Cambridge, MA, 02142, USA
| | - Oles Shtanko
- IBM Quantum, IBM Research - Almaden, San Jose, CA, 95120, USA
| | - Ramis Movassagh
- IBM Quantum, MIT-IBM Watson AI lab, Cambridge, MA, 02142, USA.
- Google Quantum AI, Venice Beach, CA, 90291, USA.
| |
Collapse
|
3
|
Hai YJ, Zhang Z, Zheng H, Kong L, Wu J, Yu D. Uniquely identifying topological order based on boundary-bulk duality and anyon condensation. Natl Sci Rev 2023; 10:nwac264. [PMID: 36915366 PMCID: PMC10007699 DOI: 10.1093/nsr/nwac264] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022] Open
Abstract
Topological order is a new quantum phase that is beyond Landau's symmetry-breaking paradigm. Its defining features include robust degenerate ground states, long-range entanglement and anyons. It was known that R and F matrices, which characterize the fusion-braiding properties of anyons, can be used to uniquely identify topological order. In this article, we explore an essential question: how can the R and F matrices be experimentally measured? We show that the braidings, i.e. the R matrices, can be completely determined by the half braidings of boundary excitations due to the boundary-bulk duality and the anyon condensation. The F matrices can also be measured by comparing the quantum states involving the fusion of three anyons in two different orders. Thus we provide a model-independent experimental protocol to uniquely identify topological order. By using quantum simulations based on a toric code model with boundaries encoded in three- and four-qubit systems and state-of-the-art technology, we obtain the first experimental measurement of R and F matrices by means of an NMR quantum computer at room temperature.
Collapse
Affiliation(s)
- Yong-Ju Hai
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ze Zhang
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hao Zheng
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
| | - Liang Kong
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
| | - Jiansheng Wu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Shenzhen 518055, China
| |
Collapse
|
4
|
Zhao SK, Ge ZY, Xiang Z, Xue GM, Yan HS, Wang ZT, Wang Z, Xu HK, Su FF, Yang ZH, Zhang H, Zhang YR, Guo XY, Xu K, Tian Y, Yu HF, Zheng DN, Fan H, Zhao SP. Probing Operator Spreading via Floquet Engineering in a Superconducting Circuit. PHYSICAL REVIEW LETTERS 2022; 129:160602. [PMID: 36306769 DOI: 10.1103/physrevlett.129.160602] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
Operator spreading, often characterized by out-of-time-order correlators (OTOCs), is one of the central concepts in quantum many-body physics. However, measuring OTOCs is experimentally challenging due to the requirement of reversing the time evolution of systems. Here we apply Floquet engineering to investigate operator spreading in a superconducting 10-qubit chain. Floquet engineering provides an effective way to tune the coupling strength between nearby qubits, which is used to demonstrate quantum walks with tunable couplings, reversed time evolution, and the measurement of OTOCs. A clear light-cone-like operator propagation is observed in the system with multiple excitations, and has a nearly equal velocity as the single-particle quantum walk. For the butterfly operator that is nonlocal (local) under the Jordan-Wigner transformation, the OTOCs show distinct behaviors with (without) a signature of information scrambling in the near integrable system.
