1
|
Chang X, Chen B, Zeng Q, Wang H, Chen K, Tong Q, Yu X, Kang D, Zhang S, Guo F, Hou Y, Zhao Z, Yao Y, Ma Y, Dai J. Theoretical evidence of H-He demixing under Jupiter and Saturn conditions. Nat Commun 2024; 15:8543. [PMID: 39358379 PMCID: PMC11447227 DOI: 10.1038/s41467-024-52868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/19/2024] [Indexed: 10/04/2024] Open
Abstract
The immiscibility of hydrogen-helium mixture under the temperature and pressure conditions of planetary interiors is crucial for understanding the structures of gas giant planets (e.g., Jupiter and Saturn). While the experimental probe at such extreme conditions is challenging, theoretical simulation is heavily relied in an effort to unravel the mixing behavior of hydrogen and helium. Here we develop a method via a machine learning accelerated molecular dynamics simulation to quantify the physical separation of hydrogen and helium under the conditions of planetary interiors. The immiscibility line achieved with the developed method yields substantially higher demixing temperatures at pressure above 1.5 Mbar than earlier theoretical data, but matches better to the experimental estimate. Our results suggest a possibility that H-He demixing takes place in a large fraction of the interior radii of Jupiter and Saturn, i.e., 27.5% in Jupiter and 48.3% in Saturn. This indication of an H-He immiscible layer hints at the formation of helium rain and offers a potential explanation for the decrease of helium in the atmospheres of Jupiter and Saturn.
Collapse
Affiliation(s)
- Xiaoju Chang
- College of Science, National University of Defense Technology, Changsha, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, China
| | - Bo Chen
- College of Science, National University of Defense Technology, Changsha, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, China
| | - Qiyu Zeng
- College of Science, National University of Defense Technology, Changsha, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, China
| | - Han Wang
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing, P. R. China
| | - Kaiguo Chen
- College of Science, National University of Defense Technology, Changsha, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, China
| | - Qunchao Tong
- College of Science, National University of Defense Technology, Changsha, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, China
| | - Xiaoxiang Yu
- College of Science, National University of Defense Technology, Changsha, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, China
| | - Dongdong Kang
- College of Science, National University of Defense Technology, Changsha, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, China
| | - Shen Zhang
- College of Science, National University of Defense Technology, Changsha, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, China
| | - Fangyu Guo
- College of Science, National University of Defense Technology, Changsha, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, China
| | - Yong Hou
- College of Science, National University of Defense Technology, Changsha, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, China
| | - Zengxiu Zhao
- College of Science, National University of Defense Technology, Changsha, China
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, China
| | - Yansun Yao
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Yanming Ma
- State Key Lab of Superhard Materials and International Center for Computational Method and Software, College of Physics, Jilin University, Changchun, China.
- International Center of Future Science, Jilin University, Changchun, China.
| | - Jiayu Dai
- College of Science, National University of Defense Technology, Changsha, China.
- Hunan Key Laboratory of Extreme Matter and Applications, National University of Defense Technology, Changsha, China.
| |
Collapse
|
2
|
Dornheim T, Vorberger J, Moldabekov ZA, Böhme M. Analysing the dynamic structure of warm dense matter in the imaginary-time domain: theoretical models and simulations. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220217. [PMID: 37393936 DOI: 10.1098/rsta.2022.0217] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/10/2023] [Indexed: 07/04/2023]
Abstract
Rigorous diagnostics of experiments with warm dense matter are notoriously difficult. A key method is X-ray Thomson scattering (XRTS), but the interpretation of XRTS measurements is usually based on theoretical models that entail various approximations. Recently, Dornheim et al. [Nat. Commun. 13, 7911 (2022)] introduced a new framework for temperature diagnostics of XRTS experiments that is based on imaginary-time correlation functions. On the one hand, switching from the frequency to the imaginary-time domain gives one direct access to a number of physical properties, which facilitates the extraction of the temperature of arbitrarily complex materials without relying on any models or approximations. On the other hand, the bulk of theoretical work in dynamic quantum many-body theory is devoted to the frequency domain, and, to the best of our knowledge, the manifestation of physics properties within the imaginary-time density-density correlation function (ITCF) remains poorly understood. In the present work, we aim to fill this gap by introducing a simple, semi-analytical model for the imaginary-time dependence of two-body correlations within the framework of imaginary-time path integrals. As a practical example, we compare our new model to extensive ab initio path integral Monte Carlo results for the ITCF of a uniform electron gas, and find excellent agreement over a broad range of wavenumbers, densities and temperatures. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Zhandos A Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
