1
|
Lin W, Sheng J, Zhao N, Xiao Q, An W, Guo R, Wen B, Pan C, Wu L, Guo S. Crystal Growth, Structure, and Diverse Magnetic Behaviors in Frustrated Triangular Lattice REBO 3 (RE = Tb-Yb). Inorg Chem 2024; 63:16667-16675. [PMID: 39186801 DOI: 10.1021/acs.inorgchem.4c01918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Triangular lattice (TL) materials are a rich playground for investigating exotic quantum spin states and related applications in quantum computing and quantum information. Millimeter-level single crystals of REBO3 (RE = Tb-Yb) with a nearly perfect RE-based TL have been successfully grown via a high-temperature flux method and structurally characterized via single-crystal X-ray diffraction. These 113-type materials crystallize in a monoclinic crystal system with a C2/c space group. Anisotropic magnetism and dominant antiferromagnetic interactions are found for the above materials based on DC magnetic susceptibility measurements. The comprehensive low-temperature specific heat data of REBO3 (RE = Tb-Tm) are characterized on single crystals for the first time, which exhibit diverse magnetic behaviors. Specifically, two weak-field-induced transitions could be found in the case of DyBO3 based on the specific heat measurements. Our results suggest that REBO3 (RE = Tb-Yb) is a TL magnetic system for investigating potential quantum magnetism.
Collapse
Affiliation(s)
- Weijie Lin
- Shenzhen Institute for Quantum Science and Engineering, Department of Chemistry, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Jieming Sheng
- School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, China
- Great Bay Institute for Advanced Study, Dongguan 523000, China
| | - Nan Zhao
- Shenzhen Institute for Quantum Science and Engineering, Department of Chemistry, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Quan Xiao
- Shenzhen Institute for Quantum Science and Engineering, Department of Chemistry, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Weiran An
- Shenzhen Institute for Quantum Science and Engineering, Department of Chemistry, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Ruixin Guo
- Shenzhen Institute for Quantum Science and Engineering, Department of Chemistry, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Bo Wen
- School of Physics and Electronics, Henan University, Kaifeng 475004, China
| | - Changzhao Pan
- Shenzhen Institute for Quantum Science and Engineering, Department of Chemistry, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| | - Liusuo Wu
- Shenzhen Institute for Quantum Science and Engineering, Department of Chemistry, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shu Guo
- Shenzhen Institute for Quantum Science and Engineering, Department of Chemistry, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
| |
Collapse
|
2
|
Zhu Z, Pan B, Nie L, Ni J, Yang Y, Chen C, Jiang C, Huang Y, Cheng E, Yu Y, Miao J, Hillier AD, Chen X, Wu T, Zhou Y, Li S, Shu L. Fluctuating magnetic droplets immersed in a sea of quantum spin liquid. Innovation (N Y) 2023; 4:100459. [PMID: 37560333 PMCID: PMC10407545 DOI: 10.1016/j.xinn.2023.100459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/08/2023] [Indexed: 08/11/2023] Open
Abstract
The search of quantum spin liquid (QSL), an exotic magnetic state with strongly fluctuating and highly entangled spins down to zero temperature, is a main theme in current condensed matter physics. However, there is no smoking gun evidence for deconfined spinons in any QSL candidate so far. The disorders and competing exchange interactions may prevent the formation of an ideal QSL state on frustrated spin lattices. Here we report comprehensive and systematic measurements of the magnetic susceptibility, ultralow-temperature specific heat, muon spin relaxation (μSR), nuclear magnetic resonance (NMR), and thermal conductivity for NaYbSe2 single crystals, in which Yb3+ ions with effective spin-1/2 form a perfect triangular lattice. All these complementary techniques find no evidence of long-range magnetic order down to their respective base temperatures. Instead, specific heat, μSR, and NMR measurements suggest the coexistence of quasi-static and dynamic spins in NaYbSe2. The scattering from these quasi-static spins may cause the absence of magnetic thermal conductivity. Thus, we propose a scenario of fluctuating ferrimagnetic droplets immersed in a sea of QSL. This may be quite common on the way pursuing an ideal QSL, and provides a brand new platform to study how a QSL state survives impurities and coexists with other magnetically ordered states.
Collapse
Affiliation(s)
- Zihao Zhu
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Binglin Pan
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Linpeng Nie
- CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jiamin Ni
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yanxing Yang
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Changsheng Chen
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Chengyu Jiang
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yeyu Huang
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Erjian Cheng
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Yunjie Yu
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
| | - Jianjian Miao
- Department of Physics, the University of Hong Kong, Hong Kong, China
| | - Adrian D. Hillier
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Xianhui Chen
- CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
| | - Tao Wu
- CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- CAS Center for Excellence in Superconducting Electronics (CENSE), Shanghai 200050, China
| | - Yi Zhou
- Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Shiyan Li
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Lei Shu
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
3
|
Pan BY, Xu Y, Ni JM, Zhou SY, Hong XC, Qiu X, Li SY. Unambiguous Experimental Verification of Linear-in-Temperature Spinon Thermal Conductivity in an Antiferromagnetic Heisenberg Chain. PHYSICAL REVIEW LETTERS 2022; 129:167201. [PMID: 36306770 DOI: 10.1103/physrevlett.129.167201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/07/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The everlasting interest in spin chains is mostly rooted in the fact that they generally allow for comparisons between theory and experiment with remarkable accuracy, especially for exactly solvable models. A notable example is the spin-1/2 antiferromagnetic Heisenberg chain (AFHC), which can be well described by the Tomonaga-Luttinger liquid theory and exhibits fractionalized spinon excitations with distinct thermodynamic and spectroscopic experimental signatures consistent with theoretical predictions. A missing piece, however, is the lack of a comprehensive understanding of the spinon heat transport in AFHC systems, due to difficulties in its experimental evaluation against the backdrop of other heat carriers and complex scattering processes. Here we address this situation by performing ultralow-temperature thermal conductivity measurements on a nearly ideal spin-1/2 AFHC system copper benzoate Cu(C_{6}H_{5}COO)_{2}·3H_{2}O, whose field-dependent spin excitation gap enables a reliable extraction of the spinon thermal conductivity κ_{s} at zero field. κ_{s} was found to exhibit a linear temperature dependence κ_{s}∼T at low temperatures, with κ_{s}/T as large as 1.70 mW cm^{-1} K^{-2}, followed by a precipitate decline below ∼0.3 K. The observed κ_{s}∼T clarifies the discrepancies between various spin chain systems and serves as a benchmark for one-dimensional spinon heat transport in the low-temperature limit. The abrupt loss of κ_{s} with no corresponding anomaly in the specific heat is discussed in the context of many-body localization.