Collapse
Affiliation(s)
- S K Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - Zi-Yong Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhongcheng Xiang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - G M Xue
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - H S Yan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Z T Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhan Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - H K Xu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - F F Su
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Z H Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - He Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Ran Zhang
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Xue-Yi Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Kai Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100190, China
| | - Ye Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - H F Yu
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| | - D N Zheng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Heng Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
- CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - S P Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
5
|
Satzinger KJ, Liu YJ, Smith A, Knapp C, Newman M, Jones C, Chen Z, Quintana C, Mi X, Dunsworth A, Gidney C, Aleiner I, Arute F, Arya K, Atalaya J, Babbush R, Bardin JC, Barends R, Basso J, Bengtsson A, Bilmes A, Broughton M, Buckley BB, Buell DA, Burkett B, Bushnell N, Chiaro B, Collins R, Courtney W, Demura S, Derk AR, Eppens D, Erickson C, Faoro L, Farhi E, Fowler AG, Foxen B, Giustina M, Greene A, Gross JA, Harrigan MP, Harrington SD, Hilton J, Hong S, Huang T, Huggins WJ, Ioffe LB, Isakov SV, Jeffrey E, Jiang Z, Kafri D, Kechedzhi K, Khattar T, Kim S, Klimov PV, Korotkov AN, Kostritsa F, Landhuis D, Laptev P, Locharla A, Lucero E, Martin O, McClean JR, McEwen M, Miao KC, Mohseni M, Montazeri S, Mruczkiewicz W, Mutus J, Naaman O, Neeley M, Neill C, Niu MY, O'Brien TE, Opremcak A, Pató B, Petukhov A, Rubin NC, Sank D, Shvarts V, Strain D, Szalay M, Villalonga B, White TC, Yao Z, Yeh P, Yoo J, Zalcman A, Neven H, Boixo S, Megrant A, Chen Y, Kelly J, Smelyanskiy V, Kitaev A, Knap M, Pollmann F, Roushan P. Realizing topologically ordered states on a quantum processor. Science 2021; 374:1237-1241. [PMID: 34855491 DOI: 10.1126/science.abi8378] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Y-J Liu
- Department of Physics, Technical University of Munich, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - A Smith
- Department of Physics, Technical University of Munich, 85748 Garching, Germany.,School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD, UK.,Centre for the Mathematics and Theoretical Physics of Quantum Non-Equilibrium Systems, University of Nottingham, Nottingham NG7 2RD, UK
| | - C Knapp
- Department of Physics and Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA.,Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, USA
| | - M Newman
- Google Quantum AI, Mountain View, CA, USA
| | - C Jones
- Google Quantum AI, Mountain View, CA, USA
| | - Z Chen
- Google Quantum AI, Mountain View, CA, USA
| | - C Quintana
- Google Quantum AI, Mountain View, CA, USA
| | - X Mi
- Google Quantum AI, Mountain View, CA, USA
| | | | - C Gidney
- Google Quantum AI, Mountain View, CA, USA
| | - I Aleiner
- Google Quantum AI, Mountain View, CA, USA
| | - F Arute
- Google Quantum AI, Mountain View, CA, USA
| | - K Arya
- Google Quantum AI, Mountain View, CA, USA
| | - J Atalaya
- Google Quantum AI, Mountain View, CA, USA
| | - R Babbush
- Google Quantum AI, Mountain View, CA, USA
| | - J C Bardin
- Google Quantum AI, Mountain View, CA, USA.,Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA
| | - R Barends
- Google Quantum AI, Mountain View, CA, USA
| | - J Basso
- Google Quantum AI, Mountain View, CA, USA
| | | | - A Bilmes
- Google Quantum AI, Mountain View, CA, USA
| | | | | | - D A Buell
- Google Quantum AI, Mountain View, CA, USA
| | - B Burkett
- Google Quantum AI, Mountain View, CA, USA
| | - N Bushnell
- Google Quantum AI, Mountain View, CA, USA
| | - B Chiaro
- Google Quantum AI, Mountain View, CA, USA
| | - R Collins
