1
|
Rehman AU, Szalewicz K. Dispersionless Nonhybrid Density Functional. J Chem Theory Comput 2025; 21:1098-1118. [PMID: 39823213 DOI: 10.1021/acs.jctc.4c00941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
A dispersion-corrected density functional theory (DFT+D) method has been developed. It includes a nonhybrid dispersionless generalized gradient approximation (GGA) functional paired with a literature-parametrized dispersion function. The functional's 9 adjustable parameters were optimized using a training set of 589 benchmark interaction energies. The resulting method performs better than other GGA-based DFT+D methods, giving a mean unsigned error of 0.33 kcal/mol. It even performs better than some more expensive meta-GGA or hybrid dispersion-corrected functionals. An important advantage of using the new functional is that its dispersion energy given by the D component is very close to the true dispersion energy at all intermolecular separations, whereas in other similarly accurate DFT+D approaches, such a dispersion contribution in the van der Waals minimum region is only a small fraction of the true value.
Collapse
Affiliation(s)
- Atta Ur Rehman
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Schramm B, Gray M, Herbert JM. Substituent and Heteroatom Effects on π-π Interactions: Evidence That Parallel-Displaced π-Stacking is Not Driven by Quadrupolar Electrostatics. J Am Chem Soc 2025; 147:3243-3260. [PMID: 39818769 DOI: 10.1021/jacs.4c13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Stacking interactions are a recurring motif in supramolecular chemistry and biochemistry, where a persistent theme is a preference for parallel-displaced aromatic rings rather than face-to-face π-stacking. This is typically explained in terms of quadrupole-quadrupole interactions between the arene moieties but that interpretation is inconsistent with accurate calculations, which reveal that the quadrupolar picture is qualitatively wrong. At typical π-stacking distances, quadrupolar electrostatics may differ in sign from an exact calculation based on charge densities of the interacting arenes. We apply symmetry-adapted perturbation theory to dimers composed of substituted benzene and various aromatic heterocycles, which display a wide range of electrostatic interactions, and we investigate the interplay of Pauli repulsion, dispersion, and electrostatics as it pertains to parallel-displaced π-stacking. Profiles of energy components along cofacial slip-stacking coordinates support a prominent role for the "van der Waals model" (dispersion in competition with Pauli repulsion), even for polar monomers where electrostatic interactions are significant. While electrostatic interactions are necessary to explain the optimal face-to-face π-stacking distance and to account for the relative orientation of one polar arene with respect to another, we find no evidence to support continued invocation of quadrupolar electrostatics as a basis for π-stacking. Our results suggest that a driving force for offset-stacking exists even in the absence of electrostatic interactions. Consequently, tuning electrostatics via functionalization does not guarantee that slip-stacking can be avoided. This has implications for rational design of soft materials and other supramolecular architectures.
Collapse
Affiliation(s)
- Brandon Schramm
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Montgomery Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
3
|
Szirmai ÁB, Hégely B, Tajti A, Kállay M, Szalay PG. Projected Atomic Orbitals As Optimal Virtual Space for Excited State Projection-Based Embedding Calculations. J Chem Theory Comput 2024; 20:3420-3425. [PMID: 38626416 DOI: 10.1021/acs.jctc.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
The projected atomic orbital (PAO) technique is presented for the construction of virtual orbital spaces in projection-based embedding (PbE) applications. The proposed straightforward procedure produces a set of virtual orbitals that are used in the final, high-level calculation of the embedded active subsystem. The PAO scheme is demonstrated on intermolecular potentials of bimolecular complexes in ground and excited states, including Rydberg excitations. The results show the outstanding performance of the PbE method when used with PAO virtual orbitals compared with those produced using common orbital localization techniques. The good agreement of the resulting PbE potential curves with those from high-level ab initio dimer calculations, also in diffuse basis sets, confirms that the PAO technique can be suggested for future applications using top-down embedding methods.
Collapse
Affiliation(s)
- Ádám B Szirmai
- Laboratory of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
- György Hevesy Doctoral School, ELTE Eötvös Loŕnd University, Institute of Chemistry, H-1117 Budapest, Hungary
| | - Bence Hégely
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN-BME Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Attila Tajti
- Laboratory of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| | - Mihály Kállay
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN-BME Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA-BME Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Péter G Szalay
- Laboratory of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, P.O. Box 32, H-1518 Budapest, Hungary
| |
Collapse
|
4
|
Arismendi-Arrieta DJ, Sen A, Eriksson A, Broqvist P, Kullgren J, Hermansson K. H2O2(s) and H2O2·2H2O(s) crystals compared with ices: DFT functional assessment and D3 analysis. J Chem Phys 2023; 159:194701. [PMID: 37966002 DOI: 10.1063/5.0145203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/27/2023] [Indexed: 11/16/2023] Open
Abstract
The H2O and H2O2 molecules resemble each other in a multitude of ways as has been noted in the literature. Here, we present density functional theory (DFT) calculations for the H2O2(s) and H2O2·2H2O(s) crystals and make selected comparisons with ice polymorphs. The performance of a number of dispersion-corrected density functionals-both self-consistent and a posteriori ones-are assessed, and we give special attention to the D3 correction and its effects. The D3 correction to the lattice energies is large: for H2O2(s) the D3 correction constitutes about 25% of the lattice energy using PBE, much more for RPBE, much less for SCAN, and it primarily arises from non-H-bonded interactions out to about 5 Å.The large D3 corrections to the lattice energies are likely a consequence of several effects: correction for missing dispersion interaction, the ability of D3 to capture and correct various other kinds of limitations built into the underlying DFT functionals, and finally some degree of cell-contraction-induced polarization enhancement. We find that the overall best-performing functionals of the twelve examined are optPBEvdW and RPBE-D3. Comparisons with DFT assessments for ices in the literature show that where the same methods have been used, the assessments largely agree.
