1
|
Strandberg I, Eriksson AM, Royer B, Kervinen M, Gasparinetti S. Digital Homodyne and Heterodyne Detection for Stationary Bosonic Modes. PHYSICAL REVIEW LETTERS 2024; 133:063601. [PMID: 39178427 DOI: 10.1103/physrevlett.133.063601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/20/2024] [Accepted: 07/09/2024] [Indexed: 08/25/2024]
Abstract
Homo- and heterodyne detection are fundamental techniques for measuring propagating electromagnetic fields. However, applying these techniques to stationary fields confined in cavities poses a challenge. As a way to overcome this challenge, we propose to use repeated indirect measurements of a two-level system interacting with the cavity. We demonstrate numerically that the proposed measurement scheme faithfully reproduces measurement statistics of homo- or heterodyne detection. The scheme can be implemented in various physical architectures, including circuit quantum electrodynamics. Our results pave the way for implementation of quantum algorithms requiring linear detection of stationary modes, including quantum verification protocols.
Collapse
|
2
|
McIntyre ZM, Coish WA. Photonic Which-Path Entangler Based on Longitudinal Cavity-Qubit Coupling. PHYSICAL REVIEW LETTERS 2024; 132:093603. [PMID: 38489640 DOI: 10.1103/physrevlett.132.093603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/06/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024]
Abstract
We show that a modulated longitudinal cavity-qubit coupling can be used to control the path taken by a multiphoton coherent-state wave packet conditioned on the state of a qubit, resulting in a qubit-which-path (QWP) entangled state. QWP states can generate long-range multipartite entanglement using strategies for interfacing discrete- and continuous-variable degrees of freedom. Using the approach presented here, entanglement can be distributed in a quantum network without the need for single-photon sources or detectors.
Collapse
Affiliation(s)
- Z M McIntyre
- Department of Physics, McGill University, 3600 rue University, Montreal, Québec H3A 2T8, Canada
| | - W A Coish
- Department of Physics, McGill University, 3600 rue University, Montreal, Québec H3A 2T8, Canada
| |
Collapse
|
3
|
Grebel J, Yan H, Chou MH, Andersson G, Conner CR, Joshi YJ, Miller JM, Povey RG, Qiao H, Wu X, Cleland AN. Bidirectional Multiphoton Communication between Remote Superconducting Nodes. PHYSICAL REVIEW LETTERS 2024; 132:047001. [PMID: 38335327 DOI: 10.1103/physrevlett.132.047001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/11/2023] [Indexed: 02/12/2024]
Abstract
Quantum communication test beds provide a useful resource for experimentally investigating a variety of communication protocols. Here we demonstrate a superconducting circuit test bed with bidirectional multiphoton state transfer capability using time-domain shaped wave packets. The system we use to achieve this comprises two remote nodes, each including a tunable superconducting transmon qubit and a tunable microwave-frequency resonator, linked by a 2 m-long superconducting coplanar waveguide, which serves as a transmission line. We transfer both individual and superposition Fock states between the two remote nodes, and additionally show that this bidirectional state transfer can be done simultaneously, as well as being used to entangle elements in the two nodes.
Collapse
Affiliation(s)
- Joel Grebel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Haoxiong Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Ming-Han Chou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Gustav Andersson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Christopher R Conner
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Yash J Joshi
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Jacob M Miller
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Rhys G Povey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Hong Qiao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Xuntao Wu
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Andrew N Cleland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Center for Molecular Engineering, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
4
|
Niu J, Li Y, Zhang L, Zhang J, Chu J, Huang J, Huang W, Nie L, Qiu J, Sun X, Tao Z, Wei W, Zhang J, Zhou Y, Chen Y, Hu L, Liu Y, Liu S, Zhong Y, Lu D, Yu D. Demonstrating Path-Independent Anyonic Braiding on a Modular Superconducting Quantum Processor. PHYSICAL REVIEW LETTERS 2024; 132:020601. [PMID: 38277590 DOI: 10.1103/physrevlett.132.020601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/22/2023] [Accepted: 12/01/2023] [Indexed: 01/28/2024]
Abstract
Anyons, exotic quasiparticles in two-dimensional space exhibiting nontrivial exchange statistics, play a crucial role in universal topological quantum computing. One notable proposal to manifest the fractional statistics of anyons is the toric code model; however, scaling up its size through quantum simulation poses a serious challenge because of its highly entangled ground state. In this Letter, we demonstrate that a modular superconducting quantum processor enables hardware-pragmatic implementation of the toric code model. Through in-parallel control across separate modules, we generate a 10-qubit toric code ground state in four steps and realize six distinct braiding paths to benchmark the performance of anyonic statistics. The path independence of the anyonic braiding statistics is verified by correlation measurements in an efficient and scalable fashion. Our modular approach, serving as a hardware embodiment of the toric code model, offers a promising avenue toward scalable simulation of topological phases, paving the way for quantum simulation in a distributed fashion.
