1
|
Zhang Z, Wu Z, Fang C, Zhang FC, Hu J, Wang Y, Qin S. Topological superconductivity from unconventional band degeneracy with conventional pairing. Nat Commun 2024; 15:7971. [PMID: 39266505 PMCID: PMC11393466 DOI: 10.1038/s41467-024-52156-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024] Open
Abstract
We present a new scheme for Majorana modes in systems with nonsymmorphic-symmetry-protected band degeneracy. We reveal that when the gapless fermionic excitations are encoded with conventional superconductivity and magnetism, which can be intrinsic or induced by proximity effect, topological superconductivity and Majorana modes can be obtained. We illustrate this outcome in a system which respects the space group P4/nmm and features a fourfold-degenerate fermionic mode at (π, π) in the Brillouin zone. We show that in the presence of conventional superconductivity, different types of topological superconductivity, i.e., first-order and second-order topological superconductivity, with coexisting fragile Wannier obstruction in the latter case, can be generated in accordance with the different types of magnetic orders; Majorana modes are shown to exist on the boundary, at the corner and in the vortices. To further demonstrate the effectiveness of our approach, another example related to the space group P4/ncc based on this scheme is also provided. Our study offers insights into constructing topological superconductors based on bulk energy bands and conventional superconductivity and helps to find new material candidates and design new platforms for realizing Majorana modes.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Department of Physics, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
- Beijing National Research Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhenfei Wu
- Department of Physics, University of Florida, Gainesville, Florida, 32601, USA
| | - Chen Fang
- Beijing National Research Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Fu-Chun Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100190, Beijing, China
- Collaborative Innovation Center for Advanced Microstructure, Nanjing University, 210093, Nanjing, China
| | - Jiangping Hu
- Beijing National Research Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- Kavli Institute for Theoretical Sciences and CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, 100190, Beijing, China
| | - Yuxuan Wang
- Department of Physics, University of Florida, Gainesville, Florida, 32601, USA.
| | - Shengshan Qin
- School of Physics, Beijing Institute of Technology, 100081, Beijing, China.
| |
Collapse
|
2
|
Wei Z, Qin S, Ding C, Wu X, Hu J, Sun YJ, Wang L, Xue QK. Identifying s-wave pairing symmetry in single-layer FeSe from topologically trivial edge states. Nat Commun 2023; 14:5302. [PMID: 37652936 PMCID: PMC10471577 DOI: 10.1038/s41467-023-40931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 08/11/2023] [Indexed: 09/02/2023] Open
Abstract
Determining the pairing symmetry of single-layer FeSe on SrTiO3 is the key to understanding the enhanced pairing mechanism. It also guides the search for superconductors with high transition temperatures. Despite considerable efforts, it remains controversial whether the symmetry is the sign-preserving s- or the sign-changing s±-wave. Here, we investigate the pairing symmetry of single-layer FeSe from a topological point of view. Using low-temperature scanning tunneling microscopy/spectroscopy, we systematically characterize the superconducting states at edges and corners of single-layer FeSe. The tunneling spectra collected at edges and corners show a full energy gap and a substantial dip, respectively, suggesting the absence of topologically non-trivial edge and corner modes. According to our theoretical calculations, these spectroscopic features can be considered as strong evidence for the sign-preserving s-wave pairing in single-layer FeSe.
Collapse
Affiliation(s)
- Zhongxu Wei
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
| | - Shengshan Qin
- School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Ding
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China
| | - Xianxin Wu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jiangping Hu
- Kavli Institute of Theoretical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing National Research Center for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yu-Jie Sun
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China.
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, 518045, China.
| | - Lili Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China.
| | - Qi-Kun Xue
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China.
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, 100084, China.
- Beijing Academy of Quantum Information Sciences, Beijing, 100193, China.