Collapse
Affiliation(s)
| | - Anik Sen
- Department of Chemistry-Ångström, Uppsala University, P.O. Box 530, S-75121 Uppsala, Sweden
| | - Anders Eriksson
- Department of Chemistry-Ångström, Uppsala University, P.O. Box 530, S-75121 Uppsala, Sweden
| | - Peter Broqvist
- Department of Chemistry-Ångström, Uppsala University, P.O. Box 530, S-75121 Uppsala, Sweden
| | - Jolla Kullgren
- Department of Chemistry-Ångström, Uppsala University, P.O. Box 530, S-75121 Uppsala, Sweden
| | - Kersti Hermansson
- Department of Chemistry-Ångström, Uppsala University, P.O. Box 530, S-75121 Uppsala, Sweden
| |
Collapse
|
5
|
Luy JN, Henkel P, Grigjanis D, Jung J, Mollenhauer D, Tonner-Zech R. Bonding character of intermediates in on-surface Ullmann reactions revealed with energy decomposition analysis. J Comput Chem 2023; 44:179-189. [PMID: 35397119 DOI: 10.1002/jcc.26855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 12/31/2022]
Abstract
On-surface synthesis has become a thriving topic in surface science. The Ullmann coupling reaction is the most applied synthetic route today, but the nature of the organometallic intermediate is still under discussion. We investigate the bonding nature of prototypical intermediate species (phenyl, naphthyl, anthracenyl, phenanthryl, and triphenylenyl) on the Cu(111) surface with a combination of plane wave and atomic orbital basis set methods using density functional theory calculations with periodic boundary conditions. The surface bonding is shown to be of covalent nature with a polarized shared-electron bond supported by π-back donation effects using energy decomposition analysis for extended systems (pEDA). The bond angle of the intermediates is determined by balancing dispersion attraction and Pauli repulsion between adsorbate and surface. The latter can be significantly reduced by adatoms on the surface. We furthermore investigate how to choose computational parameters for pEDA of organic adsorbates on metal surfaces efficiently and show that bonding interpretation requires consistent choice of the density functional.
Collapse
Affiliation(s)
- Jan-Niclas Luy
- Fakultät für Chemie und Mineralogie, Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Leipzig, Germany.,Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Pascal Henkel
- Institute of Physical Chemistry, Justus-Liebig University Giessen, Giessen, Germany.,Center for Materials Research (LaMa), Justus-Liebig University Giessen, Giessen, Germany
| | - Daniel Grigjanis
- Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| | - Jannis Jung
- Institute of Physical Chemistry, Justus-Liebig University Giessen, Giessen, Germany.,Center for Materials Research (LaMa), Justus-Liebig University Giessen, Giessen, Germany
| | - Doreen Mollenhauer
- Institute of Physical Chemistry, Justus-Liebig University Giessen, Giessen, Germany.,Center for Materials Research (LaMa), Justus-Liebig University Giessen, Giessen, Germany
| | - Ralf Tonner-Zech
- Fakultät für Chemie und Mineralogie, Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Leipzig, Germany.,Fachbereich Chemie, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
6
|
Zhou K, Qian C, Liu Y. Quantifying the Structure of Water and Hydrated Monovalent Ions by Density Functional Theory-Based Molecular Dynamics. J Phys Chem B 2022; 126:10471-10480. [PMID: 36451081 DOI: 10.1021/acs.jpcb.2c05330] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The accurate description of the structures of water and hydrated ions is important in electrochemical desalination, ion separation, and supercapacitors. In this work, we present an ab initio atomistic simulation-based study to explore the structure of water and hydrated monovalent ions (Li+, Na+, K+, Rb+, F-, and Cl-) at ambient conditions using generalized gradient approximation (GGA)-based methods with and without van der Waals correction (PBE, PBE + D3, and revPBE + D3) and recently developed strongly constrained and appropriately normed (SCAN) meta-GGA. We find that both revPBE + D3 and SCAN can well capture the structure of bulk water with +30 K artificial high temperature in contrast to overstructuring water using PBE and PBE + D3. However, being the same as PBE + D3, revPBE + D3 overestimates the structure of the hydration shell, especially for monovalent cations. Surprisingly, SCAN can well match the experimental results of hydrated monovalent ions. Detailed structure analyzes of entropy reveal that the hydration shell under the level of PBE + D3 and revPBE + D3 is more disordered and looser than SCAN. The successful prediction of the flexible SCAN functional could facilitate the exploration of complex ionic processes in the aqueous phase, the interactions of hydrated ions with surfaces, and solvation states in nanopores at an accurate, efficient, predictive, and ab initio level.
Collapse
Affiliation(s)
- Ke Zhou
- College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou215006, China.,Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an710049, China
| | - Chen Qian
- Department of Mechanical Engineering, Zhejiang University, Hangzhou310058, China
| | - Yilun Liu
- Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
7
|
Quantum Chemistry Insight into the Interactions of 1,3-Diisopropoxycalix[4]arenecrown-6 with Alkali Metal Cations: Structure, Selectivity, and Solvation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
8
|
Gray M, Bowling PE, Herbert JM. Systematic Evaluation of Counterpoise Correction in Density Functional Theory. J Chem Theory Comput 2022; 18:6742-6756. [PMID: 36251499 DOI: 10.1021/acs.jctc.2c00883] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A widespread belief persists that the Boys-Bernardi function counterpoise (CP) procedure "overcorrects" supramolecular interaction energies for the effects of basis-set superposition error. To the extent that this is true for correlated wave function methods, it is usually an artifact of low-quality basis sets. The question has not been considered systematically in the context of density functional theory, however, where basis-set convergence is generally less problematic. We present a systematic assessment of the CP procedure for a representative set of functionals and basis sets, considering both benchmark data sets of small dimers and larger supramolecular complexes. The latter include layered composite polymers with ∼150 atoms and ligand-protein models with ∼300 atoms. Provided that CP correction is used, we find that intermolecular interaction energies of nearly complete-basis quality can be obtained using only double-ζ basis sets. This is less expensive as compared to triple-ζ basis sets without CP correction. CP-corrected interaction energies are less sensitive to the presence of diffuse basis functions as compared to uncorrected energies, which is important because diffuse functions are expensive and often numerically problematic for large systems. Our results upend the conventional wisdom that CP "overcorrects" for basis-set incompleteness. In small basis sets, CP correction is mandatory in order to demonstrate that the results do not rest on error cancellation.