Collapse
Affiliation(s)
- Jingjing Niu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
| | - Yishan Li
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Libo Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiajian Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji Chu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiaxiang Huang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Huang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lifu Nie
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Qiu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xuandong Sun
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ziyu Tao
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Weiwei Wei
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Zhang
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxuan Zhou
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanzhen Chen
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ling Hu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yang Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Song Liu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
| | - Youpeng Zhong
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
| | - Dawei Lu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- International Quantum Academy, Shenzhen 518048, China
- Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Branch, Hefei National Laboratory, Shenzhen 518048, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
5
|
Lu Y, Maiti A, Garmon JWO, Ganjam S, Zhang Y, Claes J, Frunzio L, Girvin SM, Schoelkopf RJ. High-fidelity parametric beamsplitting with a parity-protected converter. Nat Commun 2023; 14:5767. [PMID: 37723141 PMCID: PMC10507116 DOI: 10.1038/s41467-023-41104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023] Open
Abstract
Fast, high-fidelity operations between microwave resonators are an important tool for bosonic quantum computation and simulation with superconducting circuits. An attractive approach for implementing these operations is to couple these resonators via a nonlinear converter and actuate parametric processes with RF drives. It can be challenging to make these processes simultaneously fast and high fidelity, since this requires introducing strong drives without activating parasitic processes or introducing additional decoherence channels. We show that in addition to a careful management of drive frequencies and the spectrum of environmental noise, leveraging the inbuilt symmetries of the converter Hamiltonian can suppress unwanted nonlinear interactions, preventing converter-induced decoherence. We demonstrate these principles using a differentially-driven DC-SQUID as our converter, coupled to two high-Q microwave cavities. Using this architecture, we engineer a highly-coherent beamsplitter and fast (~100 ns) swaps between the cavities, limited primarily by their intrinsic single-photon loss. We characterize this beamsplitter in the cavities' joint single-photon subspace, and show that we can detect and post-select photon loss events to achieve a beamsplitter gate fidelity exceeding 99.98%, which to our knowledge far surpasses the current state of the art.
Collapse
Affiliation(s)
- Yao Lu
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA.
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA.
| | - Aniket Maiti
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA.
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA.
| | - John W O Garmon
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Suhas Ganjam
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Yaxing Zhang
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Jahan Claes
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Luigi Frunzio
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Steven M Girvin
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA
| | - Robert J Schoelkopf
- Departments of Applied Physics and Physics, Yale University, New Haven, 06511, CT, USA.
- Yale Quantum Institute, Yale University, New Haven, 06511, CT, USA.
| |
Collapse
|
6
|
Zeng Y, Zhou ZY, Rinaldi E, Gneiting C, Nori F. Approximate Autonomous Quantum Error Correction with Reinforcement Learning. PHYSICAL REVIEW LETTERS 2023; 131:050601. [PMID: 37595216 DOI: 10.1103/physrevlett.131.050601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/22/2023] [Indexed: 08/20/2023]
Abstract
Autonomous quantum error correction (AQEC) protects logical qubits by engineered dissipation and thus circumvents the necessity of frequent, error-prone measurement-feedback loops. Bosonic code spaces, where single-photon loss represents the dominant source of error, are promising candidates for AQEC due to their flexibility and controllability. While existing proposals have demonstrated the in-principle feasibility of AQEC with bosonic code spaces, these schemes are typically based on the exact implementation of the Knill-Laflamme conditions and thus require the realization of Hamiltonian distances d≥2. Implementing such Hamiltonian distances requires multiple nonlinear interactions and control fields, rendering these schemes experimentally challenging. Here, we propose a bosonic code for approximate AQEC by relaxing the Knill-Laflamme conditions. Using reinforcement learning (RL), we identify the optimal bosonic set of code words (denoted here by RL code), which, surprisingly, is composed of the Fock states |2⟩ and |4⟩. As we show, the RL code, despite its approximate nature, successfully suppresses single-photon loss, reducing it to an effective dephasing process that well surpasses the break-even threshold. It may thus provide a valuable building block toward full error protection. The error-correcting Hamiltonian, which includes ancilla systems that emulate the engineered dissipation, is entirely based on the Hamiltonian distance d=1, significantly reducing model complexity. Single-qubit gates are implemented in the RL code with a maximum distance d_{g}=2.