- Google Quantum AI, Mountain View, CA, USA
| | - W Courtney
- Google Quantum AI, Mountain View, CA, USA
| | - S Demura
- Google Quantum AI, Mountain View, CA, USA
| | - A R Derk
- Google Quantum AI, Mountain View, CA, USA
| | - D Eppens
- Google Quantum AI, Mountain View, CA, USA
| | - C Erickson
- Google Quantum AI, Mountain View, CA, USA
| | - L Faoro
- Laboratoire de Physique Theorique et Hautes Energies, Sorbonne Université, 75005 Paris, France
| | - E Farhi
- Google Quantum AI, Mountain View, CA, USA
| | - A G Fowler
- Google Quantum AI, Mountain View, CA, USA
| | - B Foxen
- Google Quantum AI, Mountain View, CA, USA
| | - M Giustina
- Google Quantum AI, Mountain View, CA, USA
| | - A Greene
- Google Quantum AI, Mountain View, CA, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - J A Gross
- Google Quantum AI, Mountain View, CA, USA
| | | | | | - J Hilton
- Google Quantum AI, Mountain View, CA, USA
| | - S Hong
- Google Quantum AI, Mountain View, CA, USA
| | - T Huang
- Google Quantum AI, Mountain View, CA, USA
| | | | - L B Ioffe
- Google Quantum AI, Mountain View, CA, USA
| | - S V Isakov
- Google Quantum AI, Mountain View, CA, USA
| | - E Jeffrey
- Google Quantum AI, Mountain View, CA, USA
| | - Z Jiang
- Google Quantum AI, Mountain View, CA, USA
| | - D Kafri
- Google Quantum AI, Mountain View, CA, USA
| | | | - T Khattar
- Google Quantum AI, Mountain View, CA, USA
| | - S Kim
- Google Quantum AI, Mountain View, CA, USA
| | - P V Klimov
- Google Quantum AI, Mountain View, CA, USA
| | - A N Korotkov
- Google Quantum AI, Mountain View, CA, USA.,Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | | | - D Landhuis
- Google Quantum AI, Mountain View, CA, USA
| | - P Laptev
- Google Quantum AI, Mountain View, CA, USA
| | - A Locharla
- Google Quantum AI, Mountain View, CA, USA
| | - E Lucero
- Google Quantum AI, Mountain View, CA, USA
| | - O Martin
- Google Quantum AI, Mountain View, CA, USA
| | | | - M McEwen
- Google Quantum AI, Mountain View, CA, USA.,Department of Physics, University of California, Santa Barbara, CA, USA
| | - K C Miao
- Google Quantum AI, Mountain View, CA, USA
| | - M Mohseni
- Google Quantum AI, Mountain View, CA, USA
| | | | | | - J Mutus
- Google Quantum AI, Mountain View, CA, USA
| | - O Naaman
- Google Quantum AI, Mountain View, CA, USA
| | - M Neeley
- Google Quantum AI, Mountain View, CA, USA
| | - C Neill
- Google Quantum AI, Mountain View, CA, USA
| | - M Y Niu
- Google Quantum AI, Mountain View, CA, USA
| | | | - A Opremcak
- Google Quantum AI, Mountain View, CA, USA
| | - B Pató
- Google Quantum AI, Mountain View, CA, USA
| | - A Petukhov
- Google Quantum AI, Mountain View, CA, USA
| | - N C Rubin
- Google Quantum AI, Mountain View, CA, USA
| | - D Sank
- Google Quantum AI, Mountain View, CA, USA
| | - V Shvarts
- Google Quantum AI, Mountain View, CA, USA
| | - D Strain
- Google Quantum AI, Mountain View, CA, USA
| | - M Szalay
- Google Quantum AI, Mountain View, CA, USA
| | | | - T C White
- Google Quantum AI, Mountain View, CA, USA
| | - Z Yao
- Google Quantum AI, Mountain View, CA, USA
| | - P Yeh
- Google Quantum AI, Mountain View, CA, USA
| | - J Yoo
- Google Quantum AI, Mountain View, CA, USA
| | - A Zalcman
- Google Quantum AI, Mountain View, CA, USA
| | - H Neven
- Google Quantum AI, Mountain View, CA, USA
| | - S Boixo
- Google Quantum AI, Mountain View, CA, USA
| | - A Megrant
- Google Quantum AI, Mountain View, CA, USA
| | - Y Chen
- Google Quantum AI, Mountain View, CA, USA
| | - J Kelly
- Google Quantum AI, Mountain View, CA, USA
| | | | - A Kitaev
- Google Quantum AI, Mountain View, CA, USA.,Department of Physics and Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, USA.,Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA, USA
| | - M Knap
- Department of Physics, Technical University of Munich, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany.,Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - F Pollmann
- Department of Physics, Technical University of Munich, 85748 Garching, Germany.,Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, 80799 München, Germany
| | - P Roushan
- Google Quantum AI, Mountain View, CA, USA
| |
Collapse
|
6
|