Collapse
Affiliation(s)
- Montgomery Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States
| | - Paige E Bowling
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States.,Biophysics Graduate Program, The Ohio State University, Columbus, Ohio43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio43210, United States.,Biophysics Graduate Program, The Ohio State University, Columbus, Ohio43210, United States
| |
Collapse
|
9
|
Szalewicz K, Jeziorski B. Physical mechanisms of intermolecular interactions from symmetry-adapted perturbation theory. J Mol Model 2022; 28:273. [PMID: 36006512 DOI: 10.1007/s00894-022-05190-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 10/15/2022]
Abstract
Symmetry-adapted perturbation theory (SAPT) is a method for computational studies of noncovalent interactions between molecules. This method will be discussed here from the perspective of establishing the paradigm for understanding mechanisms of intermolecular interactions. SAPT interaction energies are obtained as sums of several contributions. Each contribution possesses a clear physical interpretation as it results from some specific physical process. It also exhibits a specific dependence on the intermolecular separation R. The four major contributions are the electrostatic, induction, dispersion, and exchange energies, each due to a different mechanism, valid at any R. In addition, at large R, SAPT interaction energies are seamlessly connected with the corresponding terms in the asymptotic multipole expansion of interaction energy in inverse powers of R. Since such expansion explicitly depends on monomers' multipole moments and polarizabilities, this connection provides additional insights by rigorously relating interaction energies to monomers' properties.
Collapse
Affiliation(s)
- Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, DE, 19716, USA.
| | - Bogumił Jeziorski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02093, Warsaw, Poland
| |
Collapse
|
10
|
Jerabek P, Santhosh A, Schwerdtfeger P. Relativistic Effects Stabilize Unusual Gold(II) Sulfate Structure via Aurophilic Interactions. Inorg Chem 2022; 61:13077-13084. [PMID: 35951583 DOI: 10.1021/acs.inorgchem.2c01512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The crystal structure of gold(II) sulfate is strikingly different from other coinage metal(II) sulfates. Central to the unsual AuSO4 bulk structure is the Au24+ ion with a very close Au-Au contact, which is a structural feature that does not appear in CuSO4 and AgSO4. To shed some light on this unusual behavior, we decided to investigate the relative stabilities of the coinage metal(II) sulfates utilizing periodic Density Functional Theory. By computing relative energies of the hypothetical nonrelativistic gold(II) sulfate (AuNRSO4) in different structural arrangements and performing chemical bonding analyses employing the Electron Localization Function as well as the Quantum Theory of Atoms in Molecules method, we show that the stability of the unsual AuSO4 bulk structure can be related to aurophilic interactions enabled by relativistic effects. From the relative stabilities and UV-vis spectra computed via GW methodology, we predict that AuNRSO4 would assume the structure of either copper(II) sulfate or silver(II) sulfate with almost equal likelihood and appear as bright-violet or deep-blue substances, respectively.
Collapse
Affiliation(s)
- Paul Jerabek
- Institute of Hydrogen Technology, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, D-21502 Geesthacht, Germany
| | - Archa Santhosh
- Institute of Hydrogen Technology, Helmholtz-Zentrum Hereon, Max-Planck-Strasse 1, D-21502 Geesthacht, Germany
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics, The New Zealand Institute for Advanced Study, Massey University Auckland, Private Bag 102904, 0745 Auckland, New Zealand
| |
Collapse
|
11
|
Carter-Fenk K, Herbert JM. Appraisal of dispersion damping functions for the effective fragment potential method. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2055504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Kevin Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - John M. Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
12
|
Gray M, Herbert JM. Comprehensive Basis-Set Testing of Extended Symmetry-Adapted Perturbation Theory and Assessment of Mixed-Basis Combinations to Reduce Cost. J Chem Theory Comput 2022; 18:2308-2330. [PMID: 35289608 DOI: 10.1021/acs.jctc.1c01302] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hybrid or "extended" symmetry-adapted perturbation theory (XSAPT) replaces traditional SAPT's treatment of dispersion with better performing alternatives while at the same time extending two-body (dimer) SAPT to a many-body treatment of polarization using a self-consistent charge embedding procedure. The present work presents a systematic study of how XSAPT interaction energies and energy components converge with respect to the choice of Gaussian basis set. Errors can be reduced in a systematic way using correlation-consistent basis sets, with aug-cc-pVTZ results converged within <0.1 kcal/mol. Similar (if slightly less systematic) behavior is obtained using Karlsruhe basis sets at much lower cost, and we introduce new versions with limited augmentation that are even more efficient. Pople-style basis sets, which are more efficient still, often afford good results if a large number of polarization functions are included. The dispersion models used in XSAPT afford much faster basis-set convergence as compared to the perturbative description of dispersion in conventional SAPT, meaning that "compromise" basis sets (such as jun-cc-pVDZ) are no longer required and benchmark-quality results can be obtained using triple-ζ basis sets. The use of diffuse functions proves to be essential, especially for the description of hydrogen bonds. The "δ(Hartree-Fock)" correction for high-order induction can be performed in double-ζ basis sets without significant loss of accuracy, leading to a mixed-basis approach that offers 4× speedup over the existing (cubic scaling) XSAPT approach.
