1
|
Hong X, Newville M, Ding Y. Local structural investigation of non-crystalline materials at high pressure: the case of GeO 2glass. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:164001. [PMID: 36764002 DOI: 10.1088/1361-648x/acbb4c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Local structures play a crucial role in the structural polyamorphism and novel electronic properties of amorphous materials, but their accurate measurement at high pressure remains a formidable challenge. In this article, we use the local structure of network-forming GeO2glass as an example, to present our recent approaches and advances in high-energy x-ray diffraction, high-pressure x-ray absorption fine structure, andab initiofirst-principles density functional theory calculations and simulations. Although GeO2glass is one of the best studied materials in the field of high pressure research due to its importance in glass theory and geophysical significance, there are still some long-standing puzzles, such as the existence of appreciable distinct fivefold[5]Ge coordination at low pressure and the sixfold-plus[6+]Ge coordination at ultrahigh pressure. Our work sheds light on the origin of pressure-induced polyamorphism of GeO2glass, and the[5]Ge polyhedral units may be the dominant species in the densification mechanism of network-forming glasses from tetrahedral to octahedral amorphous structures.
Collapse
Affiliation(s)
- Xinguo Hong
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, People's Republic of China
| | - Matt Newville
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637, United States of America
| | - Yang Ding
- Center for High Pressure Science and Technology Advanced Research, Beijing 100193, People's Republic of China
| |
Collapse
|
2
|
Sun N, Mao Z, Zhang X, Tkachev SN, Lin JF. Hot dense silica glass with ultrahigh elastic moduli. Sci Rep 2022; 12:13946. [PMID: 35977985 PMCID: PMC9385850 DOI: 10.1038/s41598-022-18062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022] Open
Abstract
Silicate and oxide glasses are often chemically doped with a variety of cations to tune for desirable properties in technological applications, but their performances are often limited by relatively lower mechanical and elastic properties. Finding a new route to synthesize silica-based glasses with high elastic and mechanical properties needs to be explored. Here, we report a dense SiO2-glass with ultra-high elastic moduli using sound velocity measurements by Brillouin scattering up to 72 GPa at 300 K. High-temperature measurements were performed up to 63 GPa at 750 K and 59 GPa at 1000 K. Compared to compression at 300 K, elevated temperature helps compressed SiO2-glass effectively overcome the kinetic barrier to undergo permanent densification with enhanced coordination number and connectivity. This hot compressed SiO2-glass exhibits a substantially high bulk modulus of 361–429 GPa which is at least 2–3 times greater than the metallic, oxide, and silicate glasses at ambient conditions. Its Poisson’s ratio, an indicator for the packing efficiency, is comparable to the metallic glasses. Even after temperature quench and decompression to ambient conditions, the SiO2-glass retains some of its unique properties at compression and possesses a Poisson’s ratio of 0.248(11). In addition to chemical alternatives in glass syntheses, coupled compression and heating treatments can be an effective means to enhance mechanical and elastic properties in high-performance glasses.
Collapse
Affiliation(s)
- Ningyu Sun
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.,CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui, 230026, China.,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhu Mao
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China. .,CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui, 230026, China. .,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Xinyue Zhang
- Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Sergey N Tkachev
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL, 60637, USA
| | - Jung-Fu Lin
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
3
|
Lobanov SS, Speziale S, Winkler B, Milman V, Refson K, Schifferle L. Electronic, Structural, and Mechanical Properties of SiO_{2} Glass at High Pressure Inferred from its Refractive Index. PHYSICAL REVIEW LETTERS 2022; 128:077403. [PMID: 35244414 DOI: 10.1103/physrevlett.128.077403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
We report the first direct measurements of the refractive index of silica glass up to 145 GPa that allowed quantifying its density, bulk modulus, Lorenz-Lorentz polarizability, and band gap. These properties show two major anomalies at ∼10 and ∼40 GPa. The anomaly at ∼10 GPa signals the onset of the increase in Si coordination, and the anomaly at ∼40 GPa corresponds to a nearly complete vanishing of fourfold Si. More generally, we show that the compressibility and density of noncrystalline solids can be accurately measured in simple optical experiments up to at least 110 GPa.