Collapse
Affiliation(s)
- Yexiong Zeng
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan
| | - Zheng-Yang Zhou
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
| | - Enrico Rinaldi
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantinuum K.K., Otemachi Financial City Grand Cube 3F, 1-9-2 Otemachi, Chiyoda-ku, Tokyo, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
- Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wakoshi, Saitama 351-0198, Japan
| | - Clemens Gneiting
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Quantum Computing Center, RIKEN, Wakoshi, Saitama 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA
| |
Collapse
|
7
|
Storz S, Schär J, Kulikov A, Magnard P, Kurpiers P, Lütolf J, Walter T, Copetudo A, Reuer K, Akin A, Besse JC, Gabureac M, Norris GJ, Rosario A, Martin F, Martinez J, Amaya W, Mitchell MW, Abellan C, Bancal JD, Sangouard N, Royer B, Blais A, Wallraff A. Loophole-free Bell inequality violation with superconducting circuits. Nature 2023; 617:265-270. [PMID: 37165240 PMCID: PMC10172133 DOI: 10.1038/s41586-023-05885-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/24/2023] [Indexed: 05/12/2023]
Abstract
Superposition, entanglement and non-locality constitute fundamental features of quantum physics. The fact that quantum physics does not follow the principle of local causality1-3 can be experimentally demonstrated in Bell tests4 performed on pairs of spatially separated, entangled quantum systems. Although Bell tests, which are widely regarded as a litmus test of quantum physics, have been explored using a broad range of quantum systems over the past 50 years, only relatively recently have experiments free of so-called loopholes5 succeeded. Such experiments have been performed with spins in nitrogen-vacancy centres6, optical photons7-9 and neutral atoms10. Here we demonstrate a loophole-free violation of Bell's inequality with superconducting circuits, which are a prime contender for realizing quantum computing technology11. To evaluate a Clauser-Horne-Shimony-Holt-type Bell inequality4, we deterministically entangle a pair of qubits12 and perform fast and high-fidelity measurements13 along randomly chosen bases on the qubits connected through a cryogenic link14 spanning a distance of 30 metres. Evaluating more than 1 million experimental trials, we find an average S value of 2.0747 ± 0.0033, violating Bell's inequality with a P value smaller than 10-108. Our work demonstrates that non-locality is a viable new resource in quantum information technology realized with superconducting circuits with potential applications in quantum communication, quantum computing and fundamental physics15.
Collapse
Affiliation(s)
- Simon Storz
- Department of Physics, ETH Zurich, Zurich, Switzerland.
| | - Josua Schär
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | | | - Paul Magnard
- Department of Physics, ETH Zurich, Zurich, Switzerland
- Alice and Bob, Paris, France
| | - Philipp Kurpiers
- Department of Physics, ETH Zurich, Zurich, Switzerland
- Rohde and Schwarz, Munich, Germany
| | - Janis Lütolf
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Theo Walter
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | - Adrian Copetudo
- Department of Physics, ETH Zurich, Zurich, Switzerland
- Centre for Quantum Technologies, National University of Singapore, Singapore, Singapore
| | - Kevin Reuer
- Department of Physics, ETH Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | - Morgan W Mitchell
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, Castelldefels (Barcelona), Spain
- ICREA - Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | | | - Jean-Daniel Bancal
- Institute of Theoretical Physics, University of Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Nicolas Sangouard
- Institute of Theoretical Physics, University of Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Baptiste Royer
- Department of Physics, Yale University, New Haven, CT, USA
- Institut quantique and Départment de Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Alexandre Blais
- Institut quantique and Départment de Physique, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | - Andreas Wallraff
- Department of Physics, ETH Zurich, Zurich, Switzerland.
- Quantum Center, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Aamir MA, Moreno CC, Sundelin S, Biznárová J, Scigliuzzo M, Patel KE, Osman A, Lozano DP, Strandberg I, Gasparinetti S. Engineering Symmetry-Selective Couplings of a Superconducting Artificial Molecule to Microwave Waveguides. PHYSICAL REVIEW LETTERS 2022; 129:123604. [PMID: 36179204 DOI: 10.1103/physrevlett.129.123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Tailoring the decay rate of structured quantum emitters into their environment opens new avenues for nonlinear quantum optics, collective phenomena, and quantum communications. Here, we demonstrate a novel coupling scheme between an artificial molecule comprising two identical, strongly coupled transmon qubits and two microwave waveguides. In our scheme, the coupling is engineered so that transitions between states of the same (opposite) symmetry, with respect to the permutation operator, are predominantly coupled to one (the other) waveguide. The symmetry-based coupling selectivity, as quantified by the ratio of the coupling strengths, exceeds a factor of 30 for both waveguides in our device. In addition, we implement a Raman process activated by simultaneously driving both waveguides, and show that it can be used to coherently couple states of different symmetry in the single-excitation manifold of the molecule. Using that process, we implement frequency conversion across the waveguides, mediated by the molecule, with efficiency of about 95%. Finally, we show that this coupling arrangement makes it possible to straightforwardly generate spatially separated Bell states propagating across the waveguides. We envisage further applications to quantum thermodynamics, microwave photodetection, and photon-photon gates.