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen, 518045, China.
| |
Collapse
|
3
|
Zhang Z, Qin S, Zang J, Fang C, Hu J, Zhang FC. Controlling Dzyaloshinskii-Moriya interaction in a centrosymmetric nonsymmorphic crystal. Sci Bull (Beijing) 2023:S2095-9273(23)00287-6. [PMID: 37208269 DOI: 10.1016/j.scib.2023.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/21/2023]
Abstract
Presence of the Dzyaloshinskii-Moriya (DM) interaction in limited noncentrosymmetric materials leads to novel spin textures and exotic chiral physics. The emergence of DM interaction in centrosymmetric crystals could greatly enrich material realization. Here we show that an itinerant centrosymmetric crystal respecting a nonsymmorphic space group is a new platform for the DM interaction. Taking P4/nmm space group as an example, we demonstrate that the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction induces the DM interactions, in addition to the Heisenberg exchange and the Kaplan-Shekhtman-Entin-wohlman-Aharony (KSEA) interaction. The direction of DM vector depends on the positions of magnetic atoms in the real space, and the amplitude depends on the location of the Fermi surface in the reciprocal space. The diversity stems from the position-dependent site groups and the momentum-dependent electronic structures guaranteed by the nonsymmorphic symmetries. Our study unveils the role of the nonsymmorphic symmetries in affecting magnetism, and suggests that the nonsymmorphic crystals can be promising platforms to design magnetic interactions.
Collapse
Affiliation(s)
- Zhongyi Zhang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengshan Qin
- University of Chinese Academy of Sciences, Beijing 100049, China; School of Physics, Beijing Institute of Technology, Beijing 100081, China; Kavli Institute for Theoretical Sciences, CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China.
| | - Jiadong Zang
- Department of Physics and Astronomy, University of New Hampshire, Durham 03824, USA; Materials Science Program, University of New Hampshire, Durham 03824, USA
| | - Chen Fang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Kavli Institute for Theoretical Sciences, CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jiangping Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Kavli Institute for Theoretical Sciences, CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; South Bay Interdisciplinary Science Center, Dongguan 523808, China
| | - Fu-Chun Zhang
- Kavli Institute for Theoretical Sciences, CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China; Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
4
|
Li Y, Shen D, Kreisel A, Chen C, Wei T, Xu X, Wang J. Anisotropic Gap Structure and Sign Reversal Symmetry in Monolayer Fe(Se,Te). NANO LETTERS 2023; 23:140-147. [PMID: 36450010 DOI: 10.1021/acs.nanolett.2c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The iron-based superconductors are an ideal platform to reveal the enigma of the unconventional superconductivity and potential topological superconductivity. Among them, the monolayer Fe(Se,Te)/SrTiO3(001), which is proposed to be topological nontrivial, shows interface-enhanced high-temperature superconductivity in the two-dimensional limit. However, the experimental studies on the superconducting pairing mechanism of monolayer Fe(Se,Te) films are still limited. Here, by measuring the quasiparticle interference in monolayer Fe(Se,Te)/SrTiO3(001), we report the observation of the anisotropic structure of the large superconducting gap and the sign change of the superconducting gap on different electron pockets. The results are well consistent with the "bonding-antibonding" s±-wave pairing symmetry driven by spin fluctuations in conjunction with spin-orbit coupling. Our work is of basic significance not only for a unified superconducting formalism in the iron-based superconductors, but also for understanding of topological superconductivity in high-temperature superconductors.
