1
|
Wang Y, Zhang IY, Xu X. How accurate can Kohn-Sham density functional be for both main-group and transition metal reactions. J Comput Chem 2024; 45:2878-2884. [PMID: 39211974 DOI: 10.1002/jcc.27488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Achieving chemical accuracy in describing reactions involving both main-group elements and transition metals poses a substantial challenge for density functional approximations (DFAs), primarily due to the significantly different behaviors for electrons moving in the s,p-orbitals or in the d,f-orbitals. MOR41, a representative dataset of transition metal chemistry, has highlighted the PWPB95-D3(BJ) functional, a B2PLYP-type doubly hybrid (bDH) approximation equipped with an empirical dispersion correction, as the leading functional thus far (Dohm et al., J Chem Theory Comput 2018;14: 2596-2608). However, this functional is not among the top bDH methods for main-group chemistry (Goerigk et al., Phys Chem Chem Phys. 2017;19: 32184). Conversely, bDH methods such as DSD-BLYP-D3, proficient in main-group chemistry, often falter for transition metal chemistry. Herein, taking advantage of the home-made Rust-based Electronic-Structure Toolkits, we examine a suite of XYG3-type doubly hybrid (xDH) methods. We confirm that the trade-off in descriptive accuracy between main-group and transition metal systems persists within the realm of perturbation theory (PT2)-based xDH methods. Notably, however, our study ushers in a pivotal advance with the recently proposed renormalized xDH method, R-xDH7-SCC15. This method not only distinguishes itself among the elite methods for main-group chemistry, but also achieves an unprecedented accuracy for the MOR41 dataset, outperforming all other reported DFAs. The efficacy of R-xDH7-SCC15 stems from the successful integration of a renormalized PT2 correlation model (rPT2) and a machine-learning strong-correlation correction (SCC15), marking a significant step forward in the realm of computational chemistry.
Collapse
Affiliation(s)
- Yizhen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China
| | - Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China
- Hefei National Laboratory, Hefei, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Shanghai, China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai, China
- Hefei National Laboratory, Hefei, China
| |
Collapse
|
2
|
Wang Y, Lin Z, Ouyang R, Jiang B, Zhang IY, Xu X. Toward Efficient and Unified Treatment of Static and Dynamic Correlations in Generalized Kohn-Sham Density Functional Theory. JACS AU 2024; 4:3205-3216. [PMID: 39211596 PMCID: PMC11350721 DOI: 10.1021/jacsau.4c00488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/26/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Accurate description of the static correlation poses a persistent challenge in electronic structure theory, particularly when it has to be concurrently considered with the dynamic correlation. We develop here a method in the generalized Kohn-Sham density functional theory (DFT) framework, named R-xDH7-SCC15, which achieves an unprecedented accuracy in capturing the static correlation, while maintaining a good description of the dynamic correlation on par with the state-of-the-art DFT and wave function theory methods, all grounded in the same single-reference black-box methodology. Central to R-xDH7-SCC15 is a general-purpose static correlation correction (SCC) model applied to the renormalized XYG3-type doubly hybrid method (R-xDH7). The SCC model development involves a hybrid machine learning strategy that integrates symbolic regression with nonlinear parameter optimization, aiming to achieve a balance between generalization capability, numerical accuracy, and interpretability. Extensive benchmark studies confirm the robustness and broad applicability of R-xDH7-SCC15 across a diverse array of main-group chemical scenarios. Notably, it displays exceptional aptitude in accurately characterizing intricate reaction kinetics and dynamic processes in regions distant from equilibrium, where the influence of static correlation is most profound. Its capability to consistently and efficiently predict the whole energy profiles, activation barriers, and reaction pathways within a user-friendly "black-box" framework represents an important advance in the field of electronic structure theory.