Collapse
Affiliation(s)
- Montgomery Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
13
|
Carter-Fenk K, Lao KU, Herbert JM. Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory. Acc Chem Res 2021; 54:3679-3690. [PMID: 34550669 DOI: 10.1021/acs.accounts.1c00387] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although sometimes derided as "weak" interactions, non-covalent forces play a critical role in ligand binding and crystal packing and in determining the conformational landscape of flexible molecules. Symmetry-adapted perturbation theory (SAPT) provides a framework for accurate ab initio calculation of intermolecular interactions and furnishes a natural decomposition of the interaction energy into physically meaningful components: semiclassical electrostatics (rigorously obtained from monomer charge densities), Pauli or steric repulsion, induction (including both polarization and charge transfer), and dispersion. This decomposition helps to foster deeper understanding of non-covalent interactions and can be used to construct transferable, physics-based force fields. Separability of the SAPT interaction energy also provides the flexibility to construct composite methods, a feature that we exploit to improve the description of dispersion interactions. These are challenging to describe accurately because they arise from nonlocal electron correlation effects that appear for the first time at second order in perturbation theory but are not quantitatively described at that level.As with all quantum-chemical methods, a major limitation of SAPT is nonlinear scaling of the computational cost with respect to system size. This cost can be significantly mitigated using "SAPT0(KS)", which incorporates monomer electron correlation by means of Kohn-Sham (KS) molecular orbitals from density functional theory (DFT), as well as by an "extended" theory called XSAPT, developed by the authors. XSAPT generalizes traditional dimer SAPT to many-body systems, so that a ligand-protein interaction (for example) can be separated into contributions from individual amino acids, reducing the cost of the calculation below that of even supramolecular DFT while retaining the accuracy of high-level ab initio quantum chemistry.This Account provides an overview of the SAPT0(KS) approach and the XSAPT family of methods. Several low-cost variants are described that provide accuracy approaching that of the best ab initio benchmarks yet are affordable enough to tackle ligand-protein binding and sizable host-guest complexes. These variants include SAPT+aiD, which uses ab initio atom-atom dispersion potentials ("+aiD") in place of second-order SAPT dispersion, and also SAPT+MBD, which incorporates many-body dispersion (MBD) effects that are important in the description of nanoscale materials. Applications to drug binding highlight the size-extensive nature of dispersion, which is not a weak interaction in large systems. Other applications highlight how a physics-based analysis can sometimes upend conventional wisdom regarding intermolecular forces. In particular, careful reconsideration of π-π interactions makes clear that the quadrupolar electrostatics (or "Hunter-Sanders") model of π-π stacking should be replaced by a "van der Waals model" in which conformational preferences arise from a competition between dispersion and Pauli repulsion. Our analysis also suggests that molecular shape, rather than aromaticity per se, is the key factor driving strong stacking interactions. Looking forward, we anticipate that XSAPT-based methods can play a role in screening of drug candidates and in materials design.
Collapse
Affiliation(s)
- Kevin Carter-Fenk
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Ka Un Lao
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
14
|
Herbert JM. Neat, Simple, and Wrong: Debunking Electrostatic Fallacies Regarding Noncovalent Interactions. J Phys Chem A 2021; 125:7125-7137. [PMID: 34388340 DOI: 10.1021/acs.jpca.1c05962] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multipole moments such as charge, dipole, and quadrupole are often invoked to rationalize intermolecular phenomena, but a low-order multipole expansion is rarely a valid description of electrostatics at the length scales that characterize nonbonded interactions. This is illustrated by examining several common misunderstandings rooted in erroneous electrostatic arguments. First, the notion that steric repulsion originates in Coulomb interactions is easily disproved by dissecting the interaction potential for Ar2. Second, the Hunter-Sanders model of π-π interactions, which is based on quadrupolar electrostatics, is shown to have no basis in accurate calculations. Third, curved "buckybowls" exhibit unusually large dipole moments, but these are ancillary to the forces that control their intermolecular interactions, as illustrated by two examples involving corannulene. Finally, the assumption that interactions between water and small anions are dictated by the dipole moment of H2O is shown to be false in the case of binary halide-water complexes. These examples present a compelling case that electrostatic explanations based on low-order multipole moments are very often counterfactual for nonbonded interactions at close range and should not be taken seriously in the absence of additional justification.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
15
|
Gray M, Herbert JM. Simplified tuning of long-range corrected density functionals for use in symmetry-adapted perturbation theory. J Chem Phys 2021; 155:034103. [PMID: 34293871 DOI: 10.1063/5.0059364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Long considered a failure, second-order symmetry-adapted perturbation theory (SAPT) based on Kohn-Sham orbitals, or SAPT0(KS), can be resurrected for semiquantitative purposes using long-range corrected density functionals whose asymptotic behavior is adjusted separately for each monomer. As in other contexts, correct asymptotic behavior can be enforced via "optimal tuning" based on the ionization energy theorem of density functional theory, but the tuning procedure is tedious, expensive for large systems, and comes with a troubling dependence on system size. Here, we show that essentially identical results are obtained using a fast, convenient, and automated tuning procedure based on the size of the exchange hole. In conjunction with "extended" (X)SAPT methods that improve the description of dispersion, this procedure achieves benchmark-quality interaction energies, along with the usual SAPT energy decomposition, without the hassle of system-specific tuning.