Collapse
Affiliation(s)
- Yu Li
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
| | - Dingyu Shen
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
| | - Andreas Kreisel
- Institut für Theoretische Physik, Universität Leipzig, D-04103Leipzig, Germany
| | - Cheng Chen
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
| | - Tianheng Wei
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
| | - Xiaotong Xu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
| | - Jian Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing100190, China
- Beijing Academy of Quantum Information Sciences, Beijing100193, China
| |
Collapse
|
5
|
Zhang H, Zou Q, Li L. Tomonaga-Luttinger Liquid in the Topological Edge Channel of Multilayer FeSe. NANO LETTERS 2021; 21:6253-6260. [PMID: 34255523 DOI: 10.1021/acs.nanolett.1c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A two-dimensional topological insulator exhibits helical edge states topologically protected against single-particle backscattering. Such protection breaks down, however, when electron-electron interactions are significant or when edge reconstruction occurs, leading to a suppressed density of states (DOS) at the Fermi level that follows universal scaling with temperature and energy, characteristic of Tomonaga-Luttinger liquid (TLL). Here, we grow multilayer FeSe on SrTiO3 by molecular beam epitaxy and observe robust edge states at both the {100}Se and the {110}Se steps using scanning tunneling microscopy/spectroscopy. We determine the DOS follows a power law, resulting in the Luttinger parameter K of 0.26 ± 0.02 and 0.43 ± 0.07 for the {100}Se and {110}Se edges, respectively. The smaller K for the {100}Se edge also indicates strong correlations, attributed to ferromagnetic ordering likely present due to checkerboard antiferromagnetic fluctuations in FeSe. These results demonstrate TLL in FeSe helical edge channels, providing an exciting model system for novel topological excitations arising from superconductivity and interacting helical edge states.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Qiang Zou
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Lian Li
- Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
6
|
Zhang T, Bao W, Chen C, Li D, Lu Z, Hu Y, Yang W, Zhao D, Yan Y, Dong X, Wang QH, Zhang T, Feng D. Observation of Distinct Spatial Distributions of the Zero and Nonzero Energy Vortex Modes in (Li_{0.84}Fe_{0.16})OHFeSe. PHYSICAL REVIEW LETTERS 2021; 126:127001. [PMID: 33834795 DOI: 10.1103/physrevlett.126.127001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The energy and spatial distributions of vortex bound state in superconductors carry important information about superconducting pairing and the electronic structure. Although discrete vortex states, and sometimes a zero energy mode, had been observed in several iron-based superconductors, their spatial properties are rarely explored. In this study, we used low-temperature scanning tunneling microscopy to measure the vortex state of (Li,Fe)OHFeSe with high spatial resolution. We found that the nonzero energy states display clear spatial oscillations with a period corresponding to bulk Fermi wavelength; while in contrast, the zero energy mode does not show such oscillation, which suggests its distinct electronic origin. Furthermore, the oscillations of positive and negative energy states near E_{F} are found to be clearly out of phase. Based on a two-band model calculation, we show that our observation is more consistent with an s_{++} wave pairing in the bulk of (Li, Fe)OHFeSe, and superconducting topological states on the surface.
Collapse
Affiliation(s)
- Tianzhen Zhang
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Weicheng Bao
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
- Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Chen Chen
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Dong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zouyuwei Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yining Hu
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Wentao Yang
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Dongming Zhao
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Yajun Yan
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Xiaoli Dong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Qiang-Hua Wang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Tong Zhang
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Donglai Feng
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
7
|
Abstract
Emergent electronic phenomena in iron-based superconductors have been at the forefront of condensed matter physics for more than a decade. Much has been learned about the origins and intertwined roles of ordered phases, including nematicity, magnetism, and superconductivity, in this fascinating class of materials. In recent years, focus has been centered on the peculiar and highly unusual properties of FeSe and its close cousins. This family of materials has attracted considerable attention due to the discovery of unexpected superconducting gap structures, a wide range of superconducting critical temperatures, and evidence for nontrivial band topology, including associated spin-helical surface states and vortex-induced Majorana bound states. Here, we review superconductivity in iron chalcogenide superconductors, including bulk FeSe, doped bulk FeSe, FeTe1−xSex, intercalated FeSe materials, and monolayer FeSe and FeTe1−xSex on SrTiO3. We focus on the superconducting properties, including a survey of the relevant experimental studies, and a discussion of the different proposed theoretical pairing scenarios. In the last part of the paper, we review the growing recent evidence for nontrivial topological effects in FeSe-related materials, focusing again on interesting implications for superconductivity.
