1
|
Wang F, Zhang H, Nestler B. Wetting Phenomena: Line Tension and Gravitational Effect. PHYSICAL REVIEW LETTERS 2024; 133:246201. [PMID: 39750331 DOI: 10.1103/physrevlett.133.246201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/05/2024] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
An apparent contact angle is formed when a droplet is deposited on a solid substrate. Young's law has been employed to describe the equilibrium contact angle. Often in experiments, the equilibrium contact angle deviates from Young's law and depends on the volume of the droplet, known as the line tension effect. However, the physical origin of the line tension is quite controversial. Especially, the sign and the quantity of the line tension spanning 6 orders of magnitude are unsolved problems. Here, we quantify the line energy in terms of physical parameters and demonstrate that both positive and negative line tensions exist. The results are quantitatively compared with existing experiments as well as with previous theories.
Collapse
Affiliation(s)
| | | | - Britta Nestler
- Institute for Applied Materials - Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany; and Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133 Karlsruhe, Germany
| |
Collapse
|
2
|
Wang F, Nestler B. Wetting and Contact-Angle Hysteresis: Density Asymmetry and van der Waals Force. PHYSICAL REVIEW LETTERS 2024; 132:126202. [PMID: 38579226 DOI: 10.1103/physrevlett.132.126202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/23/2024] [Indexed: 04/07/2024]
Abstract
A droplet depositing on a solid substrate leads to the wetting phenomenon, such as dew on plant leaves. On an ideally smooth substrate, the classic Young's law has been employed to describe the wetting effect. However, no real substrate is ideally smooth at the microscale. Given this fact, we introduce a surface composition concept to scrutinize the wetting mechanism via considering the liquid-gas density asymmetry and the fluid-solid van der Waals interaction. The current concept enables one to comprehend counterintuitive phenomenon of contact-angle hysteresis on a smooth substrate and increase of contact angle with temperature as well as gas bubble wetting.
Collapse
Affiliation(s)
- Fei Wang
- Institute for Applied Materials-Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Britta Nestler
- Institute for Applied Materials-Microstructure Modelling and Simulation (IAM-MMS), Karlsruhe Institute of Technology (KIT), Strasse am Forum 7, 76131 Karlsruhe, Germany; Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany and Institute of Digital Materials Science, Karlsruhe University of Applied Sciences, Moltkestrasse 30, 76133 Karlsruhe, Germany
| |
Collapse
|
3
|
Rauscher PM. Renormalized one-loop theory of correlations in disperse polymer blends. J Chem Phys 2023; 159:244906. [PMID: 38156636 DOI: 10.1063/5.0183860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024] Open
Abstract
Polymer blends are critical in many commercial products and industrial processes and their phase behavior is therefore of paramount importance. In most circumstances, such blends are formulated with samples of high dispersity, which have generally only been studied at the mean-field level. Here, we extend the renormalized one-loop theory of concentration fluctuations to account for blends of disperse polymers. Analyzing the short and long length-scale fluctuations in a consistent manner, various measures of polymer molecular weight and dispersity arise naturally in the free energy. Thermodynamic analysis in terms of moments of the molecular weight distribution(s) provides exact results for the inverse susceptibility and demonstrates that the theory is not formally renormalizable. However, physically motivated approximations allow for an "effective" renormalization, yielding (1) an effective interaction parameter, χe, which depends directly on the sample dispersities (i.e., Mw/Mn) and leaves the form of the mean-field spinodal unchanged, and (2) an apparent interaction parameter χa that depends on higher-order dispersity indices, for instance Mz/Mw, and characterizes the true limits of blend stability accounting for long-range off-critical fluctuations. We demonstrate the importance of dispersity on several example systems, including both "toy" models that may be realized in computer simulation and more realistic industrially relevant blends. We find that the effects of long-range fluctuations are particularly prominent in blends where the component dispersities are mismatched, especially when there is a small quantity of the high-dispersity species. This can be understood as a consequence of the shift in the critical concentration(s) from the monodisperse value(s).