Collapse
Affiliation(s)
- B Y Pan
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Y Xu
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - J M Ni
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - S Y Zhou
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - X C Hong
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - X Qiu
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
| | - S Y Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China
| |
Collapse
|
4
|
Huang Q, Rawl R, Xie WW, Chou ES, Zapf VS, Ding XX, Mauws C, Wiebe CR, Feng EX, Cao HB, Tian W, Ma J, Qiu Y, Butch N, Zhou HD. Non-magnetic ion site disorder effects on the quantum magnetism of a spin-1/2 equilateral triangular lattice antiferromagnet. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:205401. [PMID: 35189602 DOI: 10.1088/1361-648x/ac5703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
With the motivation to study how non-magnetic ion site disorder affects the quantum magnetism of Ba3CoSb2O9, a spin-1/2 equilateral triangular lattice antiferromagnet, we performed DC and AC susceptibility, specific heat, elastic and inelastic neutron scattering measurements on single crystalline samples of Ba2.87Sr0.13CoSb2O9with Sr doping on non-magnetic Ba2+ion sites. The results show that Ba2.87Sr0.13CoSb2O9exhibits (i) a two-step magnetic transition at 2.7 K and 3.3 K, respectively; (ii) a possible canted 120 degree spin structure at zero field with reduced ordered moment as 1.24μB/Co; (iii) a series of spin state transitions for bothH∥ab-plane andH∥c-axis. ForH∥ab-plane, the magnetization plateau feature related to the up-up-down phase is significantly suppressed; (iv) an inelastic neutron scattering spectrum with only one gapped mode at zero field, which splits to one gapless and one gapped mode at 9 T. All these features are distinctly different from those observed for the parent compound Ba3CoSb2O9, which demonstrates that the non-magnetic ion site disorder (the Sr doping) plays a complex role on the magnetic properties beyond the conventionally expected randomization of the exchange interactions. We propose the additional effects including the enhancement of quantum spin fluctuations and introduction of a possible spatial anisotropy through the local structural distortions.
Collapse
Affiliation(s)
- Q Huang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States of America
| | - R Rawl
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States of America
| | - W W Xie
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, United States of America
| | - E S Chou
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States of America
| | - V S Zapf
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - X X Ding
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - C Mauws
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - C R Wiebe
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
- Department of Chemistry, University of Winnipeg, Winnipeg, Manitoba R3B 2E9, Canada
- Department of Physics and Astronomy, McMaster University, Hamilton, Ontario L8S 4M1, Canada
| | - E X Feng
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - H B Cao
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - W Tian
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, United States of America
| | - J Ma
- Laboratory of Artificial Structures and Quantum Control, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 110016 Shenyang, People's Republic of China
| | - Y Qiu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - N Butch
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, United States of America
| | - H D Zhou
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996, United States of America
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, United States of America
| |
Collapse
|
5
|
Huang YY, Xu Y, Wang L, Zhao CC, Tu CP, Ni JM, Wang LS, Pan BL, Fu Y, Hao Z, Liu C, Mei JW, Li SY. Heat Transport in Herbertsmithite: Can a Quantum Spin Liquid Survive Disorder? PHYSICAL REVIEW LETTERS 2021; 127:267202. [PMID: 35029499 DOI: 10.1103/physrevlett.127.267202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
One favorable situation for spins to enter the long-sought quantum spin liquid (QSL) state is when they sit on a kagome lattice. No consensus has been reached in theory regarding the true ground state of this promising platform. The experimental efforts, relying mostly on one archetypal material ZnCu_{3}(OH)_{6}Cl_{2}, have also led to diverse possibilities. Apart from subtle interactions in the Hamiltonian, there is the additional degree of complexity associated with disorder in the real material ZnCu_{3}(OH)_{6}Cl_{2} that haunts most experimental probes. Here we resort to heat transport measurement, a cleaner probe in which instead of contributing directly, the disorder only impacts the signal from the kagome spins. For ZnCu_{3}(OH)_{6}Cl_{2}, we observed no contribution by any spin excitation nor obvious field-induced change to the thermal conductivity. These results impose strong constraints on various scenarios about the ground state of this kagome compound: while certain quantum paramagnetic states other than a QSL may serve as natural candidates, a QSL state, gapless or gapped, must be dramatically modified by the disorder so that the kagome spin excitations are localized.
Collapse
Affiliation(s)
- Y Y Huang
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Y Xu
- Key Laboratory of Polar Materials and Devices (MOE), School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China
| | - Le Wang
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - C C Zhao
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - C P Tu
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - J M Ni
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - L S Wang
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - B L Pan
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
| | - Ying Fu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhanyang Hao
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Cai Liu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jia-Wei Mei
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Quantum Functional Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
| | - S Y Li
- State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
6
|
Živković I, Favre V, Salazar Mejia C, Jeschke HO, Magrez A, Dabholkar B, Noculak V, Freitas RS, Jeong M, Hegde NG, Testa L, Babkevich P, Su Y, Manuel P, Luetkens H, Baines C, Baker PJ, Wosnitza J, Zaharko O, Iqbal Y, Reuther J, Rønnow HM. Magnetic Field Induced Quantum Spin Liquid in the Two Coupled Trillium Lattices of K_{2}Ni_{2}(SO_{4})_{3}. PHYSICAL REVIEW LETTERS 2021; 127:157204. [PMID: 34677991 DOI: 10.1103/physrevlett.127.157204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/04/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Quantum spin liquids are exotic states of matter that form when strongly frustrated magnetic interactions induce a highly entangled quantum paramagnet far below the energy scale of the magnetic interactions. Three-dimensional cases are especially challenging due to the significant reduction of the influence of quantum fluctuations. Here, we report the magnetic characterization of K_{2}Ni_{2}(SO_{4})_{3} forming a three-dimensional network of Ni^{2+} spins. Using density functional theory calculations, we show that this network consists of two interconnected spin-1 trillium lattices. In the absence of a magnetic field, magnetization, specific heat, neutron scattering, and muon spin relaxation experiments demonstrate a highly correlated and dynamic state, coexisting with a peculiar, very small static component exhibiting a strongly renormalized moment. A magnetic field B≳4 T diminishes the ordered component and drives the system into a pure quantum spin liquid state. This shows that a system of interconnected S=1 trillium lattices exhibits a significantly elevated level of geometrical frustration.