Collapse
Affiliation(s)
- Sergey S Lobanov
- Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
- Institut für Geowissenschaften, Universität Potsdam, Karl-Liebknecht-Str. 24-25, Golm 14476, Germany
| | - Sergio Speziale
- Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
| | - Björn Winkler
- Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Victor Milman
- Dassault Systèmes BIOVIA, 334 Science Park, Cambridge CB4 0WN, United Kingdom
| | - Keith Refson
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Lukas Schifferle
- Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
- Institut für Geowissenschaften, Universität Potsdam, Karl-Liebknecht-Str. 24-25, Golm 14476, Germany
| |
Collapse
|
4
|
Percolation transitions in compressed SiO 2 glasses. Nature 2021; 599:62-66. [PMID: 34732863 DOI: 10.1038/s41586-021-03918-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/16/2021] [Indexed: 12/29/2022]
Abstract
Amorphous-amorphous transformations under pressure are generally explained by changes in the local structure from low- to higher-fold coordinated polyhedra1-4. However, as the notion of scale invariance at the critical thresholds has not been addressed, it is still unclear whether these transformations behave similarly to true phase transitions in related crystals and liquids. Here we report ab initio-based calculations of compressed silica (SiO2) glasses, showing that the structural changes from low- to high-density amorphous structures occur through a sequence of percolation transitions. When the pressure is increased to 82 GPa, a series of long-range ('infinite') percolating clusters composed of corner- or edge-shared tetrahedra, pentahedra and eventually octahedra emerge at critical pressures and replace the previous 'phase' of lower-fold coordinated polyhedra and lower connectivity. This mechanism provides a natural explanation for the well-known mechanical anomaly around 3 GPa, as well as the structural irreversibility beyond 10 GPa, among other features. Some of the amorphous structures that have been discovered mimic those of coesite IV and V crystals reported recently5,6, highlighting the major role of SiO5 pentahedron-based polyamorphs in the densification process of vitreous silica. Our results demonstrate that percolation theory provides a robust framework to understand the nature and pathway of amorphous-amorphous transformations and open a new avenue to predict unravelled amorphous solid states and related liquid phases7,8.
Collapse
|
5
|
Drewitt JWE. Liquid structure under extreme conditions: high-pressure x-ray diffraction studies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:503004. [PMID: 34544063 DOI: 10.1088/1361-648x/ac2865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Under extreme conditions of high pressure and temperature, liquids can undergo substantial structural transformations as their atoms rearrange to minimise energy within a more confined volume. Understanding the structural response of liquids under extreme conditions is important across a variety of disciplines, from fundamental physics and exotic chemistry to materials and planetary science.In situexperiments and atomistic simulations can provide crucial insight into the nature of liquid-liquid phase transitions and the complex phase diagrams and melting relations of high-pressure materials. Structural changes in natural magmas at the high-pressures experienced in deep planetary interiors can have a profound impact on their physical properties, knowledge of which is important to inform geochemical models of magmatic processes. Generating the extreme conditions required to melt samples at high-pressure, whilst simultaneously measuring their liquid structure, is a considerable challenge. The measurement, analysis, and interpretation of structural data is further complicated by the inherent disordered nature of liquids at the atomic-scale. However, recent advances in high-pressure technology mean that liquid diffraction measurements are becoming more routinely feasible at synchrotron facilities around the world. This topical review examines methods for high pressure synchrotron x-ray diffraction of liquids and the wide variety of systems which have been studied by them, from simple liquid metals and their remarkable complex behaviour at high-pressure, to molecular-polymeric liquid-liquid transitions in pnicogen and chalcogen liquids, and density-driven structural transformations in water and silicate melts.
Collapse
Affiliation(s)
- James W E Drewitt
- School of Physics, University of Bristol, H H Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| |
Collapse
|
6
|
Kono Y, Shu Y, Kenney-Benson C, Wang Y, Shen G. Structural Evolution of SiO_{2} Glass with Si Coordination Number Greater than 6. PHYSICAL REVIEW LETTERS 2020; 125:205701. [PMID: 33258638 DOI: 10.1103/physrevlett.125.205701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Pair distribution function measurement of SiO_{2} glass up to 120 GPa reveals changes in the first-, second-, and third-neighbor distances associated with an increase in Si coordination number C_{Si} to >6 above 95 GPa. Packing fractions of Si and O determined from the first- and second-neighbor distances show marked changes accompanied with the structural evolution from C_{Si}=6 to >6. Structural constraints in terms of ionic radius ratio of Si and O, and ratio of nonbonded radius to bonded Si─O distance support the structural evolution of SiO_{2} glass with C_{Si}>6 at high pressures.