Collapse
Affiliation(s)
- Montgomery Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
16
|
Schriber JB, Sirianni DA, Smith DGA, Burns LA, Sitkoff D, Cheney DL, Sherrill CD. Optimized damping parameters for empirical dispersion corrections to symmetry-adapted perturbation theory. J Chem Phys 2021; 154:234107. [PMID: 34241276 DOI: 10.1063/5.0049745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Symmetry-adapted perturbation theory (SAPT) has become an invaluable tool for studying the fundamental nature of non-covalent interactions by directly computing the electrostatics, exchange (steric) repulsion, induction (polarization), and London dispersion contributions to the interaction energy using quantum mechanics. Further application of SAPT is primarily limited by its computational expense, where even its most affordable variant (SAPT0) scales as the fifth power of system size [O(N5)] due to the dispersion terms. The algorithmic scaling of SAPT0 is reduced from O(N5)→O(N4) by replacing these terms with the empirical D3 dispersion correction of Grimme and co-workers, forming a method that may be termed SAPT0-D3. Here, we optimize the damping parameters for the -D3 terms in SAPT0-D3 using a much larger training set than has previously been considered, namely, 8299 interaction energies computed at the complete-basis-set limit of coupled cluster through perturbative triples [CCSD(T)/CBS]. Perhaps surprisingly, with only three fitted parameters, SAPT0-D3 improves on the accuracy of SAPT0, reducing mean absolute errors from 0.61 to 0.49 kcal mol-1 over the full set of complexes. Additionally, SAPT0-D3 exhibits a nearly 2.5× speedup over conventional SAPT0 for systems with ∼300 atoms and is applied here to systems with up to 459 atoms. Finally, we have also implemented a functional group partitioning of the approach (F-SAPT0-D3) and applied it to determine important contacts in the binding of salbutamol to G-protein coupled β1-adrenergic receptor in both active and inactive forms. SAPT0-D3 capabilities have been added to the open-source Psi4 software.
Collapse
Affiliation(s)
- Jeffrey B Schriber
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Dominic A Sirianni
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Daniel G A Smith
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Lori A Burns
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Doree Sitkoff
- Molecular Structure and Design, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, USA
| | - Daniel L Cheney
- Molecular Structure and Design, Bristol-Myers Squibb Company, P.O. Box 5400, Princeton, New Jersey 08543, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
17
|
Madajczyk K, Żuchowski PS, Brzȩk F, Rajchel Ł, Kȩdziera D, Modrzejewski M, Hapka M. Dataset of noncovalent intermolecular interaction energy curves for 24 small high-spin open-shell dimers. J Chem Phys 2021; 154:134106. [PMID: 33832261 DOI: 10.1063/5.0043793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We introduce a dataset of 24 interaction energy curves of open-shell noncovalent dimers, referred to as the O24 × 5 dataset. The dataset consists of high-spin dimers up to 11 atoms selected to assure diversity with respect to interaction types: dispersion, electrostatics, and induction. The benchmark interaction energies are obtained at the restricted open-shell CCSD(T) level of theory with complete basis set extrapolation (from aug-cc-pVQZ to aug-cc-pV5Z). We have analyzed the performance of selected wave function methods MP2, CCSD, and CCSD(T) as well as the F12a and F12b variants of coupled-cluster theory. In addition, we have tested dispersion-corrected density functional theory methods based on the PBE exchange-correlation model. The O24 × 5 dataset is a challenge to approximate methods due to the wide range of interaction energy strengths it spans. For the dispersion-dominated and mixed-type subsets, any tested method that does not include the triples contribution yields errors on the order of tens of percent. The electrostatic subset is less demanding with errors that are typically an order of magnitude smaller than the mixed and dispersion-dominated subsets.
Collapse
Affiliation(s)
- Katarzyna Madajczyk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Piotr S Żuchowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Filip Brzȩk
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Łukasz Rajchel
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, ul. Grudzia̧dzka 5, 87-100 Toruń, Poland
| | - Dariusz Kȩdziera
- Faculty of Chemistry, Nicolaus Copernicus University, ul. Gagarina 7, Toruń, Poland
| | - Marcin Modrzejewski
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| | - Michał Hapka
- Faculty of Chemistry, University of Warsaw, ul. L. Pasteura 1, 02-093 Warsaw, Poland
| |
Collapse
|
18
|
Jedwabny W, Dyguda-Kazimierowicz E, Pernal K, Szalewicz K, Patkowski K. Extension of an Atom-Atom Dispersion Function to Halogen Bonds and Its Use for Rational Design of Drugs and Biocatalysts. J Phys Chem A 2021; 125:1787-1799. [PMID: 33620223 PMCID: PMC8028329 DOI: 10.1021/acs.jpca.0c11347] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/10/2021] [Indexed: 12/17/2022]
Abstract
A dispersion function Das in the form of a damped atom-atom asymptotic expansion fitted to ab initio dispersion energies from symmetry-adapted perturbation theory was improved and extended to systems containing heavier halogen atoms. To illustrate its performance, the revised Das function was implemented in the multipole first-order electrostatic and second-order dispersion (MED) scoring model. The extension has allowed applications to a much larger set of biocomplexes than it was possible with the original Das. A reasonable correlation between MED and experimentally determined inhibitory activities was achieved in a number of test cases, including structures featuring nonphysically shortened intermonomer distances, which constitute a particular challenge for binding strength predictions. Since the MED model is also computationally efficient, it can be used for reliable and rapid assessment of the ligand affinity or multidimensional scanning of amino acid side-chain conformations in the process of rational design of novel drugs or biocatalysts.