Collapse
Affiliation(s)
- P M Rauscher
- Polymer Physics Group, Specialty Polymers Global Business Unit, Syensqo S.A., 4500 McGinnis Ferry Road, Alpharetta, Georgia 30005, USA
| |
Collapse
|
4
|
Behnoudfar D, Simon CM, Schrier J. Data-Driven Imputation of Miscibility of Aqueous Solutions via Graph-Regularized Logistic Matrix Factorization. J Phys Chem B 2023; 127:7964-7973. [PMID: 37682958 DOI: 10.1021/acs.jpcb.3c03789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Aqueous, two-phase systems (ATPSs) may form upon mixing two solutions of independently water-soluble compounds. Many separation, purification, and extraction processes rely on ATPSs. Predicting the miscibility of solutions can accelerate and reduce the cost of the discovery of new ATPSs for these applications. Whereas previous machine learning approaches to ATPS prediction used physicochemical properties of each solute as a descriptor, in this work, we show how to impute missing miscibility outcomes directly from an incomplete collection of pairwise miscibility experiments. We use graph-regularized logistic matrix factorization (GR-LMF) to learn a latent vector of each solution from (i) the observed entries in the pairwise miscibility matrix and (ii) a graph where each node is a solution and edges are relationships indicating the general category of the solute (i.e., polymer, surfactant, salt, protein). For an experimental data set of the pairwise miscibility of 68 solutions from Peacock et al. [ACS Appl. Mater. Interfaces 2021, 13, 11449-11460], we find that GR-LMF more accurately predicts missing (im)miscibility outcomes of pairs of solutions than ordinary logistic matrix factorization and random forest classifiers that use physicochemical features of the solutes. GR-LMF obviates the need for features of the solutions and solutions to impute missing miscibility outcomes, but it cannot predict the miscibility of a new solution without some observations of its miscibility with other solutions in the training data set.
Collapse
Affiliation(s)
- Diba Behnoudfar
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cory M Simon
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| | - Joshua Schrier
- Department of Chemistry, Fordham University, The Bronx, New York 10458, United States
| |
Collapse
|
5
|
Qiu J, Chen X, Le AN, López-Barrón CR, Rohde BJ, White RP, Lipson JEG, Krishnamoorti R, Robertson ML. Thermodynamic Interactions in Polydiene/Polyolefin Blends Containing Diverse Polydiene and Polyolefin Units. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Jialin Qiu
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Xuejian Chen
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Amy N. Le
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | | | - Brian J. Rohde
- ExxonMobil Technology and Engineering Company, Baytown, Texas 77520, United States
| | - Ronald P. White
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Jane E. G. Lipson
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ramanan Krishnamoorti
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Megan L. Robertson
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
6
|
Mkandawire WD, Milner ST. Pulling simulation predicts mixing free energy for binary mixtures. SOFT MATTER 2022; 18:7998-8007. [PMID: 36222173 DOI: 10.1039/d2sm01065h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Predicting the mixing free energy of mixing for binary mixtures using simulations is challenging. We present a novel molecular dynamics (MD) simulation method to extract the chemical potential μ(X) for mixtures of species A and B. Each molecule of species A and B is placed in equal and opposite harmonic potentials ±(1/2)Uex(x) centered at the middle of the simulation box, resulting in a nonuniform mole fraction profile X(z) in which A is concentrated at the center, and B at the periphery. Combining these, we obtain Uex(X), the exchange chemical potential required to induce a given deviation of the mole fraction from its average. Simulation results for Uex(X) can be fitted to simple free energy models to extract the interaction parameter χ for binary mixtures. To illustrate our method, we investigate benzene-pyridine mixtures, which provide a good example of regular solution behavior, using both TraPPE united-atom and OPLS all-atom potentials, both of which have been validated for pure fluid properties. χ values obtained with the new method are consistent with values from other recent simulation methods. However, the TraPPE-UA results differ substantially from the χ obtained from VLE experimental data, while the OPLS-AA results are in reasonable agreement with experiment, highlighting the importance of accurate potentials in correctly representing mixture behavior.