Collapse
Affiliation(s)
- Mohammed Ali Aamir
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Claudia Castillo Moreno
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Simon Sundelin
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Janka Biznárová
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Marco Scigliuzzo
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Kowshik Erappaji Patel
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Amr Osman
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - D P Lozano
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Ingrid Strandberg
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Simone Gasparinetti
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
9
|
Yan H, Zhong Y, Chang HS, Bienfait A, Chou MH, Conner CR, Dumur É, Grebel J, Povey RG, Cleland AN. Entanglement Purification and Protection in a Superconducting Quantum Network. PHYSICAL REVIEW LETTERS 2022; 128:080504. [PMID: 35275688 DOI: 10.1103/physrevlett.128.080504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
High-fidelity quantum entanglement is a key resource for quantum communication and distributed quantum computing, enabling quantum state teleportation, dense coding, and quantum encryption. Any sources of decoherence in the communication channel, however, degrade entanglement fidelity, thereby increasing the error rates of entangled state protocols. Entanglement purification provides a method to alleviate these nonidealities by distilling impure states into higher-fidelity entangled states. Here we demonstrate the entanglement purification of Bell pairs shared between two remote superconducting quantum nodes connected by a moderately lossy, 1-meter long superconducting communication cable. We use a purification process to correct the dominant amplitude damping errors caused by transmission through the cable, with fractional increases in fidelity as large as 25%, achieved for higher damping errors. The best final fidelity the purification achieves is 94.09±0.98%. In addition, we use both dynamical decoupling and Rabi driving to protect the entangled states from local noise, increasing the effective qubit dephasing time by a factor of 4, from 3 to 12 μs. These methods demonstrate the potential for the generation and preservation of very high-fidelity entanglement in a superconducting quantum communication network.
Collapse
Affiliation(s)
- Haoxiong Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Youpeng Zhong
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Hung-Shen Chang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Audrey Bienfait
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Ming-Han Chou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Christopher R Conner
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Étienne Dumur
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Center for Molecular Engineering and Material Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Joel Grebel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Rhys G Povey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - Andrew N Cleland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Center for Molecular Engineering and Material Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| |
Collapse
|
10
|
Ma WL, Puri S, Schoelkopf RJ, Devoret MH, Girvin SM, Jiang L. Quantum control of bosonic modes with superconducting circuits. Sci Bull (Beijing) 2021; 66:1789-1805. [PMID: 36654386 DOI: 10.1016/j.scib.2021.05.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023]
Abstract
Bosonic modes have wide applications in various quantum technologies, such as optical photons for quantum communication, magnons in spin ensembles for quantum information storage and mechanical modes for reversible microwave-to-optical quantum transduction. There is emerging interest in utilizing bosonic modes for quantum information processing, with circuit quantum electrodynamics (circuit QED) as one of the leading architectures. Quantum information can be encoded into subspaces of a bosonic superconducting cavity mode with long coherence time. However, standard Gaussian operations (e.g., beam splitting and two-mode squeezing) are insufficient for universal quantum computing. The major challenge is to introduce additional nonlinear control beyond Gaussian operations without adding significant bosonic loss or decoherence. Here we review recent advances in universal control of a single bosonic code with superconducting circuits, including unitary control, quantum feedback control, driven-dissipative control and holonomic dissipative control. Various approaches to entangling different bosonic modes are also discussed.