Chen S, Chen T, Xu C, Chu J. Technical report: PID design of second‐order non‐linear uncertain systems with fractional order operations. IET CYBER-SYSTEMS AND ROBOTICS 2021. [DOI: 10.1049/csy2.12027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Song Chen
- School of Mathematical Sciences Zhejiang University Hangzhou Zhejiang China
| | - Tehuan Chen
- School of Mechanical Engineering and Mechanics Ningbo University Ningbo Zhejiang China
- Department of Automation Shanghai Jiao Tong University Shanghai China
- Ningbo Artificial Intelligence Institute Shanghai Jiao Tong University Ningbo Zhejiang China
| | - Chao Xu
- The State Key Laboratory of Industrial Control Technology Institute of Cyber‐Systems and Control Zhejiang University Hangzhou Zhejiang China
| | - Jian Chu
- Ningbo Artificial Intelligence Institute Shanghai Jiao Tong University Ningbo Zhejiang China
- The State Key Laboratory of Industrial Control Technology Institute of Cyber‐Systems and Control Zhejiang University Hangzhou Zhejiang China
| |
Collapse
|
7
|
Bonkhoff M, Jägering K, Eggert S, Pelster A, Thorwart M, Posske T. Bosonic Continuum Theory of One-Dimensional Lattice Anyons. PHYSICAL REVIEW LETTERS 2021; 126:163201. [PMID: 33961455 DOI: 10.1103/physrevlett.126.163201] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Anyons with arbitrary exchange phases exist on 1D lattices in ultracold gases. Yet, known continuum theories in 1D do not match. We derive the continuum limit of 1D lattice anyons via interacting bosons. The theory maintains the exchange phase periodicity fully analogous to 2D anyons. This provides a mapping between experiments, lattice anyons, and continuum theories, including Kundu anyons with a natural regularization as a special case. We numerically estimate the Luttinger parameter as a function of the exchange angle to characterize long-range signatures of the theory and predict different velocities for left- and right-moving collective excitations.
Collapse
Affiliation(s)
- Martin Bonkhoff
- Physics Department and Research Center Optimas, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kevin Jägering
- Physics Department and Research Center Optimas, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Sebastian Eggert
- Physics Department and Research Center Optimas, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Axel Pelster
- Physics Department and Research Center Optimas, Technische Universität Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Michael Thorwart
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Thore Posske
- I. Institut für Theoretische Physik, Universität Hamburg, Jungiusstraße 9, 20355 Hamburg, Germany
- The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
8
|
Huang HL, Narożniak M, Liang F, Zhao Y, Castellano AD, Gong M, Wu Y, Wang S, Lin J, Xu Y, Deng H, Rong H, Dowling JP, Peng CZ, Byrnes T, Zhu X, Pan JW. Emulating Quantum Teleportation of a Majorana Zero Mode Qubit. PHYSICAL REVIEW LETTERS 2021; 126:090502. [PMID: 33750174 DOI: 10.1103/physrevlett.126.090502] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 05/06/2023]
Abstract
Topological quantum computation based on anyons is a promising approach to achieve fault-tolerant quantum computing. The Majorana zero modes in the Kitaev chain are an example of non-Abelian anyons where braiding operations can be used to perform quantum gates. Here we perform a quantum simulation of topological quantum computing, by teleporting a qubit encoded in the Majorana zero modes of a Kitaev chain. The quantum simulation is performed by mapping the Kitaev chain to its equivalent spin version and realizing the ground states in a superconducting quantum processor. The teleportation transfers the quantum state encoded in the spin-mapped version of the Majorana zero mode states between two Kitaev chains. The teleportation circuit is realized using only braiding operations and can be achieved despite being restricted to Clifford gates for the Ising anyons. The Majorana encoding is a quantum error detecting code for phase-flip errors, which is used to improve the average fidelity of the teleportation for six distinct states from 70.76±0.35% to 84.60±0.11%, well beyond the classical bound in either case.