Collapse
Affiliation(s)
- Ivica Živković
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Virgile Favre
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Catalina Salazar Mejia
- Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Harald O Jeschke
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| | - Arnaud Magrez
- Crystal Growth Facility, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Bhupen Dabholkar
- Department of Physics and Quantum Centers in Diamond and Emerging Materials (QuCenDiEM) Group, Indian Institute of Technology Madras, Chennai 600036, India
| | - Vincent Noculak
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Helmholtz-Zentrum für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Rafael S Freitas
- 7 Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Minki Jeong
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Nagabhushan G Hegde
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Luc Testa
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Peter Babkevich
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Yixi Su
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich, Lichtenbergstrasse 1, D-85747 Garching, Germany
| | - Pascal Manuel
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Hubertus Luetkens
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Christopher Baines
- Laboratory for Muon Spin Spectroscopy, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - Peter J Baker
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Jochen Wosnitza
- Hochfeld-Magnetlabor Dresden (HLD-EMFL) and Würzburg-Dresden Cluster of Excellence ct.qmat, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
- Institut für Festkörper- und Materialphysik, TU Dresden, 01062 Dresden, Germany
| | - Oksana Zaharko
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5253 Villigen, Switzerland
| | - Yasir Iqbal
- Department of Physics and Quantum Centers in Diamond and Emerging Materials (QuCenDiEM) Group, Indian Institute of Technology Madras, Chennai 600036, India
| | - Johannes Reuther
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Helmholtz-Zentrum für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Henrik M Rønnow
- Laboratory for Quantum Magnetism, Institute of Physics, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Rao X, Hussain G, Huang Q, Chu WJ, Li N, Zhao X, Dun Z, Choi ES, Asaba T, Chen L, Li L, Yue XY, Wang NN, Cheng JG, Gao YH, Shen Y, Zhao J, Chen G, Zhou HD, Sun XF. Survival of itinerant excitations and quantum spin state transitions in YbMgGaO 4 with chemical disorder. Nat Commun 2021; 12:4949. [PMID: 34400621 PMCID: PMC8367942 DOI: 10.1038/s41467-021-25247-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
A recent focus of quantum spin liquid (QSL) studies is how disorder/randomness in a QSL candidate affects its true magnetic ground state. The ultimate question is whether the QSL survives disorder or the disorder leads to a “spin-liquid-like” state, such as the proposed random-singlet (RS) state. Since disorder is a standard feature of most QSL candidates, this question represents a major challenge for QSL candidates. YbMgGaO4, a triangular lattice antiferromagnet with effective spin-1/2 Yb3+ions, is an ideal system to address this question, since it shows no long-range magnetic ordering with Mg/Ga site disorder. Despite the intensive study, it remains unresolved as to whether YbMgGaO4 is a QSL or in the RS state. Here, through ultralow-temperature thermal conductivity and magnetic torque measurements, plus specific heat and DC magnetization data, we observed a residual κ0/T term and series of quantum spin state transitions in the zero temperature limit for YbMgGaO4. These observations strongly suggest that a QSL state with itinerant excitations and quantum spin fluctuations survives disorder in YbMgGaO4. It remains an open question as to whether the quantum spin liquid state survives material disorder, or is replaced by some spin-liquid like state. Here, Rao et al succeed in resolving a resolving a κ0/T residual in the thermal conductivity of YbMgGaO4 strongly suggesting the survival of the quantum spin liquid state.
Collapse
Affiliation(s)
- X Rao
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - G Hussain
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Q Huang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
| | - W J Chu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - N Li
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - X Zhao
- School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Z Dun
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA
| | - E S Choi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, USA
| | - T Asaba
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - L Chen
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - L Li
- Department of Physics, University of Michigan, Ann Arbor, MI, USA
| | - X Y Yue
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, People's Republic of China
| | - N N Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - J-G Cheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Y H Gao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, People's Republic of China
| | - Y Shen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, People's Republic of China
| | - J Zhao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, People's Republic of China
| | - G Chen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, People's Republic of China. .,Department of Physics and HKU-UCAS Joint Institute for Theoretical and Computational Physics at Hong Kong, The University of Hong Kong, Hong Kong, China.
| | - H D Zhou
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, USA.
| | - X F Sun
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, Hefei, Anhui, People's Republic of China. .,Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
8
|
Abstract
Quantum spin liquids are an exciting playground for exotic physical phenomena and emergent many-body quantum states. The realization and discovery of quantum spin liquid candidate materials and associated phenomena lie at the intersection of solid-state chemistry, condensed matter physics, and materials science and engineering. In this review, we provide the current status of the crystal chemistry, synthetic techniques, physical properties, and research methods in the field of quantum spin liquids. We highlight a number of specific quantum spin liquid candidate materials and their structure-property relationships, elucidating their fascinating behavior and connecting it to the intricacies of their structures. Furthermore, we share our thoughts on defects and their inevitable presence in materials, of which quantum spin liquids are no exception, which can complicate the interpretation of characterization of these materials, and urge the community to extend their attention to materials preparation and data analysis, cognizant of the impact of defects. This review was written with the intention of providing guidance on improving the materials design and growth of quantum spin liquids, and to paint a picture of the beauty of the underlying chemistry of this exciting class of materials.
Collapse
Affiliation(s)
- Juan R Chamorro
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for Quantum Matter, Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Tyrel M McQueen
- Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Institute for Quantum Matter, Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, Maryland 21218, United States.,Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Thao T Tran
- Department of Chemistry, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
9
|
Ni JM, Huang YY, Cheng EJ, Yu YJ, Pan BL, Li Q, Xu LM, Tian ZM, Li SY. Giant isotropic magneto-thermal conductivity of metallic spin liquid candidate Pr 2Ir 2O 7 with quantum criticality. Nat Commun 2021; 12:307. [PMID: 33436565 PMCID: PMC7804409 DOI: 10.1038/s41467-020-20562-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/09/2020] [Indexed: 12/05/2022] Open
Abstract
Spin liquids are exotic states with no spontaneous symmetry breaking down to zero-temperature because of the highly entangled and fluctuating spins in frustrated systems. Exotic excitations like magnetic monopoles, visons, and photons may emerge from quantum spin ice states, a special kind of spin liquids in pyrochlore lattices. These materials usually are insulators, with an exception of the pyrochlore iridate Pr2Ir2O7, which was proposed as a metallic spin liquid located at a zero-field quantum critical point. Here we report the ultralow-temperature thermal conductivity measurements on Pr2Ir2O7. The Wiedemann-Franz law is verified at high fields and inferred at zero field, suggesting no breakdown of Landau quasiparticles at the quantum critical point, and the absence of mobile fermionic excitations. This result puts strong constraints on the description of the quantum criticality in Pr2Ir2O7. Unexpectedly, although the specific heats are anisotropic with respect to magnetic field directions, the thermal conductivities display the giant but isotropic response. This indicates that quadrupolar interactions and quantum fluctuations are important, which will help determine the true ground state of this material.
Collapse
Affiliation(s)
- J M Ni
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Y Y Huang
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - E J Cheng
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Y J Yu
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - B L Pan
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - Q Li
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China
| | - L M Xu
- School of Physics, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Z M Tian
- School of Physics, and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - S Y Li
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China.
| |
Collapse
|
10
|
Li N, Huang Q, Yue XY, Chu WJ, Chen Q, Choi ES, Zhao X, Zhou HD, Sun XF. Possible itinerant excitations and quantum spin state transitions in the effective spin-1/2 triangular-lattice antiferromagnet Na 2BaCo(PO 4) 2. Nat Commun 2020; 11:4216. [PMID: 32839456 PMCID: PMC7445251 DOI: 10.1038/s41467-020-18041-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 08/03/2020] [Indexed: 11/09/2022] Open
Abstract
The most fascinating feature of certain two-dimensional (2D) gapless quantum spin liquid (QSL) is that their spinon excitations behave like the fermionic carriers of a paramagnetic metal. The spinon Fermi surface is then expected to produce a linear increase of the thermal conductivity with temperature that should manifest via a residual value (κ0/T) in the zero-temperature limit. However, this linear in T behavior has been reported for very few QSL candidates. Here, we studied the ultralow-temperature thermal conductivity of an effective spin-1/2 triangular QSL candidate Na2BaCo(PO4)2, which has an antiferromagnetic order at very low temperature (TN ~ 148 mK), and observed a finite κ0/T extrapolated from the data above TN. Moreover, while approaching zero temperature, it exhibits series of quantum spin state transitions with applied field along the c axis. These observations indicate that Na2BaCo(PO4)2 possibly behaves as a gapless QSL with itinerant spin excitations above TN and its strong quantum spin fluctuations persist below TN.