Collapse
Affiliation(s)
- Yizhen Wang
- Shanghai
Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative
Innovation Centre of Chemistry for Energy Materials, MOE Laboratory
for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Zihan Lin
- Shanghai
Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative
Innovation Centre of Chemistry for Energy Materials, MOE Laboratory
for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Runhai Ouyang
- Materials
Genome Institute, Shanghai University, Shanghai 200444, China
| | - Bin Jiang
- Key
Laboratory of Precision and Intelligent Chemistry, Department of Chemical
Physics, University of Science and Technology
of China, Hefei, Anhui 230026, China
- Hefei
National Laboratory, Hefei 230088, China
| | - Igor Ying Zhang
- Shanghai
Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative
Innovation Centre of Chemistry for Energy Materials, MOE Laboratory
for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200438, China
- Hefei
National Laboratory, Hefei 230088, China
- Shanghai
Key Laboratory of Bioactive Small Molecules, Shanghai200032, China
| | - Xin Xu
- Shanghai
Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative
Innovation Centre of Chemistry for Energy Materials, MOE Laboratory
for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200438, China
- Hefei
National Laboratory, Hefei 230088, China
| |
Collapse
|
3
|
Carter-Fenk K, Head-Gordon M. Repartitioned Brillouin-Wigner perturbation theory with a size-consistent second-order correlation energy. J Chem Phys 2023; 158:234108. [PMID: 37338032 PMCID: PMC10284609 DOI: 10.1063/5.0150033] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/05/2023] [Indexed: 06/21/2023] Open
Abstract
Second-order Møller-Plesset perturbation theory (MP2) often breaks down catastrophically in small-gap systems, leaving much to be desired in its performance for myriad chemical applications such as noncovalent interactions, thermochemistry, and dative bonding in transition metal complexes. This divergence problem has reignited interest in Brillouin-Wigner perturbation theory (BWPT), which is regular at all orders but lacks size consistency and extensivity, severely limiting its application to chemistry. In this work, we propose an alternative partitioning of the Hamiltonian that leads to a regular BWPT perturbation series that, through the second order, is size-extensive, size-consistent (provided its Hartree-Fock reference is also), and orbital invariant. Our second-order size-consistent Brillouin-Wigner (BW-s2) approach can describe the exact dissociation limit of H2 in a minimal basis set, regardless of the spin polarization of the reference orbitals. More broadly, we find that BW-s2 offers improvements relative to MP2 for covalent bond breaking, noncovalent interaction energies, and metal/organic reaction energies, although rivaling coupled-cluster with single and double substitutions for thermochemical properties.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Kenneth S. Pitzer Center for Theoretical Chemistry, Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | |
Collapse
|
4
|
Teale AM, Helgaker T, Savin A, Adamo C, Aradi B, Arbuznikov AV, Ayers PW, Baerends EJ, Barone V, Calaminici P, Cancès E, Carter EA, Chattaraj PK, Chermette H, Ciofini I, Crawford TD, De Proft F, Dobson JF, Draxl C, Frauenheim T, Fromager E, Fuentealba P, Gagliardi L, Galli G, Gao J, Geerlings P, Gidopoulos N, Gill PMW, Gori-Giorgi P, Görling A, Gould T, Grimme S, Gritsenko O, Jensen HJA, Johnson ER, Jones RO, Kaupp M, Köster AM, Kronik L, Krylov AI, Kvaal S, Laestadius A, Levy M, Lewin M, Liu S, Loos PF, Maitra NT, Neese F, Perdew JP, Pernal K, Pernot P, Piecuch P, Rebolini E, Reining L, Romaniello P, Ruzsinszky A, Salahub DR, Scheffler M, Schwerdtfeger P, Staroverov VN, Sun J, Tellgren E, Tozer DJ, Trickey SB, Ullrich CA, Vela A, Vignale G, Wesolowski TA, Xu X, Yang W. DFT exchange: sharing perspectives on the workhorse of quantum chemistry and materials science. Phys Chem Chem Phys 2022; 24:28700-28781. [PMID: 36269074 PMCID: PMC9728646 DOI: 10.1039/d2cp02827a] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/09/2022] [Indexed: 12/13/2022]
Abstract
In this paper, the history, present status, and future of density-functional theory (DFT) is informally reviewed and discussed by 70 workers in the field, including molecular scientists, materials scientists, method developers and practitioners. The format of the paper is that of a roundtable discussion, in which the participants express and exchange views on DFT in the form of 302 individual contributions, formulated as responses to a preset list of 26 questions. Supported by a bibliography of 777 entries, the paper represents a broad snapshot of DFT, anno 2022.