Collapse
Affiliation(s)
- He-Liang Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
- Henan Key Laboratory of Quantum Information and Cryptography, Zhengzhou, Henan 450000, China
| | - Marek Narożniak
- New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China
- Department of Physics, New York University, New York, New York 10003, USA
| | - Futian Liang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Youwei Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Anthony D Castellano
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Ming Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Yulin Wu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Shiyu Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Jin Lin
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Yu Xu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Hui Deng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Hao Rong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Jonathan P Dowling
- Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
| | - Cheng-Zhi Peng
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Tim Byrnes
- New York University Shanghai, 1555 Century Ave, Pudong, Shanghai 200122, China
- Department of Physics, New York University, New York, New York 10003, USA
- NYU-ECNU Institute of Physics at NYU Shanghai, 3663 Zhongshan Road North, Shanghai 200062, China
- State Key Laboratory of Precision Spectroscopy, School of Physical and Material Sciences, East China Normal University, Shanghai 200062, China
| | - Xiaobo Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
- Shanghai Branch, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
9
|
Ma Y, Pan X, Cai W, Mu X, Xu Y, Hu L, Wang W, Wang H, Song YP, Yang ZB, Zheng SB, Sun L. Manipulating Complex Hybrid Entanglement and Testing Multipartite Bell Inequalities in a Superconducting Circuit. PHYSICAL REVIEW LETTERS 2020; 125:180503. [PMID: 33196232 DOI: 10.1103/physrevlett.125.180503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Quantum correlations in observables of multiple systems not only are of fundamental interest, but also play a key role in quantum information processing. As a signature of these correlations, the violation of Bell inequalities has not been demonstrated with multipartite hybrid entanglement involving both continuous and discrete variables. Here we create a five-partite entangled state with three superconducting transmon qubits and two photonic qubits, each encoded in the mesoscopic field of a microwave cavity. We reveal the quantum correlations among these distinct elements by joint Wigner tomography of the two cavity fields conditional on the detection of the qubits and by test of a five-partite Bell inequality. The measured Bell signal is 8.381±0.038, surpassing the bound of 8 for a four-partite entanglement imposed by quantum correlations by 10 standard deviations, demonstrating the genuine five-partite entanglement in a hybrid quantum system.
Collapse
Affiliation(s)
- Y Ma
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - X Pan
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - W Cai
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - X Mu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y Xu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - L Hu
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - W Wang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - H Wang
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Y P Song
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| | - Zhen-Biao Yang
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shi-Biao Zheng
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - L Sun
- Center for Quantum Information, Institute for Interdisciplinary Information Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
Mei F, Guo Q, Yu YF, Xiao L, Zhu SL, Jia S. Digital Simulation of Topological Matter on Programmable Quantum Processors. PHYSICAL REVIEW LETTERS 2020; 125:160503. [PMID: 33124873 DOI: 10.1103/physrevlett.125.160503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
Simulating the topological phases of matter in synthetic quantum simulators is a topic of considerable interest. Given the universality of digital quantum simulators, the prospect of digitally simulating exotic topological phases is greatly enhanced. However, it is still an open question how to realize the digital quantum simulation of topological phases of matter. Here, using common single- and two-qubit elementary quantum gates, we propose and demonstrate an approach to design topologically protected quantum circuits on the current generation of noisy quantum processors where spin-orbital coupling and related topological matter can be digitally simulated. In particular, a low-depth topological quantum circuit is performed on both the IBM and Rigetti quantum processors. In the experiments, we not only observe but also distinguish the 0 and π energy topological edge states by measuring the qubit excitation distribution at the output of the circuits.
Collapse
Affiliation(s)
- Feng Mei
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qihao Guo
- School of Science, Xian Jiaotong University, Xian 710049, Shaanxi, China
| | - Ya-Fei Yu
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
| | - Liantuan Xiao
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shi-Liang Zhu
- National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China
- Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, GPETR Center for Quantum Precision Measurement, Frontier Research Institute for Physics and SPTE, South China Normal University, Guangzhou 510006, China
| | - Suotang Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, Shanxi 030006, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
11
|
Ning W, Huang XJ, Han PR, Li H, Deng H, Yang ZB, Zhong ZR, Xia Y, Xu K, Zheng D, Zheng SB. Deterministic Entanglement Swapping in a Superconducting Circuit. PHYSICAL REVIEW LETTERS 2019; 123:060502. [PMID: 31491139 DOI: 10.1103/physrevlett.123.060502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Indexed: 06/10/2023]
Abstract
Entanglement swapping, the process to entangle two particles without coupling them in any way, is one of the most striking manifestations of the quantum-mechanical nonlocal characteristic. Besides fundamental interest, this process has applications in complex entanglement manipulation and quantum communication. Here we report a high-fidelity, unconditional entanglement swapping experiment in a superconducting circuit. The measured concurrence characterizing the qubit-qubit entanglement produced by swapping is above 0.75, confirming most of the entanglement of one qubit with its partner is deterministically transferred to another qubit that has never interacted with it. We further realize delayed-choice entanglement swapping, showing whether two qubits previously behaved as in an entangled state or as in a separable state is determined by a later choice of the type of measurement on their partners. This is the first demonstration of entanglement-separability duality in a deterministic way.