Collapse
Affiliation(s)
- N Li
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Q Huang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996-1200, USA
| | - X Y Yue
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, People's Republic of China
| | - W J Chu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - Q Chen
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996-1200, USA
| | - E S Choi
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL, 32310-3706, USA
| | - X Zhao
- School of Physical Sciences, University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China
| | - H D Zhou
- Department of Physics and Astronomy, University of Tennessee, Knoxville, TN, 37996-1200, USA.
| | - X F Sun
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, and Key Laboratory of Strongly-Coupled Quantum Matter Physics (CAS), University of Science and Technology of China, 230026, Hefei, Anhui, People's Republic of China. .,Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
11
|
Li Y, Gegenwart P, Tsirlin AA. Spin liquids in geometrically perfect triangular antiferromagnets. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:224004. [PMID: 32015221 DOI: 10.1088/1361-648x/ab724e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The cradle of quantum spin liquids, triangular antiferromagnets show strong proclivity to magnetic order and require deliberate tuning to stabilize a spin-liquid state. In this brief review, we juxtapose recent theoretical developments that trace the parameter regime of the spin-liquid phase, with experimental results for Co-based and Yb-based triangular antiferromagnets. Unconventional spin dynamics arising from both ordered and disordered ground states are discussed, and the notion of a geometrically perfect triangular system is scrutinized to demonstrate non-trivial imperfections that may assist magnetic frustration in stabilizing dynamic spin states with peculiar excitations.
Collapse
Affiliation(s)
- Yuesheng Li
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany. Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, 430074 Wuhan, People's Republic of China
| | | | | |
Collapse
|
12
|
Ferreira T, Xing J, Sanjeewa LD, Sefat AS. Frustrated Magnetism in Triangular Lattice TlYbS 2 Crystals Grown via Molten Flux. Front Chem 2020; 8:127. [PMID: 32175311 PMCID: PMC7054481 DOI: 10.3389/fchem.2020.00127] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/12/2020] [Indexed: 11/23/2022] Open
Abstract
The triangular lattice compound TlYbS2 was prepared as large single crystals via a molten flux growth technique using sodium chloride. Anisotropic magnetic susceptibility measurements down to 0.4 K indicate a complete absence of long-range magnetic order. Despite this lack of long-range order, short-range antiferromagnetic interactions are evidenced through broad transitions, suggesting frustrated behavior. Variable magnetic field measurements reveal metamagnetic behavior at temperatures ≤2 K. Complex low temperature field-tunable magnetic behavior, in addition to no observable long-range order down to 0.4 K, suggest that TlYbS2 is a frustrated magnet and a possible quantum spin liquid candidate.
Collapse
Affiliation(s)
- Timothy Ferreira
- Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN, United States
| | - Jie Xing
- Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN, United States
| | - Liurukara D Sanjeewa
- Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN, United States
| | - Athena S Sefat
- Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, TN, United States
| |
Collapse
|
13
|
Broholm C, Cava RJ, Kivelson SA, Nocera DG, Norman MR, Senthil T. Quantum spin liquids. Science 2020; 367:367/6475/eaay0668. [DOI: 10.1126/science.aay0668] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- C. Broholm
- Institute for Quantum Matter and Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - R. J. Cava
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - S. A. Kivelson
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - D. G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - M. R. Norman
- Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - T. Senthil
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
14
|
Lima MP. Spatial anisotropy of the quantum spin liquid system YbMgGaO 4 revealed by ab initio calculations. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:025505. [PMID: 31581147 DOI: 10.1088/1361-648x/ab4ab6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
YbMgGaO4 was recently proposed as a promising quantum-spin-liquid candidate material. However, some details of its structure, such as those related to a spatial anisotropy, were not completely understood. In this work, we perform ab initio calculations based on density-functional-theory to investigate the structural, the electronic and the magnetic properties of YbMgGaO4. The geometrical model was constructed to take into account disorder effects produced by the random distribution of Ga and Mg along the lattice. We found a substantial spatial anisotropy revealed by variations up to 8% in the Mg-O and Ga-O bond lengths, which results in variations up to 3% in the Yb-Yb distances along its triangular lattice. Thus, the Yb lattice was not perfectly triangular. Furthermore, we demonstrate an out-of-plane magnetization at the Yb atoms with magnetic anisotropy energy of [Formula: see text] eV/Yb and a small interlayer exchange of [Formula: see text] eV/Yb, demonstrating that the system is only approximately two-dimensional. The presented results provide insights for an atomic-scale understanding of YbMgGaO4 with density-functional-theory calculations.
Collapse
Affiliation(s)
- Matheus P Lima
- Department of Physics, Federal University of São Carlos, CEP 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
15
|
Kawamura H, Uematsu K. Nature of the randomness-induced quantum spin liquids in two dimensions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:504003. [PMID: 31470422 DOI: 10.1088/1361-648x/ab400c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The nature of the randomness-induced quantum spin liquid state, the random-singlet state, is investigated in two dimensions (2D) by means of the exact-diagonalization and the Hams-de Raedt methods for several frustrated lattices, e.g. the triangular, the kagome and the J 1-J 2 square lattices. Properties of the ground state, the low-energy excitations and the finite-temperature thermodynamic quantities are investigated. The ground state and the low-lying excited states consist of nearly isolated singlet-dimers, clusters of resonating singlet-dimers, and orphan spins. Low-energy excitations are either singlet-to-triplet excitations, diffusion of orphan spins accompanied by the recombination of nearby singlet-dimers, creation or destruction of resonating singlet-dimers clusters. The latter two excitations give enhanced dynamical 'liquid-like' features to the 2D random-singlet state. Comparison is made with the random-singlet state in a 1D chain without frustration, the similarity and the difference between in 1D and in 2D being highlighted. Frustration in a wide sense, not only the geometrical one but also including the one arising from the competition between distinct types of interactions, play an essential role in stabilizing this frustrated random singlet state. Recent experimental situations on both organic and inorganic materials are reviewed and discussed.