Collapse
Affiliation(s)
- Wiktoria Jedwabny
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Edyta Dyguda-Kazimierowicz
- Department
of Chemistry, Wrocław University of
Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Katarzyna Pernal
- Institute
of Physics, Łódź University
of Technology, Wólczańska
219, 90-924 Łódź, Poland
| | - Krzysztof Szalewicz
- Department
of Physics and Astronomy, University of
Delaware, Newark, Delaware 19716, United
States
| | - Konrad Patkowski
- Department
of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
19
|
Jana S, Patra A, Śmiga S, Constantin LA, Samal P. Insights from the density functional performance of water and water–solid interactions: SCAN in relation to other meta-GGAs. J Chem Phys 2020; 153:214116. [DOI: 10.1063/5.0028821] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Abhilash Patra
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Szymon Śmiga
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Toruń, Poland
| | - Lucian A. Constantin
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
20
|
Patra A, Jana S, Constantin LA, Samal P. Efficient yet accurate dispersion-corrected semilocal exchange–correlation functionals for non-covalent interactions. J Chem Phys 2020; 153:084117. [DOI: 10.1063/5.0011849] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Abhilash Patra
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Subrata Jana
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| | - Lucian A. Constantin
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125 Modena, Italy
| | - Prasanjit Samal
- School of Physical Sciences, National Institute of Science Education and Research, HBNI, Bhubaneswar 752050, India
| |
Collapse
|
21
|
Chen X, Gao J. Fragment Exchange Potential for Realizing Pauli Deformation of Interfragment Interactions. J Phys Chem Lett 2020; 11:4008-4016. [PMID: 32308000 DOI: 10.1021/acs.jpclett.0c00933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In fragment-based methods, the lack of explicit short-range exchange interactions between monomers can result in unphysical deformation in charge density. In this study, we describe a fragment exchange potential (XFP) to explicitly account for interfragmental Pauli deformation. In our implementation, a Kohn-Sham exchange potential is adopted along with the Yukawa potential. The method has been validated by comparison of the computed exchange energies using the XFP potential with results obtained from antisymmetrized fragmental orbitals on the S66×8 data set containing 528 bimolecular interactions of equilibrium and arbitrary geometries. It was also found that it is only necessary to deploy numerical grids on atoms within their van der Waals contacts, significantly reducing the small, albeit extra, computational cost. We anticipate that the XFP presented here may be applied to molecular dynamics simulations of macromolecules using a fragment-based quantum mechanical potential with improved SCF convergence and computational accuracy.
Collapse
Affiliation(s)
- Xin Chen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, P. R. China
| | - Jiali Gao
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
- Department of Chemistry and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Garcia J, Podeszwa R, Szalewicz K. SAPT codes for calculations of intermolecular interaction energies. J Chem Phys 2020; 152:184109. [PMID: 32414261 DOI: 10.1063/5.0005093] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Symmetry-adapted perturbation theory (SAPT) is a method for calculations of intermolecular (noncovalent) interaction energies. The set of SAPT codes that is described here, the current version named SAPT2020, includes virtually all variants of SAPT developed so far, among them two-body SAPT based on perturbative, coupled cluster, and density functional theory descriptions of monomers, three-body SAPT, and two-body SAPT for some classes of open-shell monomers. The properties of systems governed by noncovalent interactions can be predicted only if potential energy surfaces (force fields) are available. SAPT is the preferred approach for generating such surfaces since it is seamlessly connected to the asymptotic expansion of interaction energy. SAPT2020 includes codes for automatic development of such surfaces, enabling generation of complete dimer surfaces with a rigid monomer approximation for dimers containing about one hundred atoms. These codes can also be used to obtain surfaces including internal degrees of freedom of monomers.
Collapse
Affiliation(s)
- Javier Garcia
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Rafał Podeszwa
- Institute of Chemistry, University of Silesia at Katowice, Szkolna 9, Katowice, Poland
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
23
|
Garcia J, Szalewicz K. Ab Initio Extended Hartree-Fock plus Dispersion Method Applied to Dimers with Hundreds of Atoms. J Phys Chem A 2020; 124:1196-1203. [PMID: 31961678 DOI: 10.1021/acs.jpca.9b11900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Hartree-Fock plus dispersion plus first-order correlation (HFDc(1)) method consists in augmenting the HF interaction energy by the correlation part of the first-order interaction energy and the second-order dispersion and exchange-dispersion energies. All of the augmentation terms are computed using the symmetry-adapted perturbation theory based on density functional theory description of monomers [SAPT(DFT)]; thus, HFDc(1) is a fully ab initio method. A partly empirical version of this method, HFDasc(1), uses a damped asymptotic expansion for the dispersion plus exchange-dispersion term fitted to SAPT(DFT) ab initio values. The HFDc(1) interaction energies for dimers in the S22, S66, S66x8, NCCE31, IonHB, and UD-ARL benchmark data sets are more accurate than those given by most ab initio methods with comparable costs. HFDc(1) can be used routinely for dimers with nearly 200 atoms, such as included in the S12L benchmark set, giving results comparable to those obtained by the most expensive methods applicable.
Collapse
Affiliation(s)
- Javier Garcia
- Department of Physics and Astronomy , University of Delaware , Newark , Delaware 19716 , United States
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy , University of Delaware , Newark , Delaware 19716 , United States
| |
Collapse
|
24
|
Patkowski K. Recent developments in symmetry‐adapted perturbation theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2019. [DOI: 10.1002/wcms.1452] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Konrad Patkowski
- Department of Chemistry and Biochemistry Auburn University Auburn Alabama
| |
Collapse
|
25
|
Abstract
Since the introduction of the fragment molecular orbital method 20 years ago, fragment-based approaches have occupied a small but growing niche in quantum chemistry. These methods decompose a large molecular system into subsystems small enough to be amenable to electronic structure calculations, following which the subsystem information is reassembled in order to approximate an otherwise intractable supersystem calculation. Fragmentation sidesteps the steep rise (with respect to system size) in the cost of ab initio calculations, replacing it with a distributed cost across numerous computer processors. Such methods are attractive, in part, because they are easily parallelizable and therefore readily amenable to exascale computing. As such, there has been hope that distributed computing might offer the proverbial "free lunch" in quantum chemistry, with the entrée being high-level calculations on very large systems. While fragment-based quantum chemistry can count many success stories, there also exists a seedy underbelly of rarely acknowledged problems. As these methods begin to mature, it is time to have a serious conversation about what they can and cannot be expected to accomplish in the near future. Both successes and challenges are highlighted in this Perspective.