Collapse
Affiliation(s)
- Wen Ning
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xin-Jie Huang
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Pei-Rong Han
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Hekang Li
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hui Deng
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Biao Yang
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zhi-Rong Zhong
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yan Xia
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Kai Xu
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Dongning Zheng
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shi-Biao Zheng
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| |
Collapse
|
12
|
Ye Y, Ge ZY, Wu Y, Wang S, Gong M, Zhang YR, Zhu Q, Yang R, Li S, Liang F, Lin J, Xu Y, Guo C, Sun L, Cheng C, Ma N, Meng ZY, Deng H, Rong H, Lu CY, Peng CZ, Fan H, Zhu X, Pan JW. Propagation and Localization of Collective Excitations on a 24-Qubit Superconducting Processor. PHYSICAL REVIEW LETTERS 2019; 123:050502. [PMID: 31491305 DOI: 10.1103/physrevlett.123.050502] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 06/10/2023]
Abstract
Superconducting circuits have emerged as a powerful platform of quantum simulation, especially for emulating the dynamics of quantum many-body systems, because of their tunable interaction, long coherence time, and high-precision control. Here in experiments, we construct a Bose-Hubbard ladder with a ladder array of 20 qubits on a 24-qubit superconducting processor. We investigate theoretically and demonstrate experimentally the dynamics of single- and double-excitation states with distinct behaviors, indicating the uniqueness of the Bose-Hubbard ladder. We observe the linear propagation of photons in the single-excitation case, satisfying the Lieb-Robinson bounds. The double-excitation state, initially placed at the edge, localizes; while placed in the bulk, it splits into two single-excitation modes spreading linearly toward two boundaries, respectively. Remarkably, these phenomena, studied both theoretically and numerically as unique properties of the Bose-Hubbard ladder, are represented coherently by pairs of controllable qubits in experiments. Our results show that collective excitations, as a single mode, are not free. This work paves the way to simulation of exotic logic particles by subtly encoding physical qubits and exploration of rich physics by superconducting circuits.
Collapse
Affiliation(s)
- Yangsen Ye
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Zi-Yong Ge
- Beijing National laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yulin Wu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Shiyu Wang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Ming Gong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Yu-Ran Zhang
- Beijing Computational Science Research Center, Beijing 100193, China
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama 351-0198, Japan
| | - Qingling Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Rui Yang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Shaowei Li
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Futian Liang
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Jin Lin
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Yu Xu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Cheng Guo
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Lihua Sun
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Chen Cheng
- Beijing Computational Science Research Center, Beijing 100193, China
- Center of Interdisciplinary Studies, Lanzhou University, Lanzhou 730000, China
| | - Nvsen Ma
- Beijing National laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zi Yang Meng
- Beijing National laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Hui Deng
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Hao Rong
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Chao-Yang Lu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Cheng-Zhi Peng
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Heng Fan
- Beijing National laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- CAS Center for Excellence in Topological Quantum Computation, UCAS, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Xiaobo Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Jian-Wei Pan
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Shanghai 201315, China
| |
Collapse
|
13
|
Experimental observation of classical analogy of topological entanglement entropy. Nat Commun 2019; 10:1557. [PMID: 30952856 PMCID: PMC6450868 DOI: 10.1038/s41467-019-09584-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 03/07/2019] [Indexed: 11/08/2022] Open
Abstract
Long-range entanglement is an important aspect of the topological orders, so efficient methods to characterize the long-range entanglement are often needed. In this regard, topological entanglement entropy (TEE) is often used for such a purpose but the experimental observation of TEE in a topological order remains a challenge. Here, we propose a scheme to observe TEE in the topological order by constructing specific minimum entropy states (MESs). We then experimentally construct the classical microwave analogs of the MESs and simulate the nontrivial topological order with the TEE in Kitaev toric code, which is in agreement with theoretical predictions. We also experimentally simulate the transition from Z2 topologically ordered state to topologically trivial state.