Collapse
Affiliation(s)
- Andrew M. Teale
- School of Chemistry, University of Nottingham, University ParkNottinghamNG7 2RDUK
| | - Trygve Helgaker
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andreas Savin
- Laboratoire de Chimie Théorique, CNRS and Sorbonne University, 4 Place Jussieu, CEDEX 05, 75252 Paris, France.
| | - Carlo Adamo
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany.
| | - Alexei V. Arbuznikov
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7Straße des 17. Juni 13510623Berlin
| | | | - Evert Jan Baerends
- Department of Chemistry and Pharmaceutical Sciences, Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Vincenzo Barone
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56125 Pisa, Italy.
| | - Patrizia Calaminici
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Eric Cancès
- CERMICS, Ecole des Ponts and Inria Paris, 6 Avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
| | - Emily A. Carter
- Department of Mechanical and Aerospace Engineering and the Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonNJ 08544-5263USA
| | | | - Henry Chermette
- Institut Sciences Analytiques, Université Claude Bernard Lyon1, CNRS UMR 5280, 69622 Villeurbanne, France.
| | - Ilaria Ciofini
- PSL University, CNRS, ChimieParisTech-PSL, Institute of Chemistry for Health and Life Sciences, i-CLeHS, 11 rue P. et M. Curie, 75005 Paris, France.
| | - T. Daniel Crawford
- Department of Chemistry, Virginia TechBlacksburgVA 24061USA,Molecular Sciences Software InstituteBlacksburgVA 24060USA
| | - Frank De Proft
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | | | - Claudia Draxl
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany. .,Fritz-Haber-Institut der Max-Planck-Gesellschaft, 14195 Berlin, Germany
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, P.O. Box 330440, D-28334 Bremen, Germany. .,Beijing Computational Science Research Center (CSRC), 100193 Beijing, China.,Shenzhen JL Computational Science and Applied Research Institute, 518110 Shenzhen, China
| | - Emmanuel Fromager
- Laboratoire de Chimie Quantique, Institut de Chimie, CNRS/Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France.
| | - Patricio Fuentealba
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, Chile.
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, The James Franck Institute, and Chicago Center for Theoretical Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | - Giulia Galli
- Pritzker School of Molecular Engineering and Department of Chemistry, The University of Chicago, Chicago, IL, USA.
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China. .,Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul Geerlings
- Research Group of General Chemistry (ALGC), Vrije Universiteit Brussel (VUB), Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Nikitas Gidopoulos
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK.
| | - Peter M. W. Gill
- School of Chemistry, University of SydneyCamperdown NSW 2006Australia
| | - Paola Gori-Giorgi
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Andreas Görling
- Chair of Theoretical Chemistry, University of Erlangen-Nuremberg, Egerlandstrasse 3, 91058 Erlangen, Germany.
| | - Tim Gould
- Qld Micro- and Nanotechnology Centre, Griffith University, Gold Coast, Qld 4222, Australia.
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, University of Bonn, Beringstrasse 4, 53115 Bonn, Germany.
| | - Oleg Gritsenko
- Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands.
| | - Hans Jørgen Aagaard Jensen
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Erin R. Johnson
- Department of Chemistry, Dalhousie UniversityHalifaxNova ScotiaB3H 4R2Canada
| | - Robert O. Jones
- Peter Grünberg Institut PGI-1, Forschungszentrum Jülich52425 JülichGermany
| | - Martin Kaupp
- Technische Universität Berlin, Institut für Chemie, Theoretische Chemie/Quantenchemie, Sekr. C7, Straße des 17. Juni 135, 10623, Berlin.
| | - Andreas M. Köster
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav)CDMX07360Mexico
| | - Leeor Kronik
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovoth, 76100, Israel.