Collapse
Affiliation(s)
| | - Scott T Milner
- Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
7
|
Chen X, Li C, Ding Y, Li Y, Li J, Sun L, Wei J, Wei X, Wang H, Zhang K, Pan L, Li Y. Fully Bio-Based and Supertough PLA Blends via a Novel Interlocking Strategy Combining Strong Dipolar Interactions and Stereocomplexation. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiangjian Chen
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Chuanxi Li
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing 102206, China
| | - Yingli Ding
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yang Li
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing 102206, China
| | - Jinshan Li
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing 102206, China
| | - Liming Sun
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing 102206, China
| | - Jie Wei
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing 102206, China
| | - Xiaohui Wei
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing 102206, China
| | - Hao Wang
- State Key Laboratory of Heavy Oil Processing and the Key Laboratory of Catalysis of CNPC, China University of Petroleum, Beijing 102249, China
| | - Kunyu Zhang
- Advanced Materials Research Center, Petrochemical Research Institute, Petro China Company Limited, Beijing 102206, China
| | - Li Pan
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Yuesheng Li
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
8
|
Venetsanos F, Anogiannakis SD, Theodorou DN. Mixing Thermodynamics and Flory–Huggins Interaction Parameter of Polyethylene Oxide/Polyethylene Oligomeric Blends from Kirkwood–Buff Theory and Molecular Simulations. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fotis Venetsanos
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Athens 15780, Greece
| | - Stefanos D. Anogiannakis
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Athens 15780, Greece
| | - Doros N. Theodorou
- School of Chemical Engineering, National Technical University of Athens, 9 Heroon Polytechniou Street, Athens 15780, Greece
| |
Collapse
|
9
|
Structural modification aimed for improving solubility of lead compounds in early phase drug discovery. Bioorg Med Chem 2022; 56:116614. [DOI: 10.1016/j.bmc.2022.116614] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/15/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022]
|
10
|
Ye Z, Ouyang D. Prediction of small-molecule compound solubility in organic solvents by machine learning algorithms. J Cheminform 2021; 13:98. [PMID: 34895323 PMCID: PMC8665485 DOI: 10.1186/s13321-021-00575-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/22/2021] [Indexed: 11/26/2022] Open
Abstract
Rapid solvent selection is of great significance in chemistry. However, solubility prediction remains a crucial challenge. This study aimed to develop machine learning models that can accurately predict compound solubility in organic solvents. A dataset containing 5081 experimental temperature and solubility data of compounds in organic solvents was extracted and standardized. Molecular fingerprints were selected to characterize structural features. lightGBM was compared with deep learning and traditional machine learning (PLS, Ridge regression, kNN, DT, ET, RF, SVM) to develop models for predicting solubility in organic solvents at different temperatures. Compared to other models, lightGBM exhibited significantly better overall generalization (logS ± 0.20). For unseen solutes, our model gave a prediction accuracy (logS ± 0.59) close to the expected noise level of experimental solubility data. lightGBM revealed the physicochemical relationship between solubility and structural features. Our method enables rapid solvent screening in chemistry and may be applied to solubility prediction in other solvents.
Collapse
Affiliation(s)
- Zhuyifan Ye
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China
| | - Defang Ouyang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences (ICMS), University of Macau, Macau, China.
| |
Collapse
|
11
|
Shetty S, Gomez ED, Milner ST. Predicting χ of Polymer Blends Using Atomistic Morphing Simulations. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shreya Shetty
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Enrique D. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott T. Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
12
|
Ketkar PM, Shen KH, Fan M, Hall LM, Epps TH. Quantifying the Effects of Monomer Segment Distributions on Ion Transport in Tapered Block Polymer Electrolytes. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Priyanka M. Ketkar
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mengdi Fan
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas H. Epps
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
- Center for Research in Soft matter & Polymers (CRiSP), University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
13
|
Antoine S, Geng Z, Zofchak ES, Chwatko M, Fredrickson GH, Ganesan V, Hawker CJ, Lynd NA, Segalman RA. Non-intuitive Trends in Flory–Huggins Interaction Parameters in Polyether-Based Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ségolène Antoine
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Zhishuai Geng
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Everett S. Zofchak
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Malgorzata Chwatko
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Glenn H. Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Materials Science and Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Venkat Ganesan
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Craig J. Hawker
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Materials Science and Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Nathaniel A. Lynd
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street, Austin, Texas 78712, United States
| | - Rachel A. Segalman
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Materials Science and Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
14
|
Kapoor U, Kulshreshtha A, Jayaraman A. Development of Coarse-Grained Models for Poly(4-vinylphenol) and Poly(2-vinylpyridine): Polymer Chemistries with Hydrogen Bonding. Polymers (Basel) 2020; 12:E2764. [PMID: 33238611 PMCID: PMC7709027 DOI: 10.3390/polym12112764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
In this paper, we identify the modifications needed in a recently developed generic coarse-grained (CG) model that captured directional interactions in polymers to specifically represent two exemplary hydrogen bonding polymer chemistries-poly(4-vinylphenol) and poly(2-vinylpyridine). We use atomistically observed monomer-level structures (e.g., bond, angle and torsion distribution) and chain structures (e.g., end-to-end distance distribution and persistence length) of poly(4-vinylphenol) and poly(2-vinylpyridine) in an explicitly represented good solvent (tetrahydrofuran) to identify the appropriate modifications in the generic CG model in implicit solvent. For both chemistries, the modified CG model is developed based on atomistic simulations of a single 24-mer chain. This modified CG model is then used to simulate longer (36-mer) and shorter (18-mer and 12-mer) chain lengths and compared against the corresponding atomistic simulation results. We find that with one to two simple modifications (e.g., incorporating intra-chain attraction, torsional constraint) to the generic CG model, we are able to reproduce atomistically observed bond, angle and torsion distributions, persistence length, and end-to-end distance distribution for chain lengths ranging from 12 to 36 monomers. We also show that this modified CG model, meant to reproduce atomistic structure, does not reproduce atomistically observed chain relaxation and hydrogen bond dynamics, as expected. Simulations with the modified CG model have significantly faster chain relaxation than atomistic simulations and slower decorrelation of formed hydrogen bonds than in atomistic simulations, with no apparent dependence on chain length.