Collapse
Affiliation(s)
- Hikaru Kawamura
- Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | | |
Collapse
|
16
|
Ni JM, Pan BL, Song BQ, Huang YY, Zeng JY, Yu YJ, Cheng EJ, Wang LS, Dai DZ, Kato R, Li SY. Absence of Magnetic Thermal Conductivity in the Quantum Spin Liquid Candidate EtMe_{3}Sb[Pd(dmit)_{2}]_{2}. PHYSICAL REVIEW LETTERS 2019; 123:247204. [PMID: 31922852 DOI: 10.1103/physrevlett.123.247204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/07/2019] [Indexed: 06/10/2023]
Abstract
We present the ultralow-temperature specific heat and thermal conductivity measurements on single crystals of triangular-lattice compound EtMe_{3}Sb[Pd(dmit)_{2}]_{2}, which has long been considered as a gapless quantum spin liquid candidate. In specific heat measurements, a finite linear term is observed, consistent with the previous work [S. Yamashita et al., Nat. Commun. 2, 275 (2011)NCAOBW2041-172310.1038/ncomms1274]. However, we do not observe a finite residual linear term in the thermal conductivity measurements, and the thermal conductivity does not change in a magnetic field of 6 T. These results are in sharp contrast to previous thermal conductivity measurements on EtMe_{3}Sb[Pd(dmit)_{2}]_{2} [M. Yamashita et al., Science 328, 1246 (2010)SCIEAS0036-807510.1126/science.1188200], in which a huge residual linear term was observed and attributed to highly mobile gapless excitations, likely the spinons of a quantum spin liquid. In this context, the true ground state of EtMe_{3}Sb[Pd(dmit)_{2}]_{2} has to be reconsidered.
Collapse
Affiliation(s)
- J M Ni
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - B L Pan
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - B Q Song
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Y Y Huang
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - J Y Zeng
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - Y J Yu
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - E J Cheng
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - L S Wang
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - D Z Dai
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
| | - R Kato
- RIKEN, Condensed Molecular Materials Laboratory, Wako 351-0198, Japan
| | - S Y Li
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
17
|
Thermodynamic, Dynamic, and Transport Properties of Quantum Spin Liquid in Herbertsmithite from an Experimental and Theoretical Point of View. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4030075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In our review, we focus on the quantum spin liquid (QSL), defining the thermodynamic, transport, and relaxation properties of geometrically frustrated magnet (insulators) represented by herbertsmithite ZnCu 3 ( OH ) 6 Cl 2 . The review mostly deals with an historical perspective of our theoretical contributions on this subject, based on the theory of fermion condensation closely related to the emergence (due to geometrical frustration) of dispersionless parts in the fermionic quasiparticle spectrum, so-called flat bands. QSL is a quantum state of matter having neither magnetic order nor gapped excitations even at zero temperature. QSL along with heavy fermion metals can form a new state of matter induced by the topological fermion condensation quantum phase transition. The observation of QSL in actual materials such as herbertsmithite is of fundamental significance both theoretically and technologically, as it could open a path to the creation of topologically protected states for quantum information processing and quantum computation. It is therefore of great importance to establish the presence of a gapless QSL state in one of the most prospective materials, herbertsmithite. In this respect, the interpretation of current theoretical and experimental studies of herbertsmithite are controversial in their implications. Based on published experimental data augmented by our theoretical analysis, we present evidence for the the existence of a QSL in the geometrically frustrated insulator herbertsmithite ZnCu 3 ( OH ) 6 Cl 2 , providing a strategy for unambiguous identification of such a state in other materials. To clarify the nature of QSL in herbertsmithite, we recommend measurements of heat transport, low-energy inelastic neutron scattering, and optical conductivity σ ¯ in ZnCu 3 ( OH ) 6 Cl 2 crystals subject to an external magnetic field at low temperatures. Our analysis of the behavior of σ ¯ in herbertsmithite justifies this set of measurements, which can provide a conclusive experimental demonstration of the nature of its spinon-composed quantum spin liquid. Theoretical study of the optical conductivity of herbertsmithite allows us to expose the physical mechanisms responsible for its temperature and magnetic field dependence. We also suggest that artificially or spontaneously introducing inhomogeneity at nanoscale into ZnCu 3 ( OH ) 6 Cl 2 can both stabilize its QSL and simplify its chemical preparation, and can provide for tests that elucidate the role of impurities. We make predictions of the results of specified measurements related to the dynamical, thermodynamic, and transport properties in the case of a gapless QSL.
Collapse
|
18
|
Li Y, Bachus S, Liu B, Radelytskyi I, Bertin A, Schneidewind A, Tokiwa Y, Tsirlin AA, Gegenwart P. Rearrangement of Uncorrelated Valence Bonds Evidenced by Low-Energy Spin Excitations in YbMgGaO_{4}. PHYSICAL REVIEW LETTERS 2019; 122:137201. [PMID: 31012603 DOI: 10.1103/physrevlett.122.137201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Indexed: 05/02/2023]
Abstract
dc-magnetization data measured down to 40 mK speak against conventional freezing and reinstate YbMgGaO_{4} as a triangular spin-liquid candidate. Magnetic susceptibility measured parallel and perpendicular to the c axis reaches constant values below 0.1 and 0.2 K, respectively, thus indicating the presence of gapless low-energy spin excitations. We elucidate their nature in the triple-axis inelastic neutron scattering experiment that pinpoints the low-energy (E≤J_{0}∼0.2 meV) part of the excitation continuum present at low temperatures (T<J_{0}/k_{B}), but completely disappearing upon warming the system above T≫J_{0}/k_{B}. In contrast to the high-energy part at E>J_{0} that is rooted in the breaking of nearest-neighbor valence bonds and persists to temperatures well above J_{0}/k_{B}, the low-energy one originates from the rearrangement of the valence bonds and thus from the propagation of unpaired spins. We further extend this picture to herbertsmithite, the spin-liquid candidate on the kagome lattice, and argue that such a hierarchy of magnetic excitations may be a universal feature of quantum spin liquids.
Collapse
Affiliation(s)
- Yuesheng Li
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Sebastian Bachus
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Benqiong Liu
- Key Laboratory of Neutron Physics, Institute of Nuclear Physics and Chemistry, CAEP, Mianyang 621900, People's Republic of China
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Igor Radelytskyi
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Alexandre Bertin
- Institut fuer Festkörperphysik, TU Dresden, D-01062, Dresden, Germany
| | - Astrid Schneidewind
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85748 Garching, Germany
| | - Yoshifumi Tokiwa
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Alexander A Tsirlin
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Philipp Gegenwart
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
19
|
Guo S, Kong T, Xie W, Nguyen L, Stolze K, Cevallos FA, Cava RJ. Triangular Rare-Earth Lattice Materials RbBaR(BO3)2 (R = Y, Gd–Yb) and Comparison to the KBaR(BO3)2 Analogs. Inorg Chem 2019; 58:3308-3315. [DOI: 10.1021/acs.inorgchem.8b03372] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shu Guo
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Tai Kong
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Weiwei Xie
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Loi Nguyen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Karoline Stolze
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - F. Alex Cevallos
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - R. J. Cava
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
20
|
Bordelon MM, Kenney E, Liu C, Hogan T, Posthuma L, Kavand M, Lyu Y, Sherwin M, Butch NP, Brown C, Graf MJ, Balents L, Wilson SD. Field-tunable quantum disordered ground state in the triangular-lattice antiferromagnet NaYbO 2. NATURE PHYSICS 2019; 15:10.1038/s41567-019-0594-5. [PMID: 39411404 PMCID: PMC11474925 DOI: 10.1038/s41567-019-0594-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/16/2019] [Indexed: 10/19/2024]
Abstract
Antiferromagnetically coupled S = 1 / 2 spins on an isotropic triangular lattice are the paradigm of frustrated quantum magnetism, but structurally ideal realizations are rare. Here, we investigate NaYbO2, which hosts an ideal triangular lattice of effectiveJ eff = 1 / 2 moments with no inherent site disorder. No signatures of conventional magnetic order appear down to 50 mK, strongly suggesting a quantum spin liquid ground state. We observe a two-peak specific heat and a nearly quadratic temperature dependence, in agreement with expectations for a two-dimensional Dirac spin liquid. Application of a magnetic field strongly perturbs the quantum disordered ground state and induces a clear transition into a collinear ordered state, consistent with a long-predicted up-up-down structure for a triangular-lattice XXZ Hamiltonian driven by quantum fluctuations. The observation of spin liquid signatures in zero field and quantum-induced ordering in intermediate fields in the same compound demonstrates an intrinsically quantum disordered ground state. We conclude that NaYbO2 is a model, versatile platform for exploring spin liquid physics with full tunability of field and temperature.