3
|
Aggarwal A, Aurnou JM, Horn S. Magnetic damping of jet flows in quasi-two-dimensional Rayleigh-Bénard convection. Phys Rev E 2022; 106:045104. [PMID: 36397562 DOI: 10.1103/physreve.106.045104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
The mechanism responsible for the damping of the large-scale, azimuthally directed jets observed at Jupiter's surface is not well known, but electromagnetic forces are suspected to play a role as the planet's electrical conductivity increases radially with depth. To isolate the jet damping process, we carry out a suite of direct numerical simulations of quasi-two-dimensional, horizontally periodic Rayleigh-Bénard convection with stress-free boundary conditions in the presence of an external, vertical magnetic field. Jets, punctuated by intermittent convective bursts, develop at Rayleigh numbers (Ra, ratio of buoyancy to diffusion) beyond 10^{5} when the magnetic field is relatively weak. Five primary flow regimes are found by varying 10^{3}≤Ra≤10^{10} and the Chandrasekhar number (Ch, ratio of Lorentz to viscosity) 0≤Ch≤10^{6}: (i) steady convection rolls, (ii) steady magneto-columns, (iii) unsteady to turbulent magneto-plumes, (iv) horizontally drifting magneto-plumes, and (v) jets with intermittent turbulent convective bursts. We parse the parameter space using transitions derived from the interaction parameter (N, ratio of Lorentz to inertia). The transition to the regime dominated by jets has the most immediate applications to the magnetic damping of Jovian jet flows, where the separation between jets and a magnetically constrained system occurs at a jet-based interaction parameter value of N_{J}≈1. We approximate the value of the Jovian interaction parameter as a function of depth, and find that the jets may brake at ≈6000 km below the surface, which is deeper than recent estimates from NASA's Juno mission. This suggests that mechanisms in addition to electromagnetic forces are likely required to fully truncate the jets.
Collapse
Affiliation(s)
- Ashna Aggarwal
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095, USA
| | - Jonathan M Aurnou
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, California 90095, USA
| | - Susanne Horn
- Centre for Fluid and Complex Systems, Coventry University, Coventry CV1 5FB, United Kingdom
| |
Collapse
|
4
|
Ab Initio Study of Structure and Transport Properties of Warm Dense Nitric Oxide. INORGANICS 2022. [DOI: 10.3390/inorganics10080120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The structure, equation of state and transport properties of warm dense nitric oxide (NO) were investigated in wide density and temperature ranges by ab initio molecular dynamics simulations. Both the Perdew–Burke–Ernzerhof (PBE) and the strongly constrained and appropriately normed functional with revised Vydrov–van Voorhis nonlocal correlation (SCAN−rVV10) functionals were used in the simulations, and the pressures predicted by the SCAN−rVV10 functional were found to be systematically lower than those predicted using PBE and experimental data along the shock Hugoniot curve. Along the Hugoniot curve, as density increased, we found that the system transformed towards a mixture of atomic nitrogen and oxygen liquids with molecular NO that remained present up to the highest densities explored. The electrical conductivity along Hugoniot indicated that nonmetal to metal transition had taken place. We also calculated the electrical and thermal conductivities of nitric oxide in the warm dense matter regime, and used them to compute the Lorentz number. In addition, we also report the electronic density of states.
Collapse
|
5
|
Thermal excitation signals in the inhomogeneous warm dense electron gas. Sci Rep 2022; 12:1093. [PMID: 35058531 PMCID: PMC8776784 DOI: 10.1038/s41598-022-05034-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
We investigate the emergence of electronic excitations from the inhomogeneous electronic structure at warm dense matter parameters based on first-principles calculations. The emerging modes are controlled by the imposed perturbation amplitude. They include satellite signals around the standard plasmon feature, transformation of plasmons to optical modes, and double-plasmon modes. These modes exhibit a pronounced dependence on the temperature. This makes them potentially invaluable for the diagnostics of plasma parameters in the warm dense matter regime. We demonstrate that these modes can be probed with present experimental techniques.