Collapse
Affiliation(s)
- Yoshio Kono
- Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
- Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Yu Shu
- High Pressure Collaborative Access Team, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Curtis Kenney-Benson
- High Pressure Collaborative Access Team, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yanbin Wang
- GeoSoilEnviroCARS, Center for Advanced Radiation Sources, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
| | - Guoyin Shen
- High Pressure Collaborative Access Team, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
7
|
Structural dynamics of basaltic melt at mantle conditions with implications for magma oceans and superplumes. Nat Commun 2020; 11:4815. [PMID: 32968073 PMCID: PMC7511909 DOI: 10.1038/s41467-020-18660-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/28/2020] [Indexed: 12/04/2022] Open
Abstract
Transport properties like diffusivity and viscosity of melts dictated the evolution of the Earth’s early magma oceans. We report the structure, density, diffusivity, electrical conductivity and viscosity of a model basaltic (Ca11Mg7Al8Si22O74) melt from first-principles molecular dynamics calculations at temperatures of 2200 K (0 to 82 GPa) and 3000 K (40–70 GPa). A key finding is that, although the density and coordination numbers around Si and Al increase with pressure, the Si–O and Al–O bonds become more ionic and weaker. The temporal atomic interactions at high pressure are fluxional and fragile, making the atoms more mobile and reversing the trend in transport properties at pressures near 50 GPa. The reversed melt viscosity under lower mantle conditions allows new constraints on the timescales of the early Earth’s magma oceans and also provides the first tantalizing explanation for the horizontal deflections of superplumes at ~1000 km below the Earth’s surface. Transport properties of melts in the deep Earth have dictated the evolution of the early Earth’s magma oceans and also govern many modern dynamic processes, such as plate tectonics. Here, the authors find there is a reversal in the trends of transport properties of basaltic melts at pressures near 50 GPa, with implications for the timescales of early Earth’s magma oceans.
Collapse
|
8
|
Morard G, Hernandez JA, Guarguaglini M, Bolis R, Benuzzi-Mounaix A, Vinci T, Fiquet G, Baron MA, Shim SH, Ko B, Gleason AE, Mao WL, Alonso-Mori R, Lee HJ, Nagler B, Galtier E, Sokaras D, Glenzer SH, Andrault D, Garbarino G, Mezouar M, Schuster AK, Ravasio A. In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures. Proc Natl Acad Sci U S A 2020; 117:11981-11986. [PMID: 32414927 PMCID: PMC7275726 DOI: 10.1073/pnas.1920470117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Properties of liquid silicates under high-pressure and high-temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core-mantle boundary. Here we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock compression (up to 130 GPa and 6,000 K along the MgSiO3 glass Hugoniot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range. Beyond the increase in Si coordination observed at 20 GPa, we find no evidence for major structural changes occurring in the silicate melts studied up to pressures and temperatures exceeding Earth's core mantle boundary conditions. This result is supported by molecular dynamics calculations. Our findings reinforce the widely used assumption that the silicate glasses studies are appropriate structural analogs for understanding the atomic arrangement of silicate liquids at these high pressures.
Collapse
Affiliation(s)
- Guillaume Morard
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France;
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de L'aménagement et des Réseaux, ISTerre, 38000 Grenoble, France
| | - Jean-Alexis Hernandez
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
- Centre for Earth Evolution and Dynamics, University of Oslo, N-0315 Oslo, Norway
| | - Marco Guarguaglini
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Riccardo Bolis
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Alessandra Benuzzi-Mounaix
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Tommaso Vinci
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Guillaume Fiquet
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France
| | - Marzena A Baron
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France
| | - Sang Heon Shim
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287
| | - Byeongkwan Ko
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287
| | - Arianna E Gleason
- Geological Sciences, Stanford University, Stanford, CA 94305-2115
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Wendy L Mao
- Geological Sciences, Stanford University, Stanford, CA 94305-2115
| | | | - Hae Ja Lee
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Bob Nagler
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Eric Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | | | | | - Denis Andrault
- Université Clermont Auvergne, CNRS, Institut de Recherche pour le Développement, Observatoire Physique du Globe de Clermont-Ferrand, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
| | | | - Mohamed Mezouar
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Anja K Schuster
- Helmholtz-Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
| | - Alessandra Ravasio
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| |
Collapse
|
9
|
Lee SK, Kim YH, Yi YS, Chow P, Xiao Y, Ji C, Shen G. Oxygen Quadclusters in SiO_{2} Glass above Megabar Pressures up to 160 GPa Revealed by X-Ray Raman Scattering. PHYSICAL REVIEW LETTERS 2019; 123:235701. [PMID: 31868455 DOI: 10.1103/physrevlett.123.235701] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Indexed: 06/10/2023]
Abstract
As oxygen may occupy a major volume of oxides, a densification of amorphous oxides under extreme compression is dominated by reorganization of oxygen during compression. X-ray Raman scattering (XRS) spectra for SiO_{2} glass up to 1.6 Mbar reveal the evolution of heavily contracted oxygen environments characterized by a decrease in average O-O distance and the potential emergence of quadruply coordinated oxygen (oxygen quadcluster). Our results also reveal that the edge energies at the centers of gravity of the XRS features increase linearly with bulk density, yielding the first predictive relationship between the density and partial density of state of oxides above megabar pressures. The extreme densification paths with densified oxygen in amorphous oxides shed light upon the possible existence of stable melts in the planetary interiors.