Collapse
Affiliation(s)
- Utkarsh Kapoor
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, DE 19716, USA; (U.K.); (A.K.)
| | - Arjita Kulshreshtha
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, DE 19716, USA; (U.K.); (A.K.)
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, Colburn Laboratory, University of Delaware, 150 Academy Street, Newark, DE 19716, USA; (U.K.); (A.K.)
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
15
|
Qiu J, Chen X, López-Barrón CR, Rohde BJ, Robertson ML, Krishnamoorti R. Effect of Copolymer Composition on Thermodynamic Interactions in Blends Containing a Diene–Olefin Copolymer and a Polyolefin. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jialin Qiu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Xuejian Chen
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | | | - Brian J. Rohde
- ExxonMobil Chemical Company, Baytown, Texas 77520, United States
| | - Megan L. Robertson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ramanan Krishnamoorti
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
16
|
Shetty S, Adams MM, Gomez ED, Milner ST. Morphing Simulations Reveal Architecture Effects on Polymer Miscibility. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shreya Shetty
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Milena M. Adams
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Enrique D. Gomez
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Scott T. Milner
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
17
|
Ritsema van Eck GC, Veldscholte LB, Nijkamp JHWH, de Beer S. Sorption Characteristics of Polymer Brushes in Equilibrium with Solvent Vapors. Macromolecules 2020; 53:8428-8437. [PMID: 33071358 PMCID: PMC7558291 DOI: 10.1021/acs.macromol.0c01637] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Indexed: 12/13/2022]
Abstract
![]()
While
polymer brushes in contact with liquids have been researched
intensively, the characteristics of brushes in equilibrium with vapors
have been largely unexplored, despite their relevance for many applications,
including sensors and smart adhesives. Here, we use molecular dynamics
simulations to show that solvent and polymer density distributions
for brushes exposed to vapors are qualitatively different from those
of brushes exposed to liquids. Polymer density profiles for vapor-solvated
brushes decay more sharply than for liquid-solvated brushes. Moreover,
adsorption layers of enhanced solvent density are formed at the brush–vapor
interface. Interestingly and despite all of these effects, we find
that solvent sorption in the brush is described rather well with a
simple mean-field Flory–Huggins model that incorporates an
entropic penalty for stretching of the brush polymers, provided that
parameters such as the polymer–solvent interaction parameter,
grafting density, and relative vapor pressure are varied individually.
Collapse
Affiliation(s)
- Guido C Ritsema van Eck
- Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
| | - Lars B Veldscholte
- Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
| | - Jan H W H Nijkamp
- Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
| | - Sissi de Beer
- Materials Science and Technology of Polymers, University of Twente, Enschede 7522 NB, The Netherlands
| |
Collapse
|
18
|
Das T, Mehta CH, Nayak UY. Multiple approaches for achieving drug solubility: an in silico perspective. Drug Discov Today 2020; 25:1206-1212. [PMID: 32353425 DOI: 10.1016/j.drudis.2020.04.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/12/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022]
Abstract
Discovering new therapeutically active molecules is the ultimate destination in pharmaceutical research and development. Most drugs discovered are lipophilic and, hence, exhibit poor aqueous solubility, resulting in low bioavailability. Thus, there is a need to use various solubility enhancement techniques. Computational approaches enable the analysis of drug-carrier interactions or the numerous conformational changes in the carrier matrix that might establish an appropriate balance between cohesive and adhesive stability in a formulation. In this review, we discuss research approaches that provided molecular insight into drugs and their modifiers to unravel their solubility, stability, and bioavailability.