| | - Anna I. Krylov
- Department of Chemistry, University of Southern CaliforniaLos AngelesCalifornia 90089USA
| | - Simen Kvaal
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Andre Laestadius
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - Mel Levy
- Department of Chemistry, Tulane University, New Orleans, Louisiana, 70118, USA.
| | - Mathieu Lewin
- CNRS & CEREMADE, Université Paris-Dauphine, PSL Research University, Place de Lattre de Tassigny, 75016 Paris, France.
| | - Shubin Liu
- Research Computing Center, University of North Carolina, Chapel Hill, NC 27599-3420, USA. .,Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | - Pierre-François Loos
- Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, France.
| | - Neepa T. Maitra
- Department of Physics, Rutgers University at Newark101 Warren StreetNewarkNJ 07102USA
| | - Frank Neese
- Max Planck Institut für Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Mülheim an der Ruhr, Germany.
| | - John P. Perdew
- Departments of Physics and Chemistry, Temple UniversityPhiladelphiaPA 19122USA
| | - Katarzyna Pernal
- Institute of Physics, Lodz University of Technology, ul. Wolczanska 219, 90-924 Lodz, Poland.
| | - Pascal Pernot
- Institut de Chimie Physique, UMR8000, CNRS and Université Paris-Saclay, Bât. 349, Campus d'Orsay, 91405 Orsay, France.
| | - Piotr Piecuch
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, USA. .,Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
| | - Elisa Rebolini
- Institut Laue Langevin, 71 avenue des Martyrs, 38000 Grenoble, France.
| | - Lucia Reining
- Laboratoire des Solides Irradiés, CNRS, CEA/DRF/IRAMIS, École Polytechnique, Institut Polytechnique de Paris, F-91120 Palaiseau, France. .,European Theoretical Spectroscopy Facility
| | - Pina Romaniello
- Laboratoire de Physique Théorique (UMR 5152), Université de Toulouse, CNRS, UPS, France.
| | - Adrienn Ruzsinszky
- Department of Physics, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | - Dennis R. Salahub
- Department of Chemistry, Department of Physics and Astronomy, CMS – Centre for Molecular Simulation, IQST – Institute for Quantum Science and Technology, Quantum Alberta, University of Calgary2500 University Drive NWCalgaryAlbertaT2N 1N4Canada
| | - Matthias Scheffler
- The NOMAD Laboratory at the FHI of the Max-Planck-Gesellschaft and IRIS-Adlershof of the Humboldt-Universität zu Berlin, Faradayweg 4-6, D-14195, Germany.
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, 0632 Auckland, New Zealand.
| | - Viktor N. Staroverov
- Department of Chemistry, The University of Western OntarioLondonOntario N6A 5B7Canada
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118, USA.
| | - Erik Tellgren
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033 Blindern, N-0315 Oslo, Norway.
| | - David J. Tozer
- Department of Chemistry, Durham UniversitySouth RoadDurhamDH1 3LEUK
| | - Samuel B. Trickey
- Quantum Theory Project, Deptartment of Physics, University of FloridaGainesvilleFL 32611USA
| | - Carsten A. Ullrich
- Department of Physics and Astronomy, University of MissouriColumbiaMO 65211USA
| | - Alberto Vela
- Departamento de Química, Centro de Investigación y de Estudios Avanzados (Cinvestav), CDMX, 07360, Mexico.
| | - Giovanni Vignale
- Department of Physics, University of Missouri, Columbia, MO 65203, USA.
| | - Tomasz A. Wesolowski
- Department of Physical Chemistry, Université de Genève30 Quai Ernest-Ansermet1211 GenèveSwitzerland
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Weitao Yang
- Department of Chemistry and Physics, Duke University, Durham, NC 27516, USA.