Collapse
Affiliation(s)
- Wen-Long Ma
- State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China; Pritzker School of Molecular Engineering, University of Chicago, Illinois 60637, USA
| | - Shruti Puri
- Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA; Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA
| | - Robert J Schoelkopf
- Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA; Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA
| | - Michel H Devoret
- Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA; Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA
| | - S M Girvin
- Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06511, USA; Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA
| | - Liang Jiang
- Pritzker School of Molecular Engineering, University of Chicago, Illinois 60637, USA.
| |
Collapse
|
11
|
Krastanov S, Raniwala H, Holzgrafe J, Jacobs K, Lončar M, Reagor MJ, Englund DR. Optically Heralded Entanglement of Superconducting Systems in Quantum Networks. PHYSICAL REVIEW LETTERS 2021; 127:040503. [PMID: 34355947 DOI: 10.1103/physrevlett.127.040503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Networking superconducting quantum computers is a longstanding challenge in quantum science. The typical approach has been to cascade transducers: converting to optical frequencies at the transmitter and to microwave frequencies at the receiver. However, the small microwave-optical coupling and added noise have proven formidable obstacles. Instead, we propose optical networking via heralding end-to-end entanglement with one detected photon and teleportation. This new protocol can be implemented on standard transduction hardware while providing significant performance improvements over transduction. In contrast to cascaded direct transduction, our scheme absorbs the low optical-microwave coupling efficiency into the heralding step, thus breaking the rate-fidelity trade-off. Moreover, this technique unifies and simplifies entanglement generation between superconducting devices and other physical modalities in quantum networks.
Collapse
Affiliation(s)
- Stefan Krastanov
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Hamza Raniwala
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Jeffrey Holzgrafe
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Kurt Jacobs
- U.S. Army Research Laboratory, Computational and Information Sciences Directorate, Adelphi, Maryland 20783, USA
- Department of Physics, University of Massachusetts at Boston, Boston, Massachusetts 02125, USA
| | - Marko Lončar
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Matthew J Reagor
- Rigetti Computing, 775 Heinz Avenue, Berkeley, California 94710, USA
| | - Dirk R Englund
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
12
|
Sharifi J. Superconductor qubits hamiltonian approximations effect on quantum state evolution and control. Sci Rep 2021; 11:12791. [PMID: 34140590 PMCID: PMC8211851 DOI: 10.1038/s41598-021-92290-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/28/2021] [Indexed: 12/02/2022] Open
Abstract
Microwave IQ-mixer controllers are designed for the three approximated Hamiltonians of charge, phase and flux qubits and the controllers are exerted both on approximate and precise quantum system models. The controlled qubits are for the implementation of the two quantum-gates with these three fundamental types of qubits, Quantum NOT-gate and Hadamard-gate. In the charge-qubit, for implementation of both gates, in the approximated and precise model, we observed different controlled trajectories. But fortunately, applying the controller designed for the approximated system over the precise system leads to the passing of the quantum state from the desired state sooner that the expected time. Phase-qubit and flux qubit have similar behaviour under the control system action. In both of them, the implementation of NOT-gate operation led to same trajectories which arrive at final goal state at different times. But in both of those two qubits for implementation of Hadamard-gate, desired trajectory and precise trajectory have some angle of deviation, then by exerting the approximated design controller to precise system, it caused the quantum state to approach the goal state for Hadamard gate implementation, and since the quantum state does not completely reach the goal state, we can not obtain very high gate fidelity.
Collapse
Affiliation(s)
- Javad Sharifi
- Electrical and Computer Engineering Department, Qom University of Technology, Qom, 37181-46645, Iran.
| |
Collapse
|
13
|
Wang Z, Xu M, Han X, Fu W, Puri S, Girvin SM, Tang HX, Shankar S, Devoret MH. Quantum Microwave Radiometry with a Superconducting Qubit. PHYSICAL REVIEW LETTERS 2021; 126:180501. [PMID: 34018799 DOI: 10.1103/physrevlett.126.180501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
The interaction of photons and coherent quantum systems can be employed to detect electromagnetic radiation with remarkable sensitivity. We introduce a quantum radiometer based on the photon-induced dephasing process of a superconducting qubit for sensing microwave radiation at the subunit photon level. Using this radiometer, we demonstrate the radiative cooling of a 1 K microwave resonator and measure its mode temperature with an uncertainty ∼0.01 K. We thus develop a precise tool for studying the thermodynamics of quantum microwave circuits, which provides new solutions for calibrating hybrid quantum systems and detecting candidate particles for dark matter.