Collapse
Affiliation(s)
- Mitchell M. Bordelon
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Eric Kenney
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Chunxiao Liu
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Tom Hogan
- Quantum Design, Inc., San Diego, CA, USA
| | - Lorenzo Posthuma
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Marzieh Kavand
- Department of Physics and Center for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Yuanqi Lyu
- Department of Physics and Center for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Mark Sherwin
- Department of Physics and Center for Terahertz Science and Technology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - N. P. Butch
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Craig Brown
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - M. J. Graf
- Department of Physics, Boston College, Chestnut Hill, MA, USA
| | - Leon Balents
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Stephen D. Wilson
- Materials Department, University of California, Santa Barbara, Santa Barbara, CA, USA
| |
Collapse
|
21
|
Scaling and data collapse from local moments in frustrated disordered quantum spin systems. Nat Commun 2018; 9:4367. [PMID: 30349043 PMCID: PMC6197223 DOI: 10.1038/s41467-018-06800-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/14/2018] [Indexed: 11/30/2022] Open
Abstract
Recently measurements on various spin–1/2 quantum magnets such as H3LiIr2O6, LiZn2Mo3O8, ZnCu3(OH)6Cl2 and 1T-TaS2—all described by magnetic frustration and quenched disorder but with no other common relation—nevertheless showed apparently universal scaling features at low temperature. In particular the heat capacity C[H, T] in temperature T and magnetic field H exhibits T/H data collapse reminiscent of scaling near a critical point. Here we propose a theory for this scaling collapse based on an emergent random-singlet regime extended to include spin-orbit coupling and antisymmetric Dzyaloshinskii-Moriya (DM) interactions. We derive the scaling C[H, T]/T ~ H−γFq[T/H] with Fq[x] = xq at small x, with q ∈ {0, 1, 2} an integer exponent whose value depends on spatial symmetries. The agreement with experiments indicates that a fraction of spins form random valence bonds and that these are surrounded by a quantum paramagnetic phase. We also discuss distinct scaling for magnetization with a q-dependent subdominant term enforced by Maxwell’s relations. There are many proposals for new forms of quantum matter in frustrated magnets but in practice disorder prevents the realisation of theoretically-tractable idealised models. Kimchi et al. show that recently observed scaling behavior common to several disordered quantum magnets can be understood as the emergence of a universal random-singlet regime.
Collapse
|
22
|
Shen Y, Li YD, Walker HC, Steffens P, Boehm M, Zhang X, Shen S, Wo H, Chen G, Zhao J. Fractionalized excitations in the partially magnetized spin liquid candidate YbMgGaO 4. Nat Commun 2018; 9:4138. [PMID: 30297766 PMCID: PMC6175835 DOI: 10.1038/s41467-018-06588-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 09/11/2018] [Indexed: 11/18/2022] Open
Abstract
Quantum spin liquids (QSLs) are exotic states of matter characterized by emergent gauge structures and fractionalized elementary excitations. The recently discovered triangular lattice antiferromagnet YbMgGaO4 is a promising QSL candidate, and the nature of its ground state is still under debate. Here we use neutron scattering to study the spin excitations in YbMgGaO4 under various magnetic fields. Our data reveal a dispersive spin excitation continuum with clear upper and lower excitation edges under a weak magnetic field (H = 2.5 T). Moreover, a spectral crossing emerges at the Γ point at the Zeeman-split energy. The corresponding redistribution of the spectral weight and its field-dependent evolution are consistent with the theoretical prediction based on the inter-band and intra-band spinon particle-hole excitations associated with the Zeeman-split spinon bands, implying the presence of fractionalized excitations and spinon Fermi surfaces in the partially magnetized QSL state in YbMgGaO4. Recent experiments have indicated that YbMgGaO4 may be a quantum spin liquid with spinon Fermi surfaces but additional evidence is needed to support this interpretation. Shen et al. show weak magnetic fields cause changes in the excitation continuum that are consistent with spin liquid predictions.
Collapse
Affiliation(s)
- Yao Shen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Yao-Dong Li
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China.,Center for Field Theory and Particle Physics, Fudan University, Shanghai, 200433, China
| | - H C Walker
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon, OX11 0QX, UK
| | - P Steffens
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - M Boehm
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042, Grenoble Cedex 9, France
| | - Xiaowen Zhang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Shoudong Shen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Hongliang Wo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China
| | - Gang Chen
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China. .,Center for Field Theory and Particle Physics, Fudan University, Shanghai, 200433, China. .,Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China.
| | - Jun Zhao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, 200433, China. .,Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China.
| |
Collapse
|
23
|
Doki H, Akazawa M, Lee HY, Han JH, Sugii K, Shimozawa M, Kawashima N, Oda M, Yoshida H, Yamashita M. Spin Thermal Hall Conductivity of a Kagome Antiferromagnet. PHYSICAL REVIEW LETTERS 2018; 121:097203. [PMID: 30230896 DOI: 10.1103/physrevlett.121.097203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/10/2018] [Indexed: 06/08/2023]
Abstract
A clear thermal Hall signal (κ_{xy}) was observed in the spin-liquid phase of the S=1/2 kagome antiferromagnet Ca kapellasite [CaCu_{3}(OH)_{6}Cl_{2}·0.6H_{2}O]. We found that κ_{xy} is well reproduced, both qualitatively and quantitatively, using the Schwinger-boson mean-field theory with the Dzyaloshinskii-Moriya interaction of D/J∼0.1. In particular, κ_{xy} values of Ca kapellasite and those of another kagome antiferromagnet, volborthite, converge to one single curve in simulations modeled using Schwinger bosons, indicating a common temperature dependence of κ_{xy} for the spins of a kagome antiferromagnet.