Collapse
|
6
|
Moldabekov Z, Dornheim T, Böhme M, Vorberger J, Cangi A. The relevance of electronic perturbations in the warm dense electron gas. J Chem Phys 2021; 155:124116. [PMID: 34598570 DOI: 10.1063/5.0062325] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Warm dense matter (WDM) has emerged as one of the frontiers of both experimental physics and theoretical physics and is a challenging traditional concept of plasma, atomic, and condensed-matter physics. While it has become common practice to model correlated electrons in WDM within the framework of Kohn-Sham density functional theory, quantitative benchmarks of exchange-correlation (XC) functionals under WDM conditions are yet incomplete. Here, we present the first assessment of common XC functionals against exact path-integral Monte Carlo calculations of the harmonically perturbed thermal electron gas. This system is directly related to the numerical modeling of x-ray scattering experiments on warm dense samples. Our assessment yields the parameter space where common XC functionals are applicable. More importantly, we pinpoint where the tested XC functionals fail when perturbations on the electronic structure are imposed. We indicate the lack of XC functionals that take into account the needs of WDM physics in terms of perturbed electronic structures.
Collapse
Affiliation(s)
- Zhandos Moldabekov
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| | - Attila Cangi
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| |
Collapse
|
7
|
Zhang J, Liu H, Ma Y, Chen C. Direct H-He chemical association in superionic FeO2H2He at Deep-Earth conditions. Natl Sci Rev 2021; 9:nwab168. [PMID: 35928982 PMCID: PMC9344844 DOI: 10.1093/nsr/nwab168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Hydrogen and helium are known to play crucial roles in geological and astrophysical environments; however, they are inert toward each other across wide pressure-temperature (P-T) conditions. Given their prominent presence and influence on the formation and evolution of celestial bodies, it is of fundamental interest to explore the nature of interactions between hydrogen and helium. Using an advanced crystal structure search method, we have identified a quaternary compound FeO2H2He stabilized in a wide range of P-T conditions. Ab initio molecular dynamics simulations further reveal a novel superionic state of FeO2H2He hosting liquid-like diffusive hydrogen in the FeO2He sublattice, creating a conducive environment for H-He chemical association, at P-T conditions corresponding to the Earth's lowest mantle regions. To our surprise, this chemically facilitated coalescence of otherwise immiscible molecular species highlights a promising avenue for exploring this long-sought but hitherto unattainable state of matter. This finding raises strong prospects for exotic H-He mixtures inside Earth and possibly also in other astronomical bodies.
Collapse
Affiliation(s)
- Jurong Zhang
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials & Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Hanyu Liu
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials & Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Yanming Ma
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials & Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
8
|
Bergermann A, French M, Redmer R. Gibbs-ensemble Monte Carlo simulation of H 2-H 2O mixtures. Phys Chem Chem Phys 2021; 23:12637-12643. [PMID: 34037010 DOI: 10.1039/d1cp00515d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The miscibility gap in hydrogen-water mixtures is investigated by conducting Gibbs-ensemble Monte Carlo simulations with analytical two-body interaction potentials between the molecular species. We calculate several demixing curves at pressures below 150 kbar and temperatures of 1000 K ≤T≤ 2000 K. Despite the approximations introduced by the two-body interaction potentials, our results predict a large miscibility gap in hydrogen-water mixtures at similar conditions as found in experiments. Our findings are in contrast to those from ab initio simulations and provide a renewed indication that hydrogen-water immiscibility regions may have a significant impact on the structure and evolution of ice giant planets like Uranus and Neptune.
Collapse
Affiliation(s)
- Armin Bergermann
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany.
| | | | | |
Collapse
|
9
|
Evidence of hydrogen-helium immiscibility at Jupiter-interior conditions. Nature 2021; 593:517-521. [PMID: 34040210 DOI: 10.1038/s41586-021-03516-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 04/06/2021] [Indexed: 11/09/2022]
Abstract
The phase behaviour of warm dense hydrogen-helium (H-He) mixtures affects our understanding of the evolution of Jupiter and Saturn and their interior structures1,2. For example, precipitation of He from a H-He atmosphere at about 1-10 megabar and a few thousand kelvin has been invoked to explain both the excess luminosity of Saturn1,3, and the depletion of He and neon (Ne) in Jupiter's atmosphere as observed by the Galileo probe4,5. But despite its importance, H-He phase behaviour under relevant planetary conditions remains poorly constrained because it is challenging to determine computationally and because the extremes of temperature and pressure are difficult to reach experimentally. Here we report that appropriate temperatures and pressures can be reached through laser-driven shock compression of H2-He samples that have been pre-compressed in diamond-anvil cells. This allows us to probe the properties of H-He mixtures under Jovian interior conditions, revealing a region of immiscibility along the Hugoniot. A clear discontinuous change in sample reflectivity indicates that this region ends above 150 gigapascals at 10,200 kelvin and that a more subtle reflectivity change occurs above 93 gigapascals at 4,700 kelvin. Considering pressure-temperature profiles for Jupiter, these experimental immiscibility constraints for a near-protosolar mixture suggest that H-He phase separation affects a large fraction-we estimate about 15 per cent of the radius-of Jupiter's interior. This finding provides microphysical support for Jupiter models that invoke a layered interior to explain Juno and Galileo spacecraft observations1,4,6-8.