Collapse
Affiliation(s)
- Zhixin Wang
- Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Mingrui Xu
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Xu Han
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Wei Fu
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Shruti Puri
- Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520, USA
| | - S M Girvin
- Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Hong X Tang
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - S Shankar
- Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520, USA
| | - M H Devoret
- Department of Applied Physics and Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
14
|
Zhong Y, Chang HS, Bienfait A, Dumur É, Chou MH, Conner CR, Grebel J, Povey RG, Yan H, Schuster DI, Cleland AN. Deterministic multi-qubit entanglement in a quantum network. Nature 2021; 590:571-575. [PMID: 33627810 DOI: 10.1038/s41586-021-03288-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/15/2020] [Indexed: 01/31/2023]
Abstract
The generation of high-fidelity distributed multi-qubit entanglement is a challenging task for large-scale quantum communication and computational networks1-4. The deterministic entanglement of two remote qubits has recently been demonstrated with both photons5-10 and phonons11. However, the deterministic generation and transmission of multi-qubit entanglement has not been demonstrated, primarily owing to limited state-transfer fidelities. Here we report a quantum network comprising two superconducting quantum nodes connected by a one-metre-long superconducting coaxial cable, where each node includes three interconnected qubits. By directly connecting the cable to one qubit in each node, we transfer quantum states between the nodes with a process fidelity of 0.911 ± 0.008. We also prepare a three-qubit Greenberger-Horne-Zeilinger (GHZ) state12-14 in one node and deterministically transfer this state to the other node, with a transferred-state fidelity of 0.656 ± 0.014. We further use this system to deterministically generate a globally distributed two-node, six-qubit GHZ state with a state fidelity of 0.722 ± 0.021. The GHZ state fidelities are clearly above the threshold of 1/2 for genuine multipartite entanglement15, showing that this architecture can be used to coherently link together multiple superconducting quantum processors, providing a modular approach for building large-scale quantum computers16,17.
Collapse
Affiliation(s)
- Youpeng Zhong
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Shenzhen Institute for Quantum Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Hung-Shen Chang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Audrey Bienfait
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France
| | - Étienne Dumur
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Institute for Molecular Engineering and Material Science Division, Argonne National Laboratory, Argonne, IL, USA.,Université Grenoble Alpes, CEA, INAC-Pheliqs, Grenoble, France
| | - Ming-Han Chou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Department of Physics, University of Chicago, Chicago, IL, USA
| | - Christopher R Conner
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Joel Grebel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Rhys G Povey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Department of Physics, University of Chicago, Chicago, IL, USA
| | - Haoxiong Yan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - David I Schuster
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA.,Department of Physics, University of Chicago, Chicago, IL, USA
| | - Andrew N Cleland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA. .,Institute for Molecular Engineering and Material Science Division, Argonne National Laboratory, Argonne, IL, USA.
| |
Collapse
|
15
|
Magnard P, Storz S, Kurpiers P, Schär J, Marxer F, Lütolf J, Walter T, Besse JC, Gabureac M, Reuer K, Akin A, Royer B, Blais A, Wallraff A. Microwave Quantum Link between Superconducting Circuits Housed in Spatially Separated Cryogenic Systems. PHYSICAL REVIEW LETTERS 2020; 125:260502. [PMID: 33449744 DOI: 10.1103/physrevlett.125.260502] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/16/2020] [Indexed: 05/26/2023]
Abstract
Superconducting circuits are a strong contender for realizing quantum computing systems and are also successfully used to study quantum optics and hybrid quantum systems. However, their cryogenic operation temperatures and the current lack of coherence-preserving microwave-to-optical conversion solutions have hindered the realization of superconducting quantum networks spanning different cryogenic systems or larger distances. Here, we report the successful operation of a cryogenic waveguide coherently linking transmon qubits located in two dilution refrigerators separated by a physical distance of five meters. We transfer qubit states and generate entanglement on demand with average transfer and target state fidelities of 85.8% and 79.5%, respectively, between the two nodes of this elementary network. Cryogenic microwave links provide an opportunity to scale up systems for quantum computing and create local area superconducting quantum communication networks over length scales of at least tens of meters.
Collapse
Affiliation(s)
- P Magnard
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - S Storz
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - P Kurpiers
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - J Schär
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - F Marxer
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - J Lütolf
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - T Walter
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - J-C Besse
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - M Gabureac
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - K Reuer
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - A Akin
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - B Royer
- Institut Quantique and Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
| | - A Blais
- Institut Quantique and Département de Physique, Université de Sherbrooke, Sherbrooke, Québec J1K 2R1, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - A Wallraff
- Department of Physics, ETH Zürich, CH-8093 Zürich, Switzerland
- Quantum Center, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
Zhu G, Lavasani A, Barkeshli M. Universal Logical Gates on Topologically Encoded Qubits via Constant-Depth Unitary Circuits. PHYSICAL REVIEW LETTERS 2020; 125:050502. [PMID: 32794843 DOI: 10.1103/physrevlett.125.050502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
A fundamental question in the theory of quantum computation is to understand the ultimate space-time resource costs for performing a universal set of logical quantum gates to arbitrary precision. Here we demonstrate that non-Abelian anyons in Turaev-Viro quantum error correcting codes can be moved over a distance of order of the code distance, and thus braided, by a constant depth local unitary quantum circuit followed by a permutation of qubits. Our gates are protected in the sense that the lengths of error strings do not grow by more than a constant factor. When applied to the Fibonacci code, our results demonstrate that a universal logical gate set can be implemented on encoded qubits through a constant depth unitary quantum circuit, and without increasing the asymptotic scaling of the space overhead. These results also apply directly to braiding of topological defects in surface codes. Our results reformulate the notion of braiding in general as an effectively instantaneous process, rather than as an adiabatic, slow process.