| |
Collapse
|
5
|
Śmiga S, Della Sala F, Gori-Giorgi P, Fabiano E. Self-Consistent Implementation of Kohn-Sham Adiabatic Connection Models with Improved Treatment of the Strong-Interaction Limit. J Chem Theory Comput 2022; 18:5936-5947. [PMID: 36094908 PMCID: PMC9558377 DOI: 10.1021/acs.jctc.2c00352] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Adiabatic connection
models (ACMs), which interpolate between the
limits of weak and strong interaction, are powerful tools to build
accurate exchange–correlation functionals. If the exact weak-interaction
expansion from the second-order perturbation theory is included, a
self-consistent implementation of these functionals is challenging
and still absent in the literature. In this work, we fill this gap
by presenting a fully self-consistent-field (SCF) implementation of
some popular ACM functionals. While using second-order perturbation
theory at weak interactions, we have also introduced new generalized
gradient approximations (GGAs), beyond the usual point-charge-plus-continuum
model, for the first two leading terms at strong interactions, which
are crucial to ensure robustness and reliability. We then assess the
SCF–ACM functionals for molecular systems and for prototypical
strong-correlation problems. We find that they perform well for both
the total energy and the electronic density and that the impact of
SCF orbitals is directly connected to the accuracy of the ACM functional
form. For the H2 dissociation, the SCF–ACM functionals
yield significant improvements with respect to standard functionals
also thanks to the use of the new GGAs for the strong-coupling functionals.
Collapse
Affiliation(s)
- Szymon Śmiga
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, ul. Grudziądzka 5, 87-100 Toruń, Poland
| | - Fabio Della Sala
- Institute for Microelectronics and Microsystems (CNR-IMM), Campus Unisalento, Lecce, Via Monteroni 73100, Italy.,Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano, Lecce 73010, Italy
| | - Paola Gori-Giorgi
- Department of Chemistry & Pharmaceutical Sciences and Amsterdam Institute of Molecular and Life Sciences (AIMMS), Faculty of Science, Vrije Universiteit, De Boelelaan 1083, 1081HV Amsterdam, The Netherlands
| | - Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Campus Unisalento, Lecce, Via Monteroni 73100, Italy.,Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, Arnesano, Lecce 73010, Italy
| |
Collapse
|
6
|
Siecińska S, Śmiga S, Grabowski I, Della Sala F, Fabiano E. Boosting the OEP2-sc method with spin-component scaling. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2037771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sylwia Siecińska
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Szymon Śmiga
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Ireneusz Grabowski
- Faculty of Physics, Astronomy and Informatics, Institute of Physics, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Fabio Della Sala
- Institute for Microelectronics and Microsystems (CNR-IMM), Campus Unisalento, Lecce, Italy
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Arnesano, Italy
| | - Eduardo Fabiano
- Institute for Microelectronics and Microsystems (CNR-IMM), Campus Unisalento, Lecce, Italy
- Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, Arnesano, Italy
| |
Collapse
|
7
|
Vieira D. Readdressing molecular dissociation within the Kohn–Sham formalism of density-functional theory: simple models and a different point of view. Mol Phys 2021. [DOI: 10.1080/00268976.2021.2008037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daniel Vieira
- Departamento de Física, Programa de Pós-Graduação em Física, Universidade do Estado de Santa Catarina, Joinville, SC, Brazil
| |
Collapse
|
8
|
Alipour M, Karimi N. Spin-Opposite-Scaled Range-Separated Exchange Double-Hybrid Models (SOS-RSX-DHs): Marriage Between DH and RSX/SOS-RSX Is Not Always a Happy Match. J Chem Theory Comput 2021; 17:4077-4091. [PMID: 34085815 DOI: 10.1021/acs.jctc.1c00271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The range-separated version of double-hybrid density functional theory (DH-DFT) with a remarkable efficiency for both ground-state and excited-state characteristics has recently come into spotlight. In this work, based on theoretical arguments, several variants of spin-opposite-scaled range-separated exchange double-hybrid models (SOS-RSX-DHs) have been proposed and validated. More specifically, we first extend the RSX-DHs to design some other related models. Next, the SOS version of the resulting approximations is constructed and thoroughly evaluated using standard benchmark compilations of various properties. It is shown that although there are properties for which the RSX-DH and SOS-RSX-DH frameworks are rival, there are still some problems particularly prone to the self-interaction error issues where our proposed models seem to be beneficial. Furthermore, some of the presented models devoid of any additional corrections can also surpass the recently proposed approximations from different rungs of "Jacob's Ladder". Nonetheless, perusing the results of different methods and detailed comparisons with the predecessors discloses that all things may not necessarily be well with the RSX and SOS-RSX schemes, where the parent DHs as well as their SOS counterparts can still come into play.