Collapse
Affiliation(s)
- Sung Keun Lee
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Yong-Hyun Kim
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoo Soo Yi
- School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Paul Chow
- HPCAT, X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yuming Xiao
- HPCAT, X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Cheng Ji
- Geophysical Laboratory, Carnegie Institution for Science, Argonne, Illinois 60439, USA
| | - Guoyin Shen
- HPCAT, X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
10
|
Hölzl C, Kibies P, Imoto S, Noetzel J, Knierbein M, Salmen P, Paulus M, Nase J, Held C, Sadowski G, Marx D, Kast SM, Horinek D. Structure and thermodynamics of aqueous urea solutions from ambient to kilobar pressures: From thermodynamic modeling, experiments, and first principles simulations to an accurate force field description. Biophys Chem 2019; 254:106260. [PMID: 31522071 DOI: 10.1016/j.bpc.2019.106260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/29/2019] [Accepted: 08/29/2019] [Indexed: 12/17/2022]
Abstract
Molecular simulations based on classical force fields are a powerful method for shedding light on the complex behavior of biomolecules in solution. When cosolutes are present in addition to water and biomolecules, subtle balances of weak intermolecular forces have to be accounted for. This imposes high demands on the quality of the underlying force fields, and therefore force field development for small cosolutes is still an active field. Here, we present the development of a new urea force field from studies of urea solutions at ambient and elevated hydrostatic pressures based on a combination of experimental and theoretical approaches. Experimental densities and solvation shell properties from ab initio molecular dynamics simulations at ambient conditions served as the target properties for the force field optimization. Since urea is present in many marine life forms, elevated hydrostatic pressure was rigorously addressed: densities at high pressure were measured by vibrating tube densitometry up to 500 bar and by X-ray absorption up to 5 kbar. Densities were determined by the perturbed-chain statistical associating fluid theory equation of state. Solvation properties were determined by embedded cluster integral equation theory and ab initio molecular dynamics. Our new force field is able to capture the properties of urea solutions at high pressures without further high-pressure adaption, unlike trimethylamine-N-oxide, for which a high-pressure adaption is necessary.
Collapse
Affiliation(s)
- Christoph Hölzl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Patrick Kibies
- Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Sho Imoto
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Jan Noetzel
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Michael Knierbein
- Laboratory of Thermodynamics, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Paul Salmen
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Michael Paulus
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Julia Nase
- Fakultät Physik/DELTA, Technische Universität Dortmund, 44221 Dortmund, Germany
| | - Christoph Held
- Laboratory of Thermodynamics, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Gabriele Sadowski
- Laboratory of Thermodynamics, Technische Universität Dortmund, 44227 Dortmund, Germany
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Stefan M Kast
- Physikalische Chemie III, Technische Universität Dortmund, 44227 Dortmund, Germany.
| | - Dominik Horinek
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
11
|
Knierbein M, Held C, Hölzl C, Horinek D, Paulus M, Sadowski G, Sternemann C, Nase J. Density variations of TMAO solutions in the kilobar range: Experiments, PC-SAFT predictions, and molecular dynamics simulations. Biophys Chem 2019; 253:106222. [PMID: 31421516 DOI: 10.1016/j.bpc.2019.106222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/12/2023]
Abstract
We present measurements, molecular dynamics (MD) simulations, and predictions using Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) of the density of aqueous solutions in a pressure range from 1 bar to 5000 bar, a pressure regime that is highly relevant for both biochemical applications and the fundamental understanding of solvation. The accurate determination of density data of pressurized solutions remains challenging. We determined relative density changes from the variations in X-ray absorption through the sample and developed a new water parameter set for PC-SAFT modeling that is appropriate for high pressure conditions in the kilobar regime. As a showcase, we studied trimethylamine N-oxide (TMAO) solutions and demonstrated that their compressibility decreases with the TMAO content. This result is linked to the stabilizing effect of TMAO on the local H-bond network of water. Experiments and calculations, which represent two independent methods, are in very good agreement and are in accordance with results of force field molecular dynamics simulations of the same systems.