Collapse
|
14
|
Wang P, Huang K, Sun J, Hu J, Fu H, Lin X. Piezo-driven sample rotation system with ultra-low electron temperature. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2019; 90:023905. [PMID: 30831686 DOI: 10.1063/1.5083994] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/19/2019] [Indexed: 06/09/2023]
Abstract
Piezo-driven rotator is convenient for tilted magnetic field experiments due to its precise angle control. However, the rotator itself and the sample mounted on it are difficult to be cooled down because of extra heat leaks and presumably bad thermal contacts from the piezo. Here, we report a piezo-driven sample rotation system designed for ultra-low temperature environment. The sample, as well as the rotating sample holder, can be cooled to as low as 25 mK by customized thermal links and thermal contacts. More importantly, the electron temperature in the electrical transport measurements can also be cooled down to 25 mK with the help of home-made filters. To demonstrate the application of our rotation system at ultra-low electron temperature, a measurement revealing tilt-induced localization and delocalization in the second Landau level of two-dimensional electron gas is provided.
Collapse
Affiliation(s)
- Pengjie Wang
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Ke Huang
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Jian Sun
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Jingjin Hu
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| | - Hailong Fu
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Xi Lin
- International Center for Quantum Materials, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Song C, Xu D, Zhang P, Wang J, Guo Q, Liu W, Xu K, Deng H, Huang K, Zheng D, Zheng SB, Wang H, Zhu X, Lu CY, Pan JW. Demonstration of Topological Robustness of Anyonic Braiding Statistics with a Superconducting Quantum Circuit. PHYSICAL REVIEW LETTERS 2018; 121:030502. [PMID: 30085793 DOI: 10.1103/physrevlett.121.030502] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Indexed: 05/06/2023]
Abstract
Anyons are quasiparticles occurring in two dimensions, whose topological properties are believed to be robust against local perturbations and may hold promise for fault tolerant quantum computing. Here we present an experiment of demonstrating the path independent nature of anyonic braiding statistics with a superconducting quantum circuit, which represents a 7-qubit version of the toric code model. We dynamically create the ground state of the model, achieving a state fidelity of 0.688±0.015 as verified by quantum state tomography. Anyonic excitations and braiding operations are subsequently implemented with single-qubit rotations. The braiding robustness is witnessed by looping an anyonic excitation around another one along two distinct, but topologically equivalent paths: Both reveal the nontrivial π-phase shift, the hallmark of Abelian 1/2 anyons, with a phase accuracy of ∼99% in the Ramsey-type interference measurement.
Collapse
Affiliation(s)
- Chao Song
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- CAS Center for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Da Xu
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Pengfei Zhang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jianwen Wang
- CAS Center for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qiujiang Guo
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Wuxin Liu
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Kai Xu
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Hui Deng
- CAS Center for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Keqiang Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongning Zheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shi-Biao Zheng
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - H Wang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- CAS Center for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaobo Zhu
- CAS Center for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Chao-Yang Lu
- CAS Center for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| | - Jian-Wei Pan
- CAS Center for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
- CAS-Alibaba Quantum Computing Laboratory, Shanghai 201315, China
| |
Collapse
|
16
|
Song C, Xu K, Liu W, Yang CP, Zheng SB, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen YA, Lu CY, Han S, Pan JW. 10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit. PHYSICAL REVIEW LETTERS 2017; 119:180511. [PMID: 29219550 DOI: 10.1103/physrevlett.119.180511] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Indexed: 06/07/2023]
Abstract
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668±0.025. Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.