Collapse
Affiliation(s)
- Mojtaba Alipour
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| | - Niloofar Karimi
- Department of Chemistry, School of Science, Shiraz University, Shiraz 71946-84795, Iran
| |
Collapse
|
9
|
Wang Y, Li Y, Chen J, Zhang IY, Xu X. Doubly Hybrid Functionals Close to Chemical Accuracy for Both Finite and Extended Systems: Implementation and Test of XYG3 and XYGJ-OS. JACS AU 2021; 1:543-549. [PMID: 34467317 PMCID: PMC8395692 DOI: 10.1021/jacsau.1c00011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
While being widely used to understand the chemical reactions in heterogeneous catalysis or other multidisciplinary systems, a great challenge that semilocal and hybrid density functional approximations (DFAs) are facing is to deliver a uniformly accurate description for both finite and extended systems. Herein, we perform reliable and well-converged periodic calculations of two doubly hybrid approximations (DHAs), XYG3 and XYGJ-OS, and demonstrate that the good accuracy of DHAs achieved for molecules is transferable to the semiconductors and insulators. Such an accuracy is not only for energetic properties but also for the first- and second-order response properties, which is general for different kinds of chemical environments, including simple cubic bulks, perovskite-type transition metal oxides like TiO2, and heterogeneous systems like CO adsorption on the NaCl(100) surface. The present finding has strengthened the predictive power of DFT, which not only will inspire the future development of the top-rung DFAs but also will boost their applications in multidisciplinary studies with high accuracy and efficiency.
Collapse
Affiliation(s)
- Yizhen Wang
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai, Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Shanghai Key Laboratory
of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Yajing Li
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai, Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Shanghai Key Laboratory
of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Jun Chen
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese
Academy of Sciences, Fuzhou 350002, People’s Republic
of China
| | - Igor Ying Zhang
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai, Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Shanghai Key Laboratory
of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Xin Xu
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai, Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Shanghai Key Laboratory
of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
10
|
Pure non-local machine-learned density functional theory for electron correlation. Nat Commun 2021; 12:344. [PMID: 33436595 PMCID: PMC7804195 DOI: 10.1038/s41467-020-20471-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 12/02/2020] [Indexed: 01/02/2023] Open
Abstract
Density-functional theory (DFT) is a rigorous and (in principle) exact framework for the description of the ground state properties of atoms, molecules and solids based on their electron density. While computationally efficient density-functional approximations (DFAs) have become essential tools in computational chemistry, their (semi-)local treatment of electron correlation has a number of well-known pathologies, e.g. related to electron self-interaction. Here, we present a type of machine-learning (ML) based DFA (termed Kernel Density Functional Approximation, KDFA) that is pure, non-local and transferable, and can be efficiently trained with fully quantitative reference methods. The functionals retain the mean-field computational cost of common DFAs and are shown to be applicable to non-covalent, ionic and covalent interactions, as well as across different system sizes. We demonstrate their remarkable possibilities by computing the free energy surface for the protonated water dimer at hitherto unfeasible gold-standard coupled cluster quality on a single commodity workstation. Semilocal density functionals, while computationally efficient, do not account for non-local correlation. Here, the authors propose a machine-learning approach to DFT that leads to non-local and transferable functionals applicable to non-covalent, ionic and covalent interactions across system of different sizes.