Collapse
Affiliation(s)
- Michael Knierbein
- Technische Universität Dortmund, Laboratory of Thermodynamics, D-44221 Dortmund, Germany
| | - Christoph Held
- Technische Universität Dortmund, Laboratory of Thermodynamics, D-44221 Dortmund, Germany
| | - Christoph Hölzl
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Dominik Horinek
- Institut für Physikalische und Theoretische Chemie, Universität Regensburg, 93040 Regensburg, Germany
| | - Michael Paulus
- Technische Universität Dortmund, Fakultät Physik/DELTA, D-44221 Dortmund, Germany
| | - Gabriele Sadowski
- Technische Universität Dortmund, Laboratory of Thermodynamics, D-44221 Dortmund, Germany
| | - Christian Sternemann
- Technische Universität Dortmund, Fakultät Physik/DELTA, D-44221 Dortmund, Germany
| | - Julia Nase
- Technische Universität Dortmund, Fakultät Physik/DELTA, D-44221 Dortmund, Germany.
| |
Collapse
|
12
|
Bykova E, Bykov M, Černok A, Tidholm J, Simak SI, Hellman O, Belov MP, Abrikosov IA, Liermann HP, Hanfland M, Prakapenka VB, Prescher C, Dubrovinskaia N, Dubrovinsky L. Metastable silica high pressure polymorphs as structural proxies of deep Earth silicate melts. Nat Commun 2018; 9:4789. [PMID: 30442940 PMCID: PMC6237875 DOI: 10.1038/s41467-018-07265-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 10/19/2018] [Indexed: 11/24/2022] Open
Abstract
Modelling of processes involving deep Earth liquids requires information on their structures and compression mechanisms. However, knowledge of the local structures of silicates and silica (SiO2) melts at deep mantle conditions and of their densification mechanisms is still limited. Here we report the synthesis and characterization of metastable high-pressure silica phases, coesite-IV and coesite-V, using in situ single-crystal X-ray diffraction and ab initio simulations. Their crystal structures are drastically different from any previously considered models, but explain well features of pair-distribution functions of highly densified silica glass and molten basalt at high pressure. Built of four, five-, and six-coordinated silicon, coesite-IV and coesite-V contain SiO6 octahedra, which, at odds with 3rd Pauling's rule, are connected through common faces. Our results suggest that possible silicate liquids in Earth's lower mantle may have complex structures making them more compressible than previously supposed.
Collapse
Affiliation(s)
- E Bykova
- Photon Sciences, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany.
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany.
| | - M Bykov
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
- Materials Modeling and Development Laboratory, National University of Science and Technology 'MISIS', Leninsky Avenue 4, 119049, Moscow, Russia
| | - A Černok
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
- School of Physical Sciences, The Open University, Walton Hall, Milton Keynes, MK7 6AA, UK
| | - J Tidholm
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - S I Simak
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - O Hellman
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
- Department of Applied Physics and Materials Science, California Institute of Technology, 1200 East California Boulevard, Pasadena, California, 91125, USA
| | - M P Belov
- Materials Modeling and Development Laboratory, National University of Science and Technology 'MISIS', Leninsky Avenue 4, 119049, Moscow, Russia
| | - I A Abrikosov
- Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - H-P Liermann
- Photon Sciences, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607, Hamburg, Germany
| | - M Hanfland
- European Synchrotron Radiation Facility (ESRF), 6 Rue Jules Horowitz, 38000, Grenoble, France
| | - V B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois, 60637, USA
| | - C Prescher
- Center for Advanced Radiation Sources, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois, 60637, USA
- Institute of Geology and Mineralogy, Universität zu Köln, Zülpicher Straße 49b, 50674, Köln, Germany
| | - N Dubrovinskaia
- Material Physics and Technology at Extreme Conditions, Laboratory of Crystallography, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| | - L Dubrovinsky
- Bayerisches Geoinstitut, University of Bayreuth, Universitätsstraße 30, 95440, Bayreuth, Germany
| |
Collapse
|