Collapse
Affiliation(s)
- Torsa Das
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
19
|
Everaers R, Karimi-Varzaneh HA, Fleck F, Hojdis N, Svaneborg C. Kremer–Grest Models for Commodity Polymer Melts: Linking Theory, Experiment, and Simulation at the Kuhn Scale. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02428] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ralf Everaers
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Physique and Centre Blaise Pascal de l’ENS de Lyon, F-69342 Lyon, France
| | | | - Frank Fleck
- Continental Reifen Deutschland GmbH, Jädekamp 30, D-30419 Hannover, Germany
| | - Nils Hojdis
- Institute of Applied Polymer Chemistry, Aachen University of Applied Sciences, Heinrich-Mussmann-Str.1, 52428 Jülich, Germany
| | - Carsten Svaneborg
- University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
20
|
Perry SL, Sing CE. 100th Anniversary of Macromolecular Science Viewpoint: Opportunities in the Physics of Sequence-Defined Polymers. ACS Macro Lett 2020; 9:216-225. [PMID: 35638672 DOI: 10.1021/acsmacrolett.0c00002] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polymer science has been driven by ever-increasing molecular complexity, as polymer synthesis expands an already-vast palette of chemical and architectural parameter space. Copolymers represent a key example, where simple homopolymers have given rise to random, alternating, gradient, and block copolymers. Polymer physics has provided the insight needed to explore this monomer sequence parameter space. The future of polymer science, however, must contend with further increases in monomer precision, as this class of macromolecules moves ever closer to the sequence-monodisperse polymers that are the workhorses of biology. The advent of sequence-defined polymers gives rise to opportunities for material design, with increasing levels of chemical information being incorporated into long-chain molecules; however, this also raises questions that polymer physics must address. What properties uniquely emerge from sequence-definition? Is this circumstance-dependent? How do we define and think about sequence dispersity? How do we think about a hierarchy of sequence effects? Are more sophisticated characterization methods, as well as theoretical and computational tools, needed to understand this class of macromolecules? The answers to these questions touch on many difficult scientific challenges, setting the stage for a rich future for sequence-defined polymers in polymer physics.
Collapse
Affiliation(s)
- Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts−Amherst, 686 North Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Charles E. Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 South Mathews Avenue Urbana, Illinois 61801, United States
| |
Collapse
|
21
|
Gao M, Liang Z, Geng Y, Ye L. Significance of thermodynamic interaction parameters in guiding the optimization of polymer:nonfullerene solar cells. Chem Commun (Camb) 2020; 56:12463-12478. [PMID: 32969427 DOI: 10.1039/d0cc04869k] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polymer solar cells (PSCs) based on polymer donors and nonfullerene small molecule acceptors are a very attractive technology for solar energy conversion, and their performance is heavily determined by film morphology. It is of considerable interest to reveal instructive morphology-performance relationships of these blends. This feature article discusses the recent advances in analysing the morphology formation of nonfullerene PSCs with an effective polymer thermodynamic quantity, i.e., Flory-Huggins interaction parameter χ. In particular, guidelines of high and low χ systems are summarized. The fundamental understanding of χ and its correlations to film morphology and photovoltaic device parameters is of utmost relevance for providing essential material design criteria, establishing suitable morphology processing guidelines, and thus advancing the practical applications of PSCs based on nonfullerene acceptors.