Collapse
|
10
|
Bergermann A, French M, Schöttler M, Redmer R. Gibbs-ensemble Monte Carlo simulation of H_{2}-He mixtures. Phys Rev E 2021; 103:013307. [PMID: 33601639 DOI: 10.1103/physreve.103.013307] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/24/2020] [Indexed: 11/06/2022]
Abstract
We explore the performance of the Gibbs-ensemble Monte Carlo simulation technique by calculating the miscibility gap of H_{2}-He mixtures with analytical exponential-six potentials. We calculate several demixing curves for pressures up to 500 kbar and for temperatures up to 1800K and predict a H_{2}-He miscibility diagram for the solar He abundance for temperatures up to 1500K and determine the demixing region. Our results are in good agreement with ab initio simulations in the nondissociated region of the phase diagram. However, the particle number necessary to converge the Gibbs-ensemble Monte Carlo method is yet too large to offer a feasible combination with ab initio electronic structure calculation techniques, which would be necessary at conditions where dissociation or ionization occurs.
Collapse
Affiliation(s)
- Armin Bergermann
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - Martin French
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - Manuel Schöttler
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| | - Ronald Redmer
- Institut für Physik, Universität Rostock, 18051 Rostock, Germany
| |
Collapse
|
11
|
Li GJ, Li ZG, Chen QF, Gu YJ, Zhang W, Liu L, Geng HY, Wang ZQ, Lan YS, Hou Y, Dai JY, Chen XR. Multishock to Quasi-Isentropic Compression of Dense Gaseous Deuterium-Helium Mixtures up to 120 GPa: Probing the Sound Velocities Relevant to Planetary Interiors. PHYSICAL REVIEW LETTERS 2021; 126:075701. [PMID: 33666443 DOI: 10.1103/physrevlett.126.075701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/16/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Shock reverberation compression experiments on dense gaseous deuterium-helium mixtures are carried out to provide thermodynamic parameters relevant to the conditions in planetary interiors. The multishock pressures are determined up to 120 GPa and reshock temperatures to 7400 K. Furthermore, the unique compression path from shock-adiabatic to quasi-isentropic compressions enables a direct estimation of the high-pressure sound velocities in the unexplored range of 50-120 GPa. The equation of state and sound velocity provide particular dual perspectives to validate the theoretical models. Our experimental data are found to agree with several equation of state models widely used in astrophysics within the probed pressure range. The current data improve the experimental constraints on sound velocities in the Jovian insulating-to-metallic transition layer.
Collapse
Affiliation(s)
- Guo-Jun Li
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Zhi-Guo Li
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China
| | - Qi-Feng Chen
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China
| | - Yun-Jun Gu
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China
| | - Wei Zhang
- School of Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lei Liu
- School of Science, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hua-Yun Geng
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China
| | - Zhao-Qi Wang
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Yang-Shun Lan
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900, China
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Yong Hou
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| | - Jia-Yu Dai
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| | - Xiang-Rong Chen
- College of Physics, Sichuan University, Chengdu 610065, China
| |
Collapse
|
12
|
Dornheim T, Cangi A, Ramakrishna K, Böhme M, Tanaka S, Vorberger J. Effective Static Approximation: A Fast and Reliable Tool for Warm-Dense Matter Theory. PHYSICAL REVIEW LETTERS 2020; 125:235001. [PMID: 33337174 DOI: 10.1103/physrevlett.125.235001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
We present an effective static approximation (ESA) to the local field correction (LFC) of the electron gas that enables highly accurate calculations of electronic properties like the dynamic structure factor S(q,ω), the static structure factor S(q), and the interaction energy v. The ESA combines the recent neural-net representation by T. Dornheim et al., [J. Chem. Phys. 151, 194104 (2019)JCPSA60021-960610.1063/1.5123013] of the temperature-dependent LFC in the exact static limit with a consistent large wave-number limit obtained from quantum Monte Carlo data of the on-top pair distribution function g(0). It is suited for a straightforward integration into existing codes. We demonstrate the importance of the LFC for practical applications by reevaluating the results of the recent x-ray Thomson scattering experiment on aluminum by Sperling et al. [Phys. Rev. Lett. 115, 115001 (2015)PRLTAO0031-900710.1103/PhysRevLett.115.115001]. We find that an accurate incorporation of electronic correlations in terms of the ESA leads to a different prediction of the inelastic scattering spectrum than obtained from state-of-the-art models like the Mermin approach or linear-response time-dependent density functional theory. Furthermore, the ESA scheme is particularly relevant for the development of advanced exchange-correlation functionals in density functional theory.