Collapse
Affiliation(s)
- Chao Song
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Kai Xu
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wuxin Liu
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chui-Ping Yang
- Department of Physics, Hangzhou Normal University, Hangzhou, Zhejiang 310036, China
| | - Shi-Biao Zheng
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Hui Deng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiwei Xie
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Keqiang Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiujiang Guo
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Libo Zhang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Pengfei Zhang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Da Xu
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Dongning Zheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobo Zhu
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
| | - H Wang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang 310027, China
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Y-A Chen
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
| | - C-Y Lu
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
| | - Siyuan Han
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, USA
| | - Jian-Wei Pan
- CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Shanghai Branch, National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Shanghai 201315, China
| |
Collapse
|
17
|
Song C, Zheng SB, Zhang P, Xu K, Zhang L, Guo Q, Liu W, Xu D, Deng H, Huang K, Zheng D, Zhu X, Wang H. Continuous-variable geometric phase and its manipulation for quantum computation in a superconducting circuit. Nat Commun 2017; 8:1061. [PMID: 29057880 PMCID: PMC5715165 DOI: 10.1038/s41467-017-01156-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/23/2017] [Indexed: 11/23/2022] Open
Abstract
Geometric phase, associated with holonomy transformation in quantum state space, is an important quantum-mechanical effect. Besides fundamental interest, this effect has practical applications, among which geometric quantum computation is a paradigm, where quantum logic operations are realized through geometric phase manipulation that has some intrinsic noise-resilient advantages and may enable simplified implementation of multi-qubit gates compared to the dynamical approach. Here we report observation of a continuous-variable geometric phase and demonstrate a quantum gate protocol based on this phase in a superconducting circuit, where five qubits are controllably coupled to a resonator. Our geometric approach allows for one-step implementation of n-qubit controlled-phase gates, which represents a remarkable advantage compared to gate decomposition methods, where the number of required steps dramatically increases with n. Following this approach, we realize these gates with n up to 4, verifying the high efficiency of this geometric manipulation for quantum computation. Geometric phase is of fundamental interest and has practical application in quantum computation. Here the authors observe continuous-variable geometric phase in a superconducting circuit and demonstrate a multi-qubit controlled phase gate protocol based on this geometric effect.
Collapse
Affiliation(s)
- Chao Song
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shi-Biao Zheng
- Fujian Key Laboratory of Quantum Information and Quantum Optics, College of Physics and Information Engineering, Fuzhou University, Fuzhou, Fujian, 350116, China.
| | - Pengfei Zhang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Kai Xu
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Libo Zhang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Qiujiang Guo
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Wuxin Liu
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Da Xu
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Hui Deng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Keqiang Huang
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dongning Zheng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaobo Zhu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China. .,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - H Wang
- Department of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, China. .,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
18
|
Li K, Wan Y, Hung LY, Lan T, Long G, Lu D, Zeng B, Laflamme R. Experimental Identification of Non-Abelian Topological Orders on a Quantum Simulator. PHYSICAL REVIEW LETTERS 2017; 118:080502. [PMID: 28282193 DOI: 10.1103/physrevlett.118.080502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Indexed: 06/06/2023]
Abstract
Topological orders can be used as media for topological quantum computing-a promising quantum computation model due to its invulnerability against local errors. Conversely, a quantum simulator, often regarded as a quantum computing device for special purposes, also offers a way of characterizing topological orders. Here, we show how to identify distinct topological orders via measuring their modular S and T matrices. In particular, we employ a nuclear magnetic resonance quantum simulator to study the properties of three topologically ordered matter phases described by the string-net model with two string types, including the Z_{2} toric code, doubled semion, and doubled Fibonacci. The third one, non-Abelian Fibonacci order is notably expected to be the simplest candidate for universal topological quantum computing. Our experiment serves as the basic module, built on which one can simulate braiding of non-Abelian anyons and ultimately, topological quantum computation via the braiding, and thus provides a new approach of investigating topological orders using quantum computers.
Collapse
Affiliation(s)
- Keren Li
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, N2L 3G1 Ontario, Canada
| | - Yidun Wan
- Department of Physics and Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Perimeter Institute for Theoretical Physics, Waterloo, N2L 2Y5 Ontario, Canada
| | - Ling-Yan Hung
- Department of Physics and Center for Field Theory and Particle Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Tian Lan
- Perimeter Institute for Theoretical Physics, Waterloo, N2L 2Y5 Ontario, Canada
| | - Guilu Long
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Dawei Lu
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, N2L 3G1 Ontario, Canada
| | - Bei Zeng
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, N2L 3G1 Ontario, Canada
- Department of Mathematics & Statistics, University of Guelph, Guelph, Nag 2W1 Ontario, Canada
- Canadian Institute for Advanced Research, Toronto, M5G 1Z8 Ontario, Canada
| | - Raymond Laflamme
- Institute for Quantum Computing and Department of Physics and Astronomy, University of Waterloo, Waterloo, N2L 3G1 Ontario, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, N2L 2Y5 Ontario, Canada
- Canadian Institute for Advanced Research, Toronto, M5G 1Z8 Ontario, Canada
| |
Collapse
|