Collapse
|
8
|
Chen C, Liu C, Liu Y, Wang J. Bosonic Mode and Impurity-Scattering in Monolayer Fe(Te,Se) High-Temperature Superconductors. NANO LETTERS 2020; 20:2056-2061. [PMID: 32045257 DOI: 10.1021/acs.nanolett.0c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electron pairing mechanism has always been one of the most challenging problems in high-temperature superconductors. Fe(Te,Se), as the superconductor with intrinsic topological property, may host Majorana bound states and has attracted tremendous interest. While in bulk Fe(Te,Se) the pairing mechanism has been experimentally investigated, it remains little understood in its two-dimensional limit counterpart. Here, by in situ scanning tunneling spectroscopy, we show clear evidence of the bosonic mode Ω beyond the superconducting gap Δ in monolayer FeTe0.5Se0.5/SrTiO3(001) high-temperature superconductor. Statistically, Ω shows an obvious anticorrelation with Δ and appears below 2Δ, consistent with the spin-excitation nature. Furthermore, the in-gap bound states induced by two types of magnetically different impurities support the sign-reversing pairing scenario. Our results not only suggest that the spin-excitation-like bosonic mode within a sign-reversing pairing plays an essential role in monolayer FeTe0.5Se0.5/SrTiO3(001) but also offer the crucial information for investigating the high-temperature superconductivity in interfacial iron selenides.
Collapse
Affiliation(s)
- Cheng Chen
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China
| | - Chaofei Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China
| | - Yi Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China
| | - Jian Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, P.R. China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, P.R. China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, P.R. China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, P.R. China
| |
Collapse
|
9
|
Chen C, Liu Q, Bao WC, Yan Y, Wang QH, Zhang T, Feng D. Observation of Discrete Conventional Caroli-de Gennes-Matricon States in the Vortex Core of Single-Layer FeSe/SrTiO_{3}. PHYSICAL REVIEW LETTERS 2020; 124:097001. [PMID: 32202862 DOI: 10.1103/physrevlett.124.097001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Using low-temperature scanning tunneling microscopy (STM), we studied the vortex states of single-layer FeSe film on a SrTiO_{3} (100) substrate, and the local behaviors of superconductivity at sample boundaries. We clearly observed multiple discrete Caroli-de Gennes-Matricon states in the vortex core, and quantitative analysis shows their energies well follow the formula: E=μΔ^{2}/E_{F}, where μ is a half integer (±1/2,±3/2,±5/2…) and Δ is the mean superconducting gap over the Fermi surface. Meanwhile, a fully gapped spectrum without states near zero bias is observed at the [110]_{Fe} oriented boundary of 1 and 2 ML FeSe films, and atomic step edge of 1 ML FeSe. Accompanied with theoretical calculations, our results indicate an s-wave pairing without sign change in the high-T_{C} FeSe/SrTiO_{3} superconductor.
Collapse
Affiliation(s)
- Chen Chen
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Qin Liu
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
- Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang, Sichuan 621908, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Wei-Cheng Bao
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing, 210093, China
- Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Yajun Yan
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Qiang-Hua Wang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Tong Zhang
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Donglai Feng
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
10
|
Liu C, Wang Z, Gao Y, Liu X, Liu Y, Wang QH, Wang J. Spectroscopic Imaging of Quasiparticle Bound States Induced by Strong Nonmagnetic Scatterings in One-Unit-Cell FeSe/SrTiO_{3}. PHYSICAL REVIEW LETTERS 2019; 123:036801. [PMID: 31386432 DOI: 10.1103/physrevlett.123.036801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Indexed: 06/10/2023]
Abstract
The absence of holelike Fermi pockets in the heavily electron-doped iron selenides (HEDISs) challenges the s_{±}-wave pairing originally proposed for iron pnictides, which consists of opposite signs of the gap function on electron and hole pockets. While the HEDIS compounds have been investigated extensively, a consistent description of the superconducting pairing therein is still lacking. Here, by in situ scanning tunneling spectroscopy and theoretical calculations, we study the effects of strong scatterings from nonmagnetic Pb adatoms on the epitaxially grown HEDIS, one-unit-cell FeSe/SrTiO_{3}(001). Systematic tunneling spectra measured on the Pb adatoms show comprehensive signals of quasiparticle bound states, which can be well explained theoretically within the sign-reversing pairing scenarios. The finding implies that, in addition to previously detected phonons, spin fluctuations play an important role in driving the Cooper pairing in FeSe/SrTiO_{3}(001). The sign reversal in the gap function we revealed here is a significant ingredient in a unified understanding of the high-temperature superconductivity in HEDISs.