Collapse
Affiliation(s)
- Tobias Dornheim
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Attila Cangi
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
| | - Kushal Ramakrishna
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Maximilian Böhme
- Center for Advanced Systems Understanding (CASUS), D-02826 Görlitz, Germany
- Technische Universität Dresden, D-01062 Dresden, Germany
| | - Shigenori Tanaka
- Graduate School of System Informatics, Kobe University, Kobe 657-8501, Japan
| | - Jan Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf (HZDR), D-01328 Dresden, Germany
| |
Collapse
|
13
|
Gao H, Liu C, Hermann A, Needs RJ, Pickard CJ, Wang HT, Xing D, Sun J. Coexistence of plastic and partially diffusive phases in a helium-methane compound. Natl Sci Rev 2020; 7:1540-1547. [PMID: 34691486 PMCID: PMC8288639 DOI: 10.1093/nsr/nwaa064] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 11/13/2022] Open
Abstract
Helium and methane are major components of giant icy planets and are abundant in the universe. However, helium is the most inert element in the periodic table and methane is one of the most hydrophobic molecules, thus whether they can react with each other is of fundamental importance. Here, our crystal structure searches and first-principles calculations predict that a He3CH4 compound is stable over a wide range of pressures from 55 to 155 GPa and a HeCH4 compound becomes stable around 105 GPa. As nice examples of pure van der Waals crystals, the insertion of helium atoms changes the original packing of pure methane molecules and also largely hinders the polymerization of methane at higher pressures. After analyzing the diffusive properties during the melting of He3CH4 at high pressure and high temperature, in addition to a plastic methane phase, we have discovered an unusual phase which exhibits coexistence of diffusive helium and plastic methane. In addition, the range of the diffusive behavior within the helium-methane phase diagram is found to be much narrower compared to that of previously predicted helium-water compounds. This may be due to the weaker van der Waals interactions between methane molecules compared to those in helium-water compounds, and that the helium-methane compound melts more easily.
Collapse
Affiliation(s)
- Hao Gao
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Cong Liu
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Andreas Hermann
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Richard J Needs
- Theory of Condensed Matter Group, Cavendish Laboratory, Cambridge, UK
| | - Chris J Pickard
- Department of Materials Science & Metallurgy, University of Cambridge, Cambridge CB3 0HE, UK
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Hui-Tian Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Dingyu Xing
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jian Sun
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
14
|
Moldabekov ZA, Dornheim T, Bonitz M, Ramazanov TS. Ion energy-loss characteristics and friction in a free-electron gas at warm dense matter and nonideal dense plasma conditions. Phys Rev E 2020; 101:053203. [PMID: 32575188 DOI: 10.1103/physreve.101.053203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
We investigate the energy-loss characteristics of an ion in warm dense matter (WDM) and dense plasmas concentrating on the influence of electronic correlations. The basis for our analysis is a recently developed ab initio quantum Monte Carlo- (QMC) based machine learning representation of the static local field correction (LFC) [Dornheim et al., J. Chem. Phys. 151, 194104 (2019)JCPSA60021-960610.1063/1.5123013], which provides an accurate description of the dynamical density response function of the electron gas at the considered parameters. We focus on the polarization-induced stopping power due to free electrons, the friction function, and the straggling rate. In addition, we compute the friction coefficient which constitutes a key quantity for the adequate Langevin dynamics simulation of ions. Considering typical experimental WDM parameters with partially degenerate electrons, we find that the friction coefficient is of the order of γ/ω_{pi}=0.01, where ω_{pi} is the ionic plasma frequency. This analysis is performed by comparing QMC-based data to results from the random-phase approximation (RPA), the Mermin dielectric function, and the Singwi-Tosi-Land-Sjölander (STLS) approximation. It is revealed that the widely used relaxation time approximation (Mermin dielectric function) has severe limitations regarding the description of the energy loss of ions in a correlated partially degenerate electrons gas. Moreover, by comparing QMC-based data with the results obtained using STLS, we find that the ion energy-loss properties are not sensitive to the inaccuracy of the static local field correction (LFC) at large wave numbers, k/k_{F}>2 (with k_{F} being the Fermi wave number), but that a correct description of the static LFC at k/k_{F}≲1.5 is important.