Collapse
Affiliation(s)
- John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
26
|
Andrés J, Ayers PW, Boto RA, Carbó-Dorca R, Chermette H, Cioslowski J, Contreras-García J, Cooper DL, Frenking G, Gatti C, Heidar-Zadeh F, Joubert L, Martín Pendás Á, Matito E, Mayer I, Misquitta AJ, Mo Y, Pilmé J, Popelier PLA, Rahm M, Ramos-Cordoba E, Salvador P, Schwarz WHE, Shahbazian S, Silvi B, Solà M, Szalewicz K, Tognetti V, Weinhold F, Zins ÉL. Nine questions on energy decomposition analysis. J Comput Chem 2019; 40:2248-2283. [PMID: 31251411 DOI: 10.1002/jcc.26003] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 01/05/2023]
Abstract
The paper collects the answers of the authors to the following questions: Is the lack of precision in the definition of many chemical concepts one of the reasons for the coexistence of many partition schemes? Does the adoption of a given partition scheme imply a set of more precise definitions of the underlying chemical concepts? How can one use the results of a partition scheme to improve the clarity of definitions of concepts? Are partition schemes subject to scientific Darwinism? If so, what is the influence of a community's sociological pressure in the "natural selection" process? To what extent does/can/should investigated systems influence the choice of a particular partition scheme? Do we need more focused chemical validation of Energy Decomposition Analysis (EDA) methodology and descriptors/terms in general? Is there any interest in developing common benchmarks and test sets for cross-validation of methods? Is it possible to contemplate a unified partition scheme (let us call it the "standard model" of partitioning), that is proper for all applications in chemistry, in the foreseeable future or even in principle? In the end, science is about experiments and the real world. Can one, therefore, use any experiment or experimental data be used to favor one partition scheme over another? © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Juan Andrés
- Departament de Ciències Experimentals Universitat Jaume I, 12080, Castelló, Spain
| | - Paul W Ayers
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, L8S 4M1, Hamilton, Ontario, Canada
| | | | - Ramon Carbó-Dorca
- Institut de Química Computational i Catàlisi, Universitat de Girona, C/M Aurelia Capmany 69, 17003, Girona, Spain
| | - Henry Chermette
- Université Lyon 1 et UMR CNRS 5280 Institut Sciences Analytiques, Université de Lyon, 69622, Paris, France
| | - Jerzy Cioslowski
- Institute of Physics, University of Szczecin, Wielkopolska, 15, 70-451, Szczecin, Poland
| | | | - David L Cooper
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, United Kingdom
| | - Gernot Frenking
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerweinstr. 4, 35032, Marburg, Germany
| | - Carlo Gatti
- CNR-ISTM Istituto di Scienze e Tecnologie Molecolari, via Golgi 19, 20133, Milan, Italy and Istituto Lombardo Accademia di Scienze e Lettere, via Brera 28, 20121, Milan, Italy
| | - Farnaz Heidar-Zadeh
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg and Department of Chemistry, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Laurent Joubert
- COBRA UMR 6014 & FR 3038, INSA Rouen, CNRS, Université de Rouen Normandie, Mont-St-Aignan, France
| | - Ángel Martín Pendás
- Departamento de Química Física y Analítica, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Eduard Matito
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC), P.K. 1072, 20080, Donostia, Euskadi, Spain.,IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Euskadi, Spain
| | - István Mayer
- Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary
| | - Alston J Misquitta
- School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London, E1 4NS, United Kingdom
| | - Yirong Mo
- Chemistry Department, Western Michigan University, Kalamazoo, Michigan, 49008
| | - Julien Pilmé
- Sorbonne Université, CNRS, LCT, UMR 7616, 4 place Jussieu, 75005, Paris, France
| | - Paul L A Popelier
- Manchester Institute of Biotechnology (MIB), 131 Princess Street, Manchester, M1 7DN, United Kingdom.,School of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Martin Rahm
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Eloy Ramos-Cordoba
- Kimika Fakultatea, Euskal Herriko Unibertsitatea (UPV/EHU), and Donostia International Physics Center (DIPC), P.K. 1072, 20080, Donostia, Euskadi, Spain
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi, Universitat de Girona, C/M Aurelia Capmany 69, 17003, Girona, Spain
| | - W H Eugen Schwarz
- Theoretical Chemistry Center at Tsinghua University, Beijing, 100084, China.,Physical and Theoretical Chemistry Laboratory, Faculty of Science and Engineering, University of Siegen, Siegen, 57068, Germany
| | - Shant Shahbazian
- Department of Physics, Shahid Beheshti University, P.O. Box 19395-4716, G. C., Evin, 19839, Tehran, Iran
| | - Bernard Silvi
- Sorbonne Université, CNRS, LCT, UMR 7616, 4 place Jussieu, 75005, Paris, France
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi, Universitat de Girona, C/M Aurelia Capmany 69, 17003, Girona, Spain
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware
| | - Vincent Tognetti
- COBRA UMR 6014 & FR 3038, INSA Rouen, CNRS, Université de Rouen Normandie, Mont-St-Aignan, France
| | - Frank Weinhold
- Theoretical Chemistry Institute and Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Émilie-Laure Zins
- Sorbonne Université, UPMC Univ. Paris 06, MONARIS, UMR 8233, Université Pierre et Marie Curie, 4 Place Jussieu, Case Courrier 49, 75252, Paris, France
| |
Collapse
|
27
|
Shahbaz M, Szalewicz K. Dispersion Energy from Local Polarizability Density. PHYSICAL REVIEW LETTERS 2019; 122:213001. [PMID: 31283348 DOI: 10.1103/physrevlett.122.213001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Indexed: 06/09/2023]
Abstract
