1
|
Zhang A, Xie J, Xu H, Zheng K, Zhang H, Poon YT, Vedral V, Zhang L. Experimental Self-Characterization of Quantum Measurements. PHYSICAL REVIEW LETTERS 2020; 124:040402. [PMID: 32058739 DOI: 10.1103/physrevlett.124.040402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 06/10/2023]
Abstract
The accurate and reliable description of measurement devices is a central problem in both observing uniquely nonclassical behaviors and realizing quantum technologies from powerful computing to precision metrology. To date quantum tomography is the prevalent tool to characterize quantum detectors. However, such a characterization relies on accurately characterized probe states, rendering reliability of the characterization lost in circular argument. Here we report a self-characterization method of quantum measurements based on reconstructing the response range-the entirety of attainable measurement outcomes, eliminating the reliance on known states. We characterize two representative measurements implemented with photonic setups and obtain fidelities above 99.99% with the conventional tomographic reconstructions. This initiates range-based techniques in characterizing quantum systems and foreshadows novel device-independent protocols of quantum information applications.
Collapse
Affiliation(s)
- Aonan Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation (Ministry of Education), College of Engineering and Applied Sciences and School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jie Xie
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation (Ministry of Education), College of Engineering and Applied Sciences and School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Huichao Xu
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation (Ministry of Education), College of Engineering and Applied Sciences and School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Kaimin Zheng
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation (Ministry of Education), College of Engineering and Applied Sciences and School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Han Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation (Ministry of Education), College of Engineering and Applied Sciences and School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yiu-Tung Poon
- Department of Mathematics, Iowa State University, Ames, Iowa 50011, USA
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen, 518055, China
| | - Vlatko Vedral
- Atomic and Laser Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX13PU, United Kingdom
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543, Singapore
| | - Lijian Zhang
- National Laboratory of Solid State Microstructures, Key Laboratory of Intelligent Optical Sensing and Manipulation (Ministry of Education), College of Engineering and Applied Sciences and School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Budroni C. Contextuality, memory cost and non-classicality for sequential measurements. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20190141. [PMID: 31522636 PMCID: PMC6754713 DOI: 10.1098/rsta.2019.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 06/10/2023]
Abstract
The Kochen-Specker theorem, and the associated notion of quantum contextuality, can be considered as the starting point for the development of a notion of non-classical correlations for single systems. The subsequent debate around the possibility of an experimental test of Kochen-Specker-type contradiction stimulated the development of different theoretical frameworks to interpret experimental results. Starting from the approach based on sequential measurements, we will discuss a generalization of the notion of non-classical temporal correlations that goes beyond the contextuality approach and related ones based on Leggett and Garg's notion of macrorealism, and it is based on the notion of memory cost of generating correlations. Finally, we will review recent results on the memory cost for generating temporal correlations in classical and quantum systems. The present work is based on the talk given at the Purdue Winer Memorial Lectures 2018: probability and contextuality. This article is part of the theme issue 'Contextuality and probability in quantum mechanics and beyond'.
Collapse
Affiliation(s)
- Costantino Budroni
- Institute for Quantum Optics and Quantum Information (IQOQI), Austrian Academy of Sciences, Boltzmanngasse 3, 1090 Vienna, Austria
| |
Collapse
|
3
|
Dall’Arno M, Brandsen S, Buscemi F. Device-independent tests of quantum channels. Proc Math Phys Eng Sci 2017; 473:20160721. [PMID: 28413337 PMCID: PMC5378235 DOI: 10.1098/rspa.2016.0721] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 02/13/2017] [Indexed: 11/12/2022] Open
Abstract
We develop a device-independent framework for testing quantum channels. That is, we falsify a hypothesis about a quantum channel based only on an observed set of input-output correlations. Formally, the problem consists of characterizing the set of input-output correlations compatible with any arbitrary given quantum channel. For binary (i.e. two input symbols, two output symbols) correlations, we show that extremal correlations are always achieved by orthogonal encodings and measurements, irrespective of whether or not the channel preserves commutativity. We further provide a full, closed-form characterization of the sets of binary correlations in the case of: (i) any dihedrally covariant qubit channel (such as any Pauli and amplitude-damping channels) and (ii) any universally-covariant commutativity-preserving channel in an arbitrary dimension (such as any erasure, depolarizing, universal cloning and universal transposition channels).
Collapse
Affiliation(s)
- Michele Dall’Arno
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| | - Sarah Brandsen
- Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore
| | - Francesco Buscemi
- Graduate School of Information Science, Nagoya University, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|