Collapse
Affiliation(s)
- Zh A Moldabekov
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| | - T Dornheim
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, 24098 Kiel, Germany
| | - T S Ramazanov
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 050040 Almaty, Kazakhstan
| |
Collapse
|
15
|
Saturn’s Probable Interior: An Exploration of Saturn’s Potential Interior Density Structures. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/1538-4357/ab71ff] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Jiang X, Zheng Y, Xue XX, Dai J, Feng Y. Ab initio study of the miscibility for solid hydrogen-helium mixtures at high pressure. J Chem Phys 2020; 152:074701. [PMID: 32087670 DOI: 10.1063/1.5138253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding the behavior of H2-He binary mixtures at high pressure is of great importance. Two more recent experiments [J. Lim and C. S. Yoo, Phys. Rev. Lett. 120, 165301 (2018) and R. Turnbull et al., ibid. 121, 195702 (2018)] are in conflict, regarding the miscibility between H2 and He in solids at high pressure. On the basis of first-principles calculations combined with the structure prediction method, we investigate the miscibility for solid H2-He mixtures at pressures from 0 GPa to 200 GPa. It is found that there is no sign of miscibility and chemical reactivity in H2-He mixtures with any H:He ratio. Moreover, instead of H2-He mixtures, the calculated Raman modes of the N-H mixtures can better explain the characteristic peaks observed experimentally, which were claimed to be the H-He vibrational modes. These calculation results are more in line with the experimental findings by Turnbull et al. [Phys. Rev. Lett. 121, 195702 (2018)].
Collapse
Affiliation(s)
- Xingxing Jiang
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yueshao Zheng
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiong-Xiong Xue
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiayu Dai
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| | - Yexin Feng
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
17
|
Dornheim T, Vorberger J, Groth S, Hoffmann N, Moldabekov ZA, Bonitz M. The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation. J Chem Phys 2019; 151:194104. [DOI: 10.1063/1.5123013] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- T. Dornheim
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - J. Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - S. Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - N. Hoffmann
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, D-01328 Dresden, Germany
| | - Zh. A. Moldabekov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, Al-Farabi Str. 71, 050040 Almaty, Kazakhstan
| | - M. Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| |
Collapse
|
18
|
Dornheim T, Groth S, Filinov AV, Bonitz M. Path integral Monte Carlo simulation of degenerate electrons: Permutation-cycle properties. J Chem Phys 2019; 151:014108. [DOI: 10.1063/1.5093171] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- T. Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, Kiel, Germany
- Center for Advanced Systems Understanding (CASUS), Görlitz, Germany
| | - S. Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, Kiel, Germany
| | - A. V. Filinov
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, Kiel, Germany
- Joint Institute for High Temperatures RAS, Izhorskaya Str. 13, Moscow, Russia
| | - M. Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, Kiel, Germany
| |
Collapse
|
19
|
Wang Y, Zhang X, Jiang S, Geballe ZM, Pakornchote T, Somayazulu M, Prakapenka VB, Greenberg E, Goncharov AF. Helium-hydrogen immiscibility at high pressures. J Chem Phys 2019; 150:114504. [DOI: 10.1063/1.5086270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yu Wang
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Xiao Zhang
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Shuqing Jiang
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Zachary M. Geballe
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA
| | - Teerachote Pakornchote
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA
- Department of Physics, Chulalongkorn University, Bangkok 10330, Thailand
| | - Maddury Somayazulu
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA
| | - Vitali B. Prakapenka
- Center for Advanced Radiations Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Eran Greenberg
- Center for Advanced Radiations Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander F. Goncharov
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA
| |
Collapse
|
20
|
Röpke G, Blaschke D, Döppner T, Lin C, Kraeft WD, Redmer R, Reinholz H. Ionization potential depression and Pauli blocking in degenerate plasmas at extreme densities. Phys Rev E 2019; 99:033201. [PMID: 30999524 DOI: 10.1103/physreve.99.033201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 06/09/2023]
Abstract
New facilities explore warm dense matter (WDM) at conditions with extreme densities (exceeding ten times condensed matter densities) so that electrons are degenerate even at temperatures of 10-100 eV. Whereas in the nondegenerate region correlation effects such as Debye screening are relevant for the ionization potential depression (IPD), new effects have to be considered in degenerate plasmas. In addition to the Fock shift of the self-energies, the bound-state Pauli blocking becomes important with increasing density. Standard approaches to IPD such as Stewart-Pyatt and widely used opacity tables (e.g., OPAL) do not contain Pauli blocking effects for bound states. The consideration of degeneracy effects leads to a reduction of the ionization potential and to a higher degree of ionization. As an example, we present calculations for the ionization degree of carbon plasmas at T = 100 eV and extreme densities up to 40 g/cm^{3}, which are relevant to experiments that are currently scheduled at the National Ignition Facility.