Collapse
Affiliation(s)
- Hayato Doki
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Masatoshi Akazawa
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Hyun-Yong Lee
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Jung Hoon Han
- Department of Physics, Sungkyunkwan University, Suwon 16419, Korea
| | - Kaori Sugii
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Masaaki Shimozawa
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Naoki Kawashima
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| | - Migaku Oda
- Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroyuki Yoshida
- Department of Physics, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Minoru Yamashita
- The Institute for Solid State Physics, The University of Tokyo, Kashiwa, 277-8581, Japan
| |
Collapse
|
24
|
Zhu Z, Maksimov PA, White SR, Chernyshev AL. Topography of Spin Liquids on a Triangular Lattice. PHYSICAL REVIEW LETTERS 2018; 120:207203. [PMID: 29864346 DOI: 10.1103/physrevlett.120.207203] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/12/2018] [Indexed: 06/08/2023]
Abstract
Spin systems with frustrated anisotropic interactions are of significant interest due to possible exotic ground states. We have explored their phase diagram on a nearest-neighbor triangular lattice using the density-matrix renormalization group and mapped out the topography of the region that can harbor a spin liquid. We find that this spin-liquid phase is continuously connected to a previously discovered spin-liquid phase of the isotropic J_{1}-J_{2} model. The two limits show nearly identical spin correlations, making the case that their respective spin liquids are isomorphic to each other.
Collapse
Affiliation(s)
- Zhenyue Zhu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - P A Maksimov
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Steven R White
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - A L Chernyshev
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
25
|
Isono T, Sugiura S, Terashima T, Miyagawa K, Kanoda K, Uji S. Spin-lattice decoupling in a triangular-lattice quantum spin liquid. Nat Commun 2018; 9:1509. [PMID: 29666404 PMCID: PMC5904176 DOI: 10.1038/s41467-018-04005-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 03/27/2018] [Indexed: 11/10/2022] Open
Abstract
A quantum spin liquid (QSL) is an exotic state of matter in condensed-matter systems, where the electron spins are strongly correlated, but conventional magnetic orders are suppressed down to zero temperature because of strong quantum fluctuations. One of the most prominent features of a QSL is the presence of fractionalized spin excitations, called spinons. Despite extensive studies, the nature of the spinons is still highly controversial. Here we report magnetocaloric-effect measurements on an organic spin-1/2 triangular-lattice antiferromagnet, showing that electron spins are decoupled from a lattice in a QSL state. The decoupling phenomena support the gapless nature of spin excitations. We further find that as a magnetic field is applied away from a quantum critical point, the number of spin states that interact with lattice vibrations is strongly reduced, leading to weak spin–lattice coupling. The results are compared with a model of a strongly correlated QSL near a quantum critical point. A number of materials have been proposed as realizations of exotic quantum spin liquids but many important properties are difficult to establish. Isono et al. show evidence for spin-lattice decoupling in an organic material, which may help resolve conflicting results about the existence of a spin-excitation gap.
Collapse
Affiliation(s)
- Takayuki Isono
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0003, Japan. .,Condensed Molecular Materials Laboratory, RIKEN, Wako, Saitama, 351-0198, Japan.
| | - Shiori Sugiura
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0003, Japan
| | - Taichi Terashima
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0003, Japan
| | - Kazuya Miyagawa
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kazushi Kanoda
- Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shinya Uji
- National Institute for Materials Science, Tsukuba, Ibaraki, 305-0003, Japan.
| |
Collapse
|
26
|
Ma Z, Wang J, Dong ZY, Zhang J, Li S, Zheng SH, Yu Y, Wang W, Che L, Ran K, Bao S, Cai Z, Čermák P, Schneidewind A, Yano S, Gardner JS, Lu X, Yu SL, Liu JM, Li S, Li JX, Wen J. Spin-Glass Ground State in a Triangular-Lattice Compound YbZnGaO_{4}. PHYSICAL REVIEW LETTERS 2018. [PMID: 29543015 DOI: 10.1103/physrevlett.120.087201] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
We report on comprehensive results identifying the ground state of a triangular-lattice structured YbZnGaO_{4} as a spin glass, including no long-range magnetic order, prominent broad excitation continua, and the absence of magnetic thermal conductivity. More crucially, from the ultralow-temperature ac susceptibility measurements, we unambiguously observe frequency-dependent peaks around 0.1 K, indicating the spin-glass ground state. We suggest this conclusion holds also for its sister compound YbMgGaO_{4}, which is confirmed by the observation of spin freezing at low temperatures. We consider disorder and frustration to be the main driving force for the spin-glass phase.
Collapse
Affiliation(s)
- Zhen Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jinghui Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Zhao-Yang Dong
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jun Zhang
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Shichao Li
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Shu-Han Zheng
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yunjie Yu
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Wei Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Liqiang Che
- Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China
| | - Kejing Ran
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Song Bao
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - Zhengwei Cai
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - P Čermák
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - A Schneidewind
- Jülich Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum (MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstr. 1, 85748 Garching, Germany
| | - S Yano
- National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan
| | - J S Gardner
- National Synchrotron Radiation Research Center, Hsinchu 30077, Taiwan
- Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| | - Xin Lu
- Center for Correlated Matter and Department of Physics, Zhejiang University, Hangzhou 310058, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shun-Li Yu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun-Ming Liu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Shiyan Li
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jian-Xin Li
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jinsheng Wen
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
27
|
Yu YJ, Xu Y, Ran KJ, Ni JM, Huang YY, Wang JH, Wen JS, Li SY. Ultralow-Temperature Thermal Conductivity of the Kitaev Honeycomb Magnet α-RuCl_{3} across the Field-Induced Phase Transition. PHYSICAL REVIEW LETTERS 2018; 120:067202. [PMID: 29481222 DOI: 10.1103/physrevlett.120.067202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Indexed: 06/08/2023]
Abstract
Recently, there have been increasingly hot debates on whether there exists a quantum spin liquid in the Kitaev honeycomb magnet α-RuCl_{3} in a high magnetic field. To investigate this issue, we perform ultralow-temperature thermal conductivity measurements on single crystals of α-RuCl_{3} down to 80 mK and up to 9 T. Our experiments clearly show a field-induced phase transition occurring at μ_{0}H_{c}≈7.5 T, above which the magnetic order is completely suppressed. The minimum of thermal conductivity at 7.5 T is attributed to the strong scattering of phonons by magnetic fluctuations. Most importantly, above 7.5 T, we do not observe any significant contribution of thermal conductivity from gapless magnetic excitations, which puts a strong constraint on the nature of the high-field phase of α-RuCl_{3}.
Collapse
Affiliation(s)
- Y J Yu
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Y Xu
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - K J Ran
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - J M Ni
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Y Y Huang
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - J H Wang
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
| | - J S Wen
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - S Y Li
- State Key Laboratory of Surface Physics, Department of Physics, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| |
Collapse
|
28
|
Luo ZX, Lake E, Mei JW, Starykh OA. Spinon Magnetic Resonance of Quantum Spin Liquids. PHYSICAL REVIEW LETTERS 2018; 120:037204. [PMID: 29400534 DOI: 10.1103/physrevlett.120.037204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Indexed: 06/07/2023]
Abstract
We describe electron spin resonance in a quantum spin liquid with significant spin-orbit coupling. We find that the resonance directly probes spinon continuum, which makes it an efficient and informative probe of exotic excitations of the spin liquid. Specifically, we consider spinon resonance of three different spinon mean-field Hamiltonians, obtained with the help of projective symmetry group analysis, which model a putative quantum spin liquid state of the triangular rare-earth antiferromagnet YbMgGaO_{4}. The band of absorption is found to be very broad and exhibit strong van Hove singularities of single spinon spectrum as well as pronounced polarization dependence.