Collapse
Affiliation(s)
- Guanyu Zhu
- Department of Physics, Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| | - Ali Lavasani
- Department of Physics, Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| | - Maissam Barkeshli
- Department of Physics, Condensed Matter Theory Center, University of Maryland, College Park, Maryland 20742, USA and Joint Quantum Institute, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
17
|
Chang HS, Zhong YP, Bienfait A, Chou MH, Conner CR, Dumur É, Grebel J, Peairs GA, Povey RG, Satzinger KJ, Cleland AN. Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System. PHYSICAL REVIEW LETTERS 2020; 124:240502. [PMID: 32639797 DOI: 10.1103/physrevlett.124.240502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Effective quantum communication between remote quantum nodes requires high fidelity quantum state transfer and remote entanglement generation. Recent experiments have demonstrated that microwave photons, as well as phonons, can be used to couple superconducting qubits, with a fidelity limited primarily by loss in the communication channel [P. Kurpiers et al., Nature (London) 558, 264 (2018)NATUAS0028-083610.1038/s41586-018-0195-y; C. J. Axline et al., Nat. Phys. 14, 705 (2018)NPAHAX1745-247310.1038/s41567-018-0115-y; P. Campagne-Ibarcq et al., Phys. Rev. Lett. 120, 200501 (2018)PRLTAO0031-900710.1103/PhysRevLett.120.200501; N. Leung et al., npj Quantum Inf. 5, 18 (2019)2056-638710.1038/s41534-019-0128-0; Y. P. Zhong et al., Nat. Phys. 15, 741 (2019)NPAHAX1745-247310.1038/s41567-019-0507-7; A. Bienfait et al., Science 364, 368 (2019)SCIEAS0036-807510.1126/science.aaw8415]. Adiabatic protocols can overcome channel loss by transferring quantum states without populating the lossy communication channel. Here, we present a unique superconducting quantum communication system, comprising two superconducting qubits connected by a 0.73 m-long communication channel. Significantly, we can introduce large tunable loss to the channel, allowing exploration of different entanglement protocols in the presence of dissipation. When set for minimum loss in the channel, we demonstrate an adiabatic quantum state transfer protocol that achieves 99% transfer efficiency as well as the deterministic generation of entangled Bell states with a fidelity of 96%, all without populating the intervening communication channel, and competitive with a qubit-resonant mode-qubit relay method. We also explore the performance of the adiabatic protocol in the presence of significant channel loss, and show that the adiabatic protocol protects against loss in the channel, achieving higher state transfer and entanglement fidelities than the relay method.
Collapse
Affiliation(s)
- H-S Chang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Y P Zhong
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - A Bienfait
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - M-H Chou
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - C R Conner
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - É Dumur
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - J Grebel
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - G A Peairs
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - R G Povey
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of Chicago, Chicago, Illinois 60637, USA
| | - K J Satzinger
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Department of Physics, University of California, Santa Barbara, California 93106, USA
| | - A N Cleland
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
- Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
18
|
Karg TM, Gouraud B, Ngai CT, Schmid GL, Hammerer K, Treutlein P. Light-mediated strong coupling between a mechanical oscillator and atomic spins 1 meter apart. Science 2020; 369:174-179. [DOI: 10.1126/science.abb0328] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/28/2020] [Indexed: 11/02/2022]
Abstract
Engineering strong interactions between quantum systems is essential for many phenomena of quantum physics and technology. Typically, strong coupling relies on short-range forces or on placing the systems in high-quality electromagnetic resonators, which restricts the range of the coupling to small distances. We used a free-space laser beam to strongly couple a collective atomic spin and a micromechanical membrane over a distance of 1 meter in a room-temperature environment. The coupling is highly tunable and allows the observation of normal-mode splitting, coherent energy exchange oscillations, two-mode thermal noise squeezing, and dissipative coupling. Our approach to engineering coherent long-distance interactions with light makes it possible to couple very different systems in a modular way, opening up a range of opportunities for quantum control and coherent feedback networks.