Collapse
Affiliation(s)
- Gerd Röpke
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
- Department of Theoretical Nuclear Physics, National Research Nuclear University (MEPhI), 115409 Moscow, Russia
| | - David Blaschke
- Department of Theoretical Nuclear Physics, National Research Nuclear University (MEPhI), 115409 Moscow, Russia
- Institute of Theoretical Physics, University of Wroclaw, 50-204 Wroclaw, Poland
- Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Tilo Döppner
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Chengliang Lin
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | | | - Ronald Redmer
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - Heidi Reinholz
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
- School of Physics, University of Western Australia, WA 6009 Crawley, Australia
| |
Collapse
|
21
|
|
22
|
|
23
|
Dornheim T, Groth S, Vorberger J, Bonitz M. Ab initio Path Integral Monte Carlo Results for the Dynamic Structure Factor of Correlated Electrons: From the Electron Liquid to Warm Dense Matter. PHYSICAL REVIEW LETTERS 2018; 121:255001. [PMID: 30608805 DOI: 10.1103/physrevlett.121.255001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Indexed: 06/09/2023]
Abstract
The accurate description of electrons at extreme density and temperature is of paramount importance for, e.g., the understanding of astrophysical objects and inertial confinement fusion. In this context, the dynamic structure factor S(q,ω) constitutes a key quantity as it is directly measured in x-ray Thomson scattering experiments and governs transport properties like the dynamic conductivity. In this work, we present the first ab initio results for S(q,ω) by carrying out extensive path integral Monte Carlo simulations and developing a new method for the required analytic continuation, which is based on the stochastic sampling of the dynamic local field correction G(q,ω). In addition, we find that the so-called static approximation constitutes a promising opportunity to obtain high-quality data for S(q,ω) over substantial parts of the warm dense matter regime.
Collapse
Affiliation(s)
- T Dornheim
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - S Groth
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
| | - M Bonitz
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany
| |
Collapse
|
24
|
Hartley NJ, Vorberger J, Döppner T, Cowan T, Falcone RW, Fletcher LB, Frydrych S, Galtier E, Gamboa EJ, Gericke DO, Glenzer SH, Granados E, MacDonald MJ, MacKinnon AJ, McBride EE, Nam I, Neumayer P, Pak A, Rohatsch K, Saunders AM, Schuster AK, Sun P, van Driel T, Kraus D. Liquid Structure of Shock-Compressed Hydrocarbons at Megabar Pressures. PHYSICAL REVIEW LETTERS 2018; 121:245501. [PMID: 30608736 DOI: 10.1103/physrevlett.121.245501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/15/2018] [Indexed: 06/09/2023]
Abstract
We present results for the ionic structure in hydrocarbons (polystyrene, polyethylene) that were shock compressed to pressures of up to 190 GPa, inducing rapid melting of the samples. The structure of the resulting liquid is then probed using in situ diffraction by an x-ray free electron laser beam, demonstrating the capability to obtain reliable diffraction data in a single shot, even for low-Z samples without long range order. The data agree well with ab initio simulations, validating the ability of such approaches to model mixed samples in states where complex interparticle bonds remain, and showing that simpler models are not necessarily valid. While the results clearly exclude the possibility of complete carbon-hydrogen demixing at the conditions probed, they also, in contrast to previous predictions, indicate that diffraction is not always a sufficient diagnostic for this phenomenon.