Collapse
|
11
|
Zhang IY, Xu X. On the top rung of Jacob's ladder of density functional theory: Toward resolving the dilemma of
SIE
and
NCE. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry Fudan University Shanghai China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry Fudan University Shanghai China
| |
Collapse
|
12
|
Roy PO, Cuierrier É, Ernzerhof M. The correlation factor approach: Combining density functional and wave function theory. J Chem Phys 2020; 152:211101. [PMID: 32505142 DOI: 10.1063/5.0010333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Several of the limitations of approximate exchange-correlation functionals within Kohn-Sham density functional theory can be eliminated by extending the single-determinant reference system to a multi-determinant one. Here, we employ the correlation factor ansatz to combine multi-configurational, self-consistent field (MCSCF) with approximate density functionals. In the proposed correlation factor approach, the exchange-correlation hole ρXC(r, u), a function of the reference point r and the electron-electron separation u, is written as a product of the correlation factor fC(r, u) and an exchange plus static-correlation hole ρXS(r, u), i.e., ρXC CFXS(r, u) = fC(r, u)ρXS(r, u). ρXS(r, u) is constructed to reproduce the exchange-correlation energy of an MCSCF reference wave function. The correlation factor fC(r, u) is designed to account for dynamic correlation effects that are absent in ρXS(r, u). The resulting approximation to the exchange-correlation energy, which we refer to as CFXStatic, is free of empirical parameters, and it combines the qualitatively correct description of the electronic structure obtainable with MCSCF with the advantages of approximate density functionals in accounting for dynamic correlation.
Collapse
Affiliation(s)
- Pierre-Olivier Roy
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Étienne Cuierrier
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| | - Matthias Ernzerhof
- Département de Chimie, Université de Montréal, C.P. 6128 Succursale A, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
13
|
Shen T, Zhu Z, Zhang IY, Scheffler M. Massive-Parallel Implementation of the Resolution-of-Identity Coupled-Cluster Approaches in the Numeric Atom-Centered Orbital Framework for Molecular Systems. J Chem Theory Comput 2019; 15:4721-4734. [DOI: 10.1021/acs.jctc.8b01294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tonghao Shen
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Zhenyu Zhu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Igor Ying Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Science, Fudan University, Shanghai 200433, China
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Matthias Scheffler
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
14
|
Margraf JT, Kunkel C, Reuter K. Towards density functional approximations from coupled cluster correlation energy densities. J Chem Phys 2019; 150:244116. [DOI: 10.1063/1.5094788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Johannes T. Margraf
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Christian Kunkel
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Karsten Reuter
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| |
Collapse
|
15
|
Zhang IY, Xu X. Simultaneous Attenuation of Both Self-Interaction Error and Nondynamic Correlation Error in Density Functional Theory: A Spin-Pair Distinctive Adiabatic-Connection Approximation. J Phys Chem Lett 2019; 10:2617-2623. [PMID: 31046289 DOI: 10.1021/acs.jpclett.9b00946] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We present a spin-pair distinctive algorithm in the context of adiabatic-connection fluctuation-dissipation (ACFD) theorem, which enables to quantify the self-interaction error (SIE) and the nondynamic/strong correlation error (NCE) in the direct random-phase approximation (dRPA). Using this knowledge, we propose a spin-component scaled dRPA (scsRPA) correlation model with simultaneous attenuation of both the SIE and the NCE. Along with the exact exchange, scsRPA is shown to present a comprehensive improvement over dRPA, as well as the well-established PBE and PBE0 functionals, for bonding energies of pronounced multireference characters and transition-metal complexes of strongly correlated systems, while consistently providing an accurate description for reaction energies, reaction barriers, and noncovalent bond interactions of weakly correlated systems.
Collapse
Affiliation(s)
- Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry , Fudan University , Shanghai 200433 , China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry , Fudan University , Shanghai 200433 , China
| |
Collapse
|
16
|
Brémond É, Savarese M, Pérez-Jiménez ÁJ, Sancho-García JC, Adamo C. Range-Separated Double-Hybrid Functional from Nonempirical Constraints. J Chem Theory Comput 2018; 14:4052-4062. [PMID: 29923721 DOI: 10.1021/acs.jctc.8b00261] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
On the basis of our previous developments in the field of nonempirical double hybrids, we present here a new exchange-correlation functional based on a range-separated model for the exchange part and integrating a nonlocal perturbative correction to the electron correlation contribution. Named RSX-QIDH, the functional is free from any kind of empirical parametrization. Its range-separation parameter is set to recover the total energy of the hydrogen atom, thus eliminating the self-interaction error for this one-electron system. Subsequent tests on some relevant benchmark data sets confirm that the self-interaction error is particularly low for RSX-QIDH. This new functional provides also correct dissociation profiles for charged rare-gas dimers and very accurate ionization potentials directly from Kohn-Sham orbital energies. Above all, these good results are not obtained at the expense of other properties. Indeed, further tests on standard benchmarks show that RSX-QIDH is competitive with the more empirical ωB97X-2 double hybrid and outperforms the parent LC-PBE long-range corrected hybrid, thus underlining the important role of the nonlocal perturbative correlation.