Collapse
Affiliation(s)
- Chaofei Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Ziqiao Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Yi Gao
- Center for Quantum Transport and Thermal Energy Science, Jiangsu Key Lab on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoqiang Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Yi Liu
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
| | - Qiang-Hua Wang
- National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jian Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
- Beijing Academy of Quantum Information Sciences, Beijing 100193, China
| |
Collapse
|
11
|
Liu C, Wang Z, Ye S, Chen C, Liu Y, Wang Q, Wang QH, Wang J. Detection of Bosonic Mode as a Signature of Magnetic Excitation in One-Unit-Cell FeSe on SrTiO 3. NANO LETTERS 2019; 19:3464-3472. [PMID: 31117746 DOI: 10.1021/acs.nanolett.9b00144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A "fingerprint" of Cooper pairing mediated by collective bosonic excitation mode is the reconstruction of the quasiparticle-density-of-states (DOS) spectrum with an additional "dip-hump" structure located outside the superconducting coherence peak. Here, we report an in situ scanning tunneling spectroscopy study of one-unit-cell (1-UC) FeSe film on a SrTiO3(001) substrate. In the quasiparticle-DOS spectrum, the bosonic excitation mode characterized by the dip-hump structure is detected outside the larger superconducting gap. Statistically, the excitation mode shows an anticorrelation with pairing strength in magnitude and yields an energy scale upper-bounded by twice the superconducting gap. The observation coincides with the characteristics of magnetic resonance in cuprates and iron-based superconductors. Furthermore, the local response of superconducting spectra to magnetically distinct Se defects all exhibits the induced in-gap quasiparticle bound states, indicating an unconventional sign-reversing pairing over the Fermi surface in 1-UC FeSe. These results clarify the magnetic nature of the bosonic excitation mode and reveal a signature of electron-magnetic-excitation coupling in 1-UC FeSe/SrTiO3(001) besides the previously established pairing channel of electron-phonon interaction.
Collapse
Affiliation(s)
- Chaofei Liu
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Ziqiao Wang
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Shusen Ye
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Cheng Chen
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Yi Liu
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | - Qingyan Wang
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
| | | | - Jian Wang
- International Center for Quantum Materials, School of Physics , Peking University , Beijing 100871 , China
- Collaborative Innovation Center of Quantum Matter , Beijing 100871 , China
- CAS Center for Excellence in Topological Quantum Computation , University of Chinese Academy of Sciences , Beijing 100190 , China
- Beijing Academy of Quantum Information Sciences , Beijing 100193 , China
| |
Collapse
|
12
|
Ge Z, Yan C, Zhang H, Agterberg D, Weinert M, Li L. Evidence for d-Wave Superconductivity in Single Layer FeSe/SrTiO 3 Probed by Quasiparticle Scattering Off Step Edges. NANO LETTERS 2019; 19:2497-2502. [PMID: 30916981 DOI: 10.1021/acs.nanolett.9b00135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The de Gennes extrapolation length is a direction dependent measure of the spatial evolution of the pairing gap near the boundary of a superconductor and thus provides a viable means to probe its symmetry. It is expected to be infinite and isotropic for plain s-wave pairing, and finite and anisotropic for d-wave. Here, we synthesize single-layer FeSe films on SrTiO3(001) (STO) substrates by molecular beam epitaxy and measure the de Gennes extrapolation length by scanning tunneling microscopy/spectroscopy. We find a 40% reduction of the superconducting gap near specular [110]Fe edges, yielding an extrapolation length of 8.0 nm. However, near specular [010]Fe edges, the extrapolation length is nearly infinite. These findings are consistent with a phase changing pairing with 2-fold symmetry, indicating d-wave superconductivity. This is further supported by the presence of in-gap states near the specular [110]Fe edges, but not the [010]Fe edges. This work provides direct experimental evidence for d-wave superconductivity in single-layer FeSe/STO and demonstrates quasiparticle scattering at boundaries to be a viable phase sensitive probe of pairing symmetry in Fe-based superconductors.