Collapse
Affiliation(s)
- Thomas M. Karg
- Department of Physics and Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Baptiste Gouraud
- Department of Physics and Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Chun Tat Ngai
- Department of Physics and Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Gian-Luca Schmid
- Department of Physics and Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Klemens Hammerer
- Institute for Theoretical Physics and Institute for Gravitational Physics (Albert Einstein Institute), Leibniz Universität Hannover, 30167 Hannover, Germany
| | - Philipp Treutlein
- Department of Physics and Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
19
|
Zhong C, Wang Z, Zou C, Zhang M, Han X, Fu W, Xu M, Shankar S, Devoret MH, Tang HX, Jiang L. Proposal for Heralded Generation and Detection of Entangled Microwave-Optical-Photon Pairs. PHYSICAL REVIEW LETTERS 2020; 124:010511. [PMID: 31976686 DOI: 10.1103/physrevlett.124.010511] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Indexed: 06/10/2023]
Abstract
Quantum state transfer between microwave and optical frequencies is essential for connecting superconducting quantum circuits to optical systems and extending microwave quantum networks over long distances. However, establishing such a quantum interface is extremely challenging because the standard direct quantum transduction requires both high coupling efficiency and small added noise. We propose an entanglement-based scheme-generating microwave-optical entanglement and using it to transfer quantum states via quantum teleportation-which can bypass the stringent requirements in direct quantum transduction and is robust against loss errors. In addition, we propose and analyze a counterintuitive design-suppress the added noise by placing the device at a higher temperature environment-which can improve both the device quality factor and power handling capability. We systematically analyze the generation and verification of entangled microwave-optical-photon pairs. The parameter for entanglement verification favors the regime of cooperativity mismatch and can tolerate certain thermal noises. Our scheme is feasible given the latest advances on electro-optomechanics, and can be generalized to various physical systems.
Collapse
Affiliation(s)
- Changchun Zhong
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Zhixin Wang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Changling Zou
- Key Laboratory of Quantum Information, CAS, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mengzhen Zhang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Xu Han
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Wei Fu
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Mingrui Xu
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - S Shankar
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Michel H Devoret
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| | - Hong X Tang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
- Department of Electrical Engineering, Yale University, New Haven, Connecticut 06520, USA
| | - Liang Jiang
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
- Yale Quantum Institute, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
20
|
Bienfait A, Satzinger KJ, Zhong YP, Chang HS, Chou MH, Conner CR, Dumur É, Grebel J, Peairs GA, Povey RG, Cleland AN. Phonon-mediated quantum state transfer and remote qubit entanglement. Science 2019; 364:368-371. [PMID: 31023919 DOI: 10.1126/science.aaw8415] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
Abstract
Phonons, and in particular surface acoustic wave phonons, have been proposed as a means to coherently couple distant solid-state quantum systems. Individual phonons in a resonant structure can be controlled and detected by superconducting qubits, enabling the coherent generation and measurement of complex stationary phonon states. We report the deterministic emission and capture of itinerant surface acoustic wave phonons, enabling the quantum entanglement of two superconducting qubits. Using a 2-millimeter-long acoustic quantum communication channel, equivalent to a 500-nanosecond delay line, we demonstrate the emission and recapture of a phonon by one superconducting qubit, quantum state transfer between two superconducting qubits with a 67% efficiency, and, by partial transfer of a phonon, generation of an entangled Bell pair with a fidelity of 84%.
Collapse
Affiliation(s)
- A Bienfait
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - K J Satzinger
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Y P Zhong
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - H-S Chang
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - M-H Chou
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - C R Conner
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - É Dumur
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - J Grebel
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - G A Peairs
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.,Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - R G Povey
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Department of Physics, University of Chicago, Chicago, IL 60637, USA
| | - A N Cleland
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. .,Institute for Molecular Engineering and Materials Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| |
Collapse
|
21
|
Parity-Assisted Generation of Nonclassical States of Light in Circuit Quantum Electrodynamics. Symmetry (Basel) 2019. [DOI: 10.3390/sym11030372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We propose a method to generate nonclassical states of light in multimode microwave cavities. Our approach considers two-photon processes that take place in a system composed of N extended cavities and an ultrastrongly coupled light–matter system. Under specific resonance conditions, our method generates, in a deterministic manner, product states of uncorrelated photon pairs, Bell states, and W states in different modes on the extended cavities. Furthermore, the numerical simulations show that the generation scheme exhibits a collective effect which decreases the generation time in the same proportion as the number of extended cavity increases. Moreover, the entanglement encoded in the photonic states can be transferred towards ancillary two-level systems to generate genuine multipartite entanglement. Finally, we discuss the feasibility of our proposal in circuit quantum electrodynamics. This proposal could be of interest in the context of quantum random number generator, due to the quadratic scaling of the output state.
Collapse
|