Collapse
Affiliation(s)
- Zhu-Xi Luo
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Ethan Lake
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jia-Wei Mei
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA
| | - Oleg A Starykh
- Department of Physics and Astronomy, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
29
|
Zhu Z, Maksimov PA, White SR, Chernyshev AL. Disorder-Induced Mimicry of a Spin Liquid in YbMgGaO_{4}. PHYSICAL REVIEW LETTERS 2017; 119:157201. [PMID: 29077468 DOI: 10.1103/physrevlett.119.157201] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Indexed: 06/07/2023]
Abstract
We suggest that a randomization of the pseudodipolar interaction in the spin-orbit-generated low-energy Hamiltonian of YbMgGaO_{4} due to an inhomogeneous charge environment from a natural mixing of Mg^{2+} and Ga^{3+} can give rise to orientational spin disorder and mimic a spin-liquid-like state. In the absence of such quenched disorder, 1/S and density matrix renormalization group calculations both show robust ordered states for the physically relevant phases of the model. Our scenario is consistent with the available experimental data, and further experiments are proposed to support it.
Collapse
Affiliation(s)
- Zhenyue Zhu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - P A Maksimov
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Steven R White
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - A L Chernyshev
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|
30
|
Gonzalez-Arraga LA, Lado JL, Guinea F, San-Jose P. Electrically Controllable Magnetism in Twisted Bilayer Graphene. PHYSICAL REVIEW LETTERS 2017; 119:107201. [PMID: 28949176 DOI: 10.1103/physrevlett.119.107201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Twisted graphene bilayers develop highly localized states around AA-stacked regions for small twist angles. We show that interaction effects may induce either an antiferromagnetic or a ferromagnetic (FM) polarization of said regions, depending on the electrical bias between layers. Remarkably, FM-polarized AA regions under bias develop spiral magnetic ordering, with a relative 120° misalignment between neighboring regions due to a frustrated antiferromagnetic exchange. This remarkable spiral magnetism emerges naturally without the need of spin-orbit coupling, and competes with the more conventional lattice-antiferromagnetic instability, which interestingly develops at smaller bias under weaker interactions than in monolayer graphene, due to Fermi velocity suppression. This rich and electrically controllable magnetism could turn twisted bilayer graphene into an ideal system to study frustrated magnetism in two dimensions.
Collapse
Affiliation(s)
| | - J L Lado
- QuantaLab, International Iberian Nanotechnology Laboratory (INL), Avenida Mestre Jose Veiga, 4715-330 Braga, Portugal
| | - Francisco Guinea
- IMDEA Nanociencia, Calle de Faraday, 9, Cantoblanco, 28049 Madrid, Spain
- School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Pablo San-Jose
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
31
|
Li Y, Adroja D, Voneshen D, Bewley RI, Zhang Q, Tsirlin AA, Gegenwart P. Nearest-neighbour resonating valence bonds in YbMgGaO 4. Nat Commun 2017. [PMID: 28639624 PMCID: PMC5489678 DOI: 10.1038/ncomms15814] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Since its proposal by Anderson, resonating valence bonds (RVB) formed by a superposition of fluctuating singlet pairs have been a paradigmatic concept in understanding quantum spin liquids. Here, we show that excitations related to singlet breaking on nearest-neighbour bonds describe the high-energy part of the excitation spectrum in YbMgGaO4, the effective spin-1/2 frustrated antiferromagnet on the triangular lattice, as originally considered by Anderson. By a thorough single-crystal inelastic neutron scattering study, we demonstrate that nearest-neighbour RVB excitations account for the bulk of the spectral weight above 0.5 meV. This renders YbMgGaO4 the first experimental system where putative RVB correlations restricted to nearest neighbours are observed, and poses a fundamental question of how complex interactions on the triangular lattice conspire to form this unique many-body state. The signature of short range resonating valence bonds (RVB) to understand quantum spin liquids is yet to be explored. Here, Li et al. observe the putative RVB correlations restricted to nearest neighbours in YbMgGaO4, responsible for the high-energy spin excitations.
Collapse
Affiliation(s)
- Yuesheng Li
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany.,Department of Physics, Renmin University of China, Beijing 100872, China
| | - Devashibhai Adroja
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK.,Highly Correlated Matter Research Group, Physics Department, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - David Voneshen
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Robert I Bewley
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire OX11 0QX, UK
| | - Qingming Zhang
- Department of Physics, Renmin University of China, Beijing 100872, China.,Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Alexander A Tsirlin
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Philipp Gegenwart
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| |
Collapse
|
32
|
Li Y, Adroja D, Bewley RI, Voneshen D, Tsirlin AA, Gegenwart P, Zhang Q. Crystalline Electric-Field Randomness in the Triangular Lattice Spin-Liquid YbMgGaO_{4}. PHYSICAL REVIEW LETTERS 2017; 118:107202. [PMID: 28339219 DOI: 10.1103/physrevlett.118.107202] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 06/06/2023]
Abstract
We apply moderate-high-energy inelastic neutron scattering (INS) measurements to investigate Yb^{3+} crystalline electric field (CEF) levels in the triangular spin-liquid candidate YbMgGaO_{4}. Three CEF excitations from the ground-state Kramers doublet are centered at the energies ℏω=39, 61, and 97 meV in agreement with the effective spin-1/2 g factors and experimental heat capacity, but reveal sizable broadening. We argue that this broadening originates from the site mixing between Mg^{2+} and Ga^{3+} giving rise to a distribution of Yb-O distances and orientations and, thus, of CEF parameters that account for the peculiar energy profile of the CEF excitations. The CEF randomness gives rise to a distribution of the effective spin-1/2 g factors and explains the unprecedented broadening of low-energy magnetic excitations in the fully polarized ferromagnetic phase of YbMgGaO_{4}, although a distribution of magnetic couplings due to the Mg/Ga disorder may be important as well.
Collapse
Affiliation(s)
- Yuesheng Li
- Department of Physics, Renmin University of China, Beijing 100872, People's Republic of China
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Devashibhai Adroja
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, United Kingdom
- Highly Correlated Matter Research Group, Physics Department, University of Johannesburg, PO Box 524, Auckland Park 2006, South Africa
| | - Robert I Bewley
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, United Kingdom
| | - David Voneshen
- ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxfordshire, OX11 0QX, United Kingdom
| | - Alexander A Tsirlin
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Philipp Gegenwart
- Experimental Physics VI, Center for Electronic Correlations and Magnetism, University of Augsburg, 86159 Augsburg, Germany
| | - Qingming Zhang
- Department of Physics, Renmin University of China, Beijing 100872, People's Republic of China
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, People's Republic of China
| |
Collapse
|