Collapse
Affiliation(s)
- Mengyuan Gao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Ziqi Liang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Yanhou Geng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China.
| | - Long Ye
- School of Materials Science and Engineering, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300350, China. and State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
22
|
Wang G, Swick SM, Matta M, Mukherjee S, Strzalka JW, Logsdon JL, Fabiano S, Huang W, Aldrich TJ, Yang T, Timalsina A, Powers-Riggs N, Alzola JM, Young RM, DeLongchamp DM, Wasielewski MR, Kohlstedt KL, Schatz GC, Melkonyan FS, Facchetti A, Marks TJ. Photovoltaic Blend Microstructure for High Efficiency Post-Fullerene Solar Cells. To Tilt or Not To Tilt? J Am Chem Soc 2019; 141:13410-13420. [PMID: 31379156 DOI: 10.1021/jacs.9b03770] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Achieving efficient polymer solar cells (PSCs) requires a structurally optimal donor-acceptor heterojunction morphology. Here we report the combined experimental and theoretical characterization of a benzodithiophene-benzothiadiazole donor polymer series (PBTZF4-R; R = alkyl substituent) blended with the non-fullerene acceptor ITIC-Th and analyze the effects of substituent dimensions on blend morphology, charge transport, carrier dynamics, and PSC metrics. Varying substituent dimensions has a pronounced effect on the blend morphology with a direct link between domain purity, to some extent domain dimensions, and charge generation and collection. The polymer with the smallest alkyl substituent yields the highest PSC power conversion efficiency (PCE, 11%), reflecting relatively small, high-purity domains and possibly benefiting from "matched" donor polymer-small molecule acceptor orientations. The distinctive morphologies arising from the substituents are investigated using molecular dynamics (MD) simulations which reveal that substituent dimensions dictate a well-defined set of polymer conformations, in turn driving chain aggregation and, ultimately, the various film morphologies and mixing with acceptor small molecules. A straightforward energetic parameter explains the experimental polymer domain morphological trends, hence PCE, and suggests strategies for substituent selection to optimize PSC materials morphologies.
Collapse
Affiliation(s)
| | | | | | - Subhrangsu Mukherjee
- Material Science and Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | - Joseph W Strzalka
- X-ray Science Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | | | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology , Linköping University , SE-60174 Norrköping , Sweden
| | | | | | | | | | | | | | | | - Dean M DeLongchamp
- Material Science and Engineering Division , National Institute of Standards and Technology , Gaithersburg , Maryland 20899 , United States
| | | | | | | | | | - Antonio Facchetti
- Flexterra Corporation , 8025 Lamon Avenue , Skokie , Illinois 60077 , United States
| | | |
Collapse
|
23
|
Mensink LI, Snoeijer JH, de Beer S. Wetting of Polymer Brushes by Polymeric Nanodroplets. Macromolecules 2019; 52:2015-2020. [PMID: 30894780 PMCID: PMC6416710 DOI: 10.1021/acs.macromol.8b02409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/13/2019] [Indexed: 01/30/2023]
Abstract
End-anchoring polymers to a solid surface to form so-called polymer brushes is a versatile method to prepare robust functional coatings. We show, using molecular dynamics simulations, that these coatings display rich wetting behavior. Depending on the interaction between the brushes and the polymeric droplets as well as on the self-affinity of the brush, we can distinguish between three wetting states: mixing, complete wetting, and partial wetting. We find that transitions between these states are largely captured by enthalpic arguments, while deviations to these can be attributed to the negative excess interfacial entropy for the brush droplet system. Interestingly, we observe that the contact angle strongly increases when the softness of the brush is increased, which is opposite to the case of drops on soft elastomers. Hence, the Young to Neumann transition owing to softness is not universal but depends on the nature of the substrate.
Collapse
Affiliation(s)
- Liz I.
S. Mensink
- Physics
of Fluids, MESA+ Institute for Nanotechnology, and Materials Science
and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jacco H. Snoeijer
- Physics
of Fluids, MESA+ Institute for Nanotechnology, and Materials Science
and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Sissi de Beer
- Physics
of Fluids, MESA+ Institute for Nanotechnology, and Materials Science
and Technology of Polymers, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
24
|
|
25
|
Predicting the phase behavior of ABAC tetrablock terpolymers: Sensitivity to Flory–Huggins interaction parameters. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.08.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Shen KH, Brown JR, Hall LM. Diffusion in Lamellae, Cylinders, and Double Gyroid Block Copolymer Nanostructures. ACS Macro Lett 2018; 7:1092-1098. [PMID: 35632941 DOI: 10.1021/acsmacrolett.8b00506] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We study transport of penetrants through nanoscale morphologies motivated by common block copolymer morphologies, using confined random walks and coarse-grained simulations. Diffusion through randomly oriented grains is 1/3 for cylinder and 2/3 for lamellar morphologies versus an unconstrained (homopolymer) system, as previously understood. Diffusion in the double gyroid structure depends on the volume fraction and is 0.47-0.55 through the minority phase at 30-50 vol % and 0.73-0.80 through the majority at 50-70 vol %. Thus, among randomly oriented standard minority phase structures with no grain boundary effects, lamellae is preferable for transport.
