1
|
Zhang SH, Shao DF, Wang ZA, Yang J, Yang W, Tsymbal EY. Tunneling Valley Hall Effect Driven by Tilted Dirac Fermions. PHYSICAL REVIEW LETTERS 2023; 131:246301. [PMID: 38181146 DOI: 10.1103/physrevlett.131.246301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
Valleytronics is a research field utilizing a valley degree of freedom of electrons for information processing and storage. A strong valley polarization is critical for realistic valleytronic applications. Here, we predict a tunneling valley Hall effect (TVHE) driven by tilted Dirac fermions in all-in-one tunnel junctions based on a two-dimensional (2D) valley material. Different doping of the electrode and spacer regions in these tunnel junctions results in momentum filtering of the tunneling Dirac fermions, generating a strong transverse valley Hall current dependent on the Dirac-cone tilting. Using the parameters of an existing 2D valley material, we demonstrate that such a strong TVHE can host a giant valley Hall angle even in the absence of the Berry curvature. Finally, we predict that resonant tunneling can occur in a tunnel junction with properly engineered device parameters such as the spacer width and transport direction, providing significant enhancement of the valley Hall angle. Our work opens a new approach to generate valley polarization in realistic valleytronic systems.
Collapse
Affiliation(s)
- Shu-Hui Zhang
- College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ding-Fu Shao
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Zi-An Wang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei 230026, China
| | - Jin Yang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Wen Yang
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Evgeny Y Tsymbal
- Department of Physics and Astronomy & Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588-0299, USA
| |
Collapse
|
2
|
Wang Z, Cheng S, Liu X, Jiang H. Topological kink states in graphene. NANOTECHNOLOGY 2021; 32:402001. [PMID: 34161935 DOI: 10.1088/1361-6528/ac0dd8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Due to the unique band structure, graphene exhibits a number of exotic electronic properties that have not been observed in other materials. Among them, it has been demonstrated that there exist the one-dimensional valley-polarized topological kink states localized in the vicinity of the domain wall of graphene systems, where a bulk energy gap opens due to the inversion symmetry breaking. Notably, the valley-momentum locking nature makes the topological kink states attractive to the property manipulation in valleytronics. This paper systematically reviews both the theoretical research and experimental progress on topological kink states in monolayer graphene, bilayer graphene and graphene-like classical wave systems. Besides, various applications of topological kink states, including the valley filter, current partition, current manipulation, Majorana zero modes and etc, are also introduced.
Collapse
Affiliation(s)
- Zibo Wang
- College of Physics and Electronic Engineering, Sichuan Normal University, Chengdu 610068, People's Republic of China
- Center for Computational Sciences, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Shuguang Cheng
- Department of Physics, Northwest University, Xi'an 710069, People's Republic of China
| | - Xiao Liu
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
| | - Hua Jiang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China
- Institute for Advanced Study of Soochow University, Suzhou 215006, People's Republic of China
| |
Collapse
|
3
|
Mu HY, Yao YT, Li JR, Liu GC, He C, Sun YJ, Yang G, An XT, Zhang Y, Liu JJ. Valley Polarization and Valleyresistance in a Monolayer Transition Metal Dichalcogenide Superlattice. J Phys Chem Lett 2020; 11:3882-3888. [PMID: 32338921 DOI: 10.1021/acs.jpclett.0c00863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A significant, fundamental challenge in the field of valleytronics is how to generate and regulate valley-polarized currents in practical ways. Here, we discover a new mechanism for producing valley polarization in a monolayer transition metal dichalcogenide superlattice, in which valley-resolved gaps are formed at the supercell Brillouin zone boundaries and centers due to intervalley scattering. When the incident energy of the electron lies in the gaps, the available states are valley polarized, thus providing a valley-polarized current from the superlattice. We show that the direction and strength of the valley polarization may be further tuned by varying the potential applied to the superlattice. The transmission can have a net valley polarization of 55% for a four-period heterostructure. Moreover, two such valley filters in series may function as an electrostatically controlled giant valleyresistance device, representing a zero-magnetic field counterpart to the familiar giant magnetoresistance device.
Collapse
Affiliation(s)
- Hui-Ying Mu
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Yi-Tong Yao
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Jie-Ru Li
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Guo-Cai Liu
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Chao He
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Ying-Jie Sun
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Guang Yang
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Xing-Tao An
- School of Science, Hebei University of Science and Technology, Shijiazhuang, Hebei 050018, China
| | - Yongzhe Zhang
- College of Materials Science and Engineering, Beijing University of Technology, No. 100 Pingleyuan Chaoyang District, Beijing 100124, China
| | - Jian-Jun Liu
- Physics Department, Shijiazhuang University, Shijiazhuang, Hebei 050035, China
| |
Collapse
|
4
|
Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 2019; 48:72-133. [DOI: 10.1039/c8cs00324f] [Citation(s) in RCA: 978] [Impact Index Per Article: 195.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article provides a comprehensive review of MXene materials and their energy-related applications.
Collapse
Affiliation(s)
- Jinbo Pang
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Institute for Advanced Interdisciplinary Research (iAIR)
- University of Jinan
| | - Rafael G. Mendes
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
| | - Alicja Bachmatiuk
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
| | - Liang Zhao
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
- School of Energy
- Soochow University
- Suzhou
| | - Huy Q. Ta
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
- School of Energy
- Soochow University
- Suzhou
| | - Thomas Gemming
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR)
- University of Jinan
- Jinan 250022
- China
- State Key Laboratory of Crystal Materials
| | - Zhongfan Liu
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
- School of Energy
- Soochow University
- Suzhou
| | - Mark H. Rummeli
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
| |
Collapse
|