Collapse
Affiliation(s)
- Éric Brémond
- Université Paris Diderot, Sorbonne Paris Cité, ITODYS, UMR CNRS 7086, 15 rue J.-A. de Baïf , F-75013 Paris , France
| | - Marika Savarese
- CompuNet , Istituto Italiano di Tecnologia , via Morego 30 , I-16163 Genoa , Italy
| | | | | | - Carlo Adamo
- Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, 11, rue Pierre et Marie Curie , F-75005 Paris , France.,Institut Universitaire de France, 103 Boulevard Saint Michel , F-75005 Paris , France
| |
Collapse
|
17
|
Su NQ, Zhu Z, Xu X. Doubly hybrid density functionals that correctly describe both density and energy for atoms. Proc Natl Acad Sci U S A 2018; 115:2287-2292. [PMID: 29444857 PMCID: PMC5878006 DOI: 10.1073/pnas.1713047115] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recently, it was argued [Medvedev MG, et al. (2017) Science 355:49-52] that the development of density functional approximations (DFAs) is "straying from the path toward the exact functional." The exact functional should yield both exact energy and density for a system of interest; nevertheless, they found that many heavily fitted functionals for molecular energies actually lead to poor electron densities of atoms. They also observed a trend that, for the nonempirical and few-parameter functionals, densities can be improved as one climbs up the first four rungs of the Jacob's ladder of DFAs. The XYG3 type of doubly hybrid functionals (xDHs) represents a less-empirical and fewer-parameter functional on the top fifth rung, in which both the Hartree-Fock-like exchange and the second-order perturbative (MP2-like) correlation are hybridized with the low rung functionals. Here, we show that xDHs can well describe both density and energy for the same atomic set of Medvedev et al., showing that the latter trend can well be extended to the top fifth rung.
Collapse
Affiliation(s)
- Neil Qiang Su
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Zhenyu Zhu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Ministry of Education Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai, 200433, China
| |
Collapse
|
18
|
Vuckovic S, Gori-Giorgi P. Simple Fully Nonlocal Density Functionals for Electronic Repulsion Energy. J Phys Chem Lett 2017; 8:2799-2805. [PMID: 28581751 PMCID: PMC5502414 DOI: 10.1021/acs.jpclett.7b01113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/05/2017] [Indexed: 05/24/2023]
Abstract
From a simplified version of the mathematical structure of the strong coupling limit of the exact exchange-correlation functional, we construct an approximation for the electronic repulsion energy at physical coupling strength, which is fully nonlocal. This functional is self-interaction free and yields energy densities within the definition of the electrostatic potential of the exchange-correlation hole that are locally accurate and have the correct asymptotic behavior. The model is able to capture strong correlation effects that arise from chemical bond dissociation, without relying on error cancellation. These features, which are usually missed by standard density functional theory (DFT) functionals, are captured by the highly nonlocal structure, which goes beyond the "Jacob's ladder" framework for functional construction, by using integrals of the density as the key ingredient. Possible routes for obtaining the full exchange-correlation functional by recovering the missing kinetic component of the correlation energy are also implemented and discussed.
Collapse
|
19
|
Vuckovic S, Irons TJP, Wagner LO, Teale AM, Gori-Giorgi P. Interpolated energy densities, correlation indicators and lower bounds from approximations to the strong coupling limit of DFT. Phys Chem Chem Phys 2017; 19:6169-6183. [DOI: 10.1039/c6cp08704c] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|