Collapse
Affiliation(s)
- Zhuozhi Ge
- Department of Physics and Astronomy , West Virginia University , Morgantown , West Virginia 26506 , United States
- Department of Physics , University of Wisconsin , Milwaukee , Wisconsin 53211 , United States
| | - Chenhui Yan
- Department of Physics and Astronomy , West Virginia University , Morgantown , West Virginia 26506 , United States
| | - Huimin Zhang
- Department of Physics and Astronomy , West Virginia University , Morgantown , West Virginia 26506 , United States
| | - Daniel Agterberg
- Department of Physics , University of Wisconsin , Milwaukee , Wisconsin 53211 , United States
| | - Michael Weinert
- Department of Physics , University of Wisconsin , Milwaukee , Wisconsin 53211 , United States
| | - Lian Li
- Department of Physics and Astronomy , West Virginia University , Morgantown , West Virginia 26506 , United States
| |
Collapse
|
13
|
Fischer MH, Sigrist M, Agterberg DF. Superconductivity without Inversion and Time-Reversal Symmetries. PHYSICAL REVIEW LETTERS 2018; 121:157003. [PMID: 30362795 DOI: 10.1103/physrevlett.121.157003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Traditionally, in three dimensions, the only symmetries essential for superconductivity are time reversal (T) and inversion (I). Here, we examine superconductivity in two dimensions and find that T and I are not required, and having a combination of either symmetry with a mirror operation (M_{z}) on the basal plane is sufficient. By combining energetic and topological arguments, we classify superconducting states when T and I are not present, a situation encountered in several experimentally relevant systems, such as transition metal dichalcogenides or a two-dimensional Rashba system, when subject to an applied field, and in superconducting monolayer FeSe with Néel antiferromagnetic order. Energetic arguments suggest interesting superconducting states arise. For example, we find a unique pure intraband pairing state with Majorana chiral edge states in Néel-ordered FeSe. Employing topological arguments, we find when the only symmetry is the combination of I with M_{z}, the superconducting states are generically fully gapped and can have topologically protected chiral Majorana edge modes. In all other cases, there are no chiral Majorana edge states, but the superconducting bulk can have point nodes with associated topologically protected flatband Majorana edge modes. Our analysis provides guidance on the design and search for novel two-dimensional superconductors and superconducting heterostructures.
Collapse
Affiliation(s)
- Mark H Fischer
- Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Manfred Sigrist
- Institute for Theoretical Physics, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel F Agterberg
- Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA
| |
Collapse
|
14
|
Chen L, Zhao WW, Han RS. Resonance states near a quantum magnetic impurity in single-layer FeSe superconductors with d-wave symmetry. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:305603. [PMID: 29911989 DOI: 10.1088/1361-648x/aacd37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we investigate the local density of states (LDOS) near a magnetic impurity in single-layer FeSe superconductors. The two-orbital model with spin-orbit coupling proposed in Agterberg et al (2017 Phys. Rev. Lett. 119 267001) is used to describe the FeSe superconductor. In the strong coupling regime, two impurity resonance peaks appear with opposite resonance energies in the LDOS spectral function. For strong spin-orbit coupling, the superconducting gap in this model is d-wave symmetric with nodes, the spatial distributions of the LDOS at the two resonance energies are fourfold symmetric, which reveals typical characteristic of d-wave pairing. When the spin-orbit coupling is not strong enough to close the superconducting gap, we find that the spatial distribution of the LDOS at one of the resonance energies manifests s-wave symmetry, while the pairing potential preserves d-wave symmetry. This result is consistent with previous experimental investigations.
Collapse
Affiliation(s)
- Liang Chen
- Mathematics and Physics Department, North China Electric Power University, Beijing, 102206, People's Republic of China
| | | | | |
Collapse
|