Collapse
Affiliation(s)
- N J Hartley
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Open and Transdisciplinary Research Institute, Osaka University, Suita, Osaka 565-0871, Japan
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
| | - T Döppner
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - T Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - R W Falcone
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, USA
| | - S Frydrych
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- Technische Universität Darmstadt, Schlossgartenstraße 9, 64289 Darmstadt, Germany
| | - E Galtier
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, USA
| | - E J Gamboa
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, USA
| | - D O Gericke
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - S H Glenzer
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, USA
| | - E Granados
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, USA
| | - M J MacDonald
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, USA
- University of Michigan, Ann Arbor, Michigan 48109, USA
| | - A J MacKinnon
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, USA
| | - E E McBride
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, USA
- European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany
| | - I Nam
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, USA
| | - P Neumayer
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt, Germany
| | - A Pak
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - K Rohatsch
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - A M Saunders
- Department of Physics, University of California, Berkeley, California 94720, USA
| | - A K Schuster
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| | - P Sun
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, USA
| | - T van Driel
- SLAC National Accelerator Laboratory, Menlo Park, California 94309, USA
| | - D Kraus
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany
- Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
25
|
Celliers PM, Millot M, Brygoo S, McWilliams RS, Fratanduono DE, Rygg JR, Goncharov AF, Loubeyre P, Eggert JH, Peterson JL, Meezan NB, Le Pape S, Collins GW, Jeanloz R, Hemley RJ. Insulator-metal transition in dense fluid deuterium. Science 2018; 361:677-682. [PMID: 30115805 DOI: 10.1126/science.aat0970] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/31/2018] [Indexed: 11/02/2022]
Abstract
Dense fluid metallic hydrogen occupies the interiors of Jupiter, Saturn, and many extrasolar planets, where pressures reach millions of atmospheres. Planetary structure models must describe accurately the transition from the outer molecular envelopes to the interior metallic regions. We report optical measurements of dynamically compressed fluid deuterium to 600 gigapascals (GPa) that reveal an increasing refractive index, the onset of absorption of visible light near 150 GPa, and a transition to metal-like reflectivity (exceeding 30%) near 200 GPa, all at temperatures below 2000 kelvin. Our measurements and analysis address existing discrepancies between static and dynamic experiments for the insulator-metal transition in dense fluid hydrogen isotopes. They also provide new benchmarks for the theoretical calculations used to construct planetary models.
Collapse
Affiliation(s)
- Peter M Celliers
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA.
| | - Marius Millot
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA
| | | | - R Stewart McWilliams
- School of Physics and Astronomy and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FD, UK
| | | | - J Ryan Rygg
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA.,Department of Mechanical Engineering, Physics and Astronomy and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
| | - Alexander F Goncharov
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA
| | | | - Jon H Eggert
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA
| | - J Luc Peterson
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA
| | - Nathan B Meezan
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA
| | - Sebastien Le Pape
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA
| | - Gilbert W Collins
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA.,Department of Mechanical Engineering, Physics and Astronomy and Laboratory for Laser Energetics, University of Rochester, Rochester, NY 14623, USA
| | - Raymond Jeanloz
- Department of Earth and Planetary Science and Department of Astronomy, University of California, Berkeley, CA 94720, USA
| | - Russell J Hemley
- Institute of Materials Science and Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
26
|
Liu L, Li ZG, Dai JY, Chen QF, Chen XR. Quantum molecular dynamics study on the proton exchange, ionic structures, and transport properties of warm dense hydrogen-deuterium mixtures. Phys Rev E 2018; 97:063204. [PMID: 30011461 DOI: 10.1103/physreve.97.063204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 06/08/2023]
Abstract
Comprehensive knowledge of physical properties such as equation of state (EOS), proton exchange, dynamic structures, diffusion coefficients, and viscosities of hydrogen-deuterium mixtures with densities from 0.1 to 5 g/cm^{3} and temperatures from 1 to 50 kK has been presented via quantum molecular dynamics (QMD) simulations. The existing multi-shock experimental EOS provides an important benchmark to evaluate exchange-correlation functionals. The comparison of simulations with experiments indicates that a nonlocal van der Waals density functional (vdW-DF1) produces excellent results. Fraction analysis of molecules using a weighted integral over pair distribution functions was performed. A dissociation diagram together with a boundary where the proton exchange (H_{2}+D_{2}⇌2HD) occurs was generated, which shows evidence that the HD molecules form as the H_{2} and D_{2} molecules are almost 50% dissociated. The mechanism of proton exchange can be interpreted as a process of dissociation followed by recombination. The ionic structures at extreme conditions were analyzed by the effective coordination number model. High-order cluster, circle, and chain structures can be founded in the strongly coupled warm dense regime. The present QMD diffusion coefficient and viscosity can be used to benchmark two analytical one-component plasma (OCP) models: the Coulomb and Yukawa OCP models.
Collapse
Affiliation(s)
- Lei Liu
- Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Zhi-Guo Li
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Jia-Yu Dai
- Department of Physics, National University of Defense Technology, Changsha 410073, People's Republic of China
| | - Qi-Feng Chen
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621900, People's Republic of China
| | - Xiang-Rong Chen
- Institute of Atomic and Molecular Physics, College of Physical Science and Technology, Sichuan University, Chengdu 610064, People's Republic of China
| |
Collapse
|