Collapse
Affiliation(s)
- Kuan-Hsuan Shen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Jonathan R. Brown
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| | - Lisa M. Hall
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, 151 West Woodruff Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
Ravichandran A, Chen CC, Khare R. Prediction of χ Parameter of Polymer Blends by Combining Molecular Simulations and Integral Equation Theory. J Phys Chem B 2018; 122:9022-9031. [DOI: 10.1021/acs.jpcb.8b06684] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ashwin Ravichandran
- Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, Texas 79409-3121, United States
| | - Chau-Chyun Chen
- Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, Texas 79409-3121, United States
| | - Rajesh Khare
- Department of Chemical Engineering, Texas Tech University, Box 43121, Lubbock, Texas 79409-3121, United States
| |
Collapse
|
28
|
Chen QP, Xie S, Foudazi R, Lodge TP, Siepmann JI. Understanding the Molecular Weight Dependence of χ and the Effect of Dispersity on Polymer Blend Phase Diagrams. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00604] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Qile P. Chen
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | | | - Reza Foudazi
- Department of Chemical and Materials Engineering, New Mexico State University, MSC 3805, P.O.
Box 30001, Las Cruces, New Mexico 88003-8001, United States
| | - Timothy P. Lodge
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| | - J. Ilja Siepmann
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455-0132, United States
| |
Collapse
|
29
|
Qiu J, Mongcopa KI, Han R, López-Barrón CR, Robertson ML, Krishnamoorti R. Thermodynamic Interactions in a Model Polydiene/Polyolefin Blend Based on 1,2-Polybutadiene. Macromolecules 2018. [DOI: 10.1021/acs.macromol.7b02181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jialin Qiu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Katrina I. Mongcopa
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ruixuan Han
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | | | - Megan L. Robertson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ramanan Krishnamoorti
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
30
|
Glova AD, Falkovich SG, Dmitrienko DI, Lyulin AV, Larin SV, Nazarychev VM, Karttunen M, Lyulin SV. Scale-Dependent Miscibility of Polylactide and Polyhydroxybutyrate: Molecular Dynamics Simulations. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01640] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Artyom D. Glova
- Institute
of Macromolecular Compounds, Russian Academy of Sciences, Bolshoj
pr. V.O., 31, 199004 St. Petersburg, Russia
| | - Stanislav G. Falkovich
- Institute
of Macromolecular Compounds, Russian Academy of Sciences, Bolshoj
pr. V.O., 31, 199004 St. Petersburg, Russia
| | - Daniil I. Dmitrienko
- Faculty
of Physics, Saint-Petersburg University, Ulyanovskaya str. 1, Petrodvorets, 198504 St. Petersburg, Russia
| | - Alexey V. Lyulin
- Theory
of Polymers and Soft Matter Group, Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands
| | - Sergey V. Larin
- Institute
of Macromolecular Compounds, Russian Academy of Sciences, Bolshoj
pr. V.O., 31, 199004 St. Petersburg, Russia
| | - Victor M. Nazarychev
- Institute
of Macromolecular Compounds, Russian Academy of Sciences, Bolshoj
pr. V.O., 31, 199004 St. Petersburg, Russia
| | - Mikko Karttunen
- Institute
of Macromolecular Compounds, Russian Academy of Sciences, Bolshoj
pr. V.O., 31, 199004 St. Petersburg, Russia
- Department
of Chemistry and Department of Applied Mathematics, Western University, 1151 Richmond St., London, Ontario, Canada N6A 5B7
| | - Sergey V. Lyulin
- Institute
of Macromolecular Compounds, Russian Academy of Sciences, Bolshoj
pr. V.O., 31, 199004 St. Petersburg, Russia
- Faculty
of Physics, Saint-Petersburg University, Ulyanovskaya str. 1, Petrodvorets, 198504 St. Petersburg, Russia
| |
Collapse
|
31
|
Affiliation(s)
- Shuyi Xie
- Department of Chemistry and ‡Department of
Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Timothy P. Lodge
- Department of Chemistry and ‡Department of
Chemical Engineering and Materials
Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|