A simple nonlocal functional for calculation of dispersion energies is proposed. Compared to a similar formula used earlier, we introduced a regularization to remove its singularities and used a dynamic polarizability density similar to those in the so-called van der Waals density functionals. The performance of the new functional is tested on dispersion energies for a set of representative dimers, and it is found that it is significantly more accurate than published nonlocal functionals.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Krzysztof Szalewicz
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| |
Collapse
|
28
|
Shahbaz M, Szalewicz K. Evaluation of methods for obtaining dispersion energies used in density functional calculations of intermolecular interactions. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2414-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
Jedwabny W, Dyguda-Kazimierowicz E. Revisiting the halogen bonding between phosphodiesterase type 5 and its inhibitors. J Mol Model 2019; 25:29. [PMID: 30613843 PMCID: PMC6321839 DOI: 10.1007/s00894-018-3897-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/04/2018] [Indexed: 01/12/2023]
Abstract
Halogenated ligands are nowadays commonly designed in order to increase their potency against protein targets. Although novel computational methods of evaluating the affinity of such halogenated inhibitors have emerged, they still lack the sufficient accuracy, which is especially noticeable in the case of empirical scoring functions, being the method of choice in the drug design process. Here, we evaluated a series of halogenated inhibitors of phosphodiesterase type 5 with ab initio methods, revealing the physical nature of ligand binding and determining the components of interaction energy that are essential for proper inhibitor ranking. In particular, a nonempirical scoring model combining long-range contributions to the interaction energy provided a significant correlation with experimental binding potency, outperforming a number of commonly used empirical scoring functions. Considering the low computational cost associated with remarkable predictive abilities of the aforementioned model, it could be used for rapid assessment of the ligand affinity in the process of rational design of novel halogenated compounds.
Collapse
Affiliation(s)
- Wiktoria Jedwabny
- Department of Chemistry, Wrocław University of Science and Technology, Wrocław, Poland
| | | |
Collapse
|
30
|
Trombach L, Ehlert S, Grimme S, Schwerdtfeger P, Mewes JM. Exploring the chemical nature of super-heavy main-group elements by means of efficient plane-wave density-functional theory. Phys Chem Chem Phys 2019; 21:18048-18058. [DOI: 10.1039/c9cp02455g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Presenting an accurate yet efficient plane-wave DFT approach for the computational exploration of the bulk properties of the super-heavy main-group elements including copernicium (Cn–Og, Z = 112–118).
Collapse
Affiliation(s)
- Lukas Trombach
- Centre for Theoretical Chemistry and Physics
- The New Zealand Institute for Advanced Study
- Massey University Auckland
- 0632 Auckland
- New Zealand
| | - Sebastian Ehlert
- Mulliken Center for Theoretical Chemistry
- Institut für Physikalische und Theoretische Chemie
- Universität Bonn
- D-53115 Bonn
- Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry
- Institut für Physikalische und Theoretische Chemie
- Universität Bonn
- D-53115 Bonn
- Germany
| | - Peter Schwerdtfeger
- Centre for Theoretical Chemistry and Physics
- The New Zealand Institute for Advanced Study
- Massey University Auckland
- 0632 Auckland
- New Zealand
| | - Jan-Michael Mewes
- Centre for Theoretical Chemistry and Physics
- The New Zealand Institute for Advanced Study
- Massey University Auckland
- 0632 Auckland
- New Zealand
| |
Collapse
|
31
|
Stöhr M, Van Voorhis T, Tkatchenko A. Theory and practice of modeling van der Waals interactions in electronic-structure calculations. Chem Soc Rev 2019; 48:4118-4154. [PMID: 31190037 DOI: 10.1039/c9cs00060g] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The accurate description of long-range electron correlation, most prominently including van der Waals (vdW) dispersion interactions, represents a particularly challenging task in the modeling of molecules and materials. vdW forces arise from the interaction of quantum-mechanical fluctuations in the electronic charge density. Within (semi-)local density functional approximations or Hartree-Fock theory such interactions are neglected altogether. Non-covalent vdW interactions, however, are ubiquitous in nature and play a key role for the understanding and accurate description of the stability, dynamics, structure, and response properties in a plethora of systems. During the last decade, many promising methods have been developed for modeling vdW interactions in electronic-structure calculations. These methods include vdW-inclusive Density Functional Theory and correlated post-Hartree-Fock approaches. Here, we focus on the methods within the framework of Density Functional Theory, including non-local van der Waals density functionals, interatomic dispersion models within many-body and pairwise formulation, and random phase approximation-based approaches. This review aims to guide the reader through the theoretical foundations of these methods in a tutorial-style manner and, in particular, highlight practical aspects such as the applicability and the advantages and shortcomings of current vdW-inclusive approaches. In addition, we give an overview of complementary experimental approaches, and discuss tools for the qualitative understanding of non-covalent interactions as well as energy decomposition techniques. Besides representing a reference for the current state-of-the-art, this work is thus also designed as a concise and detailed introduction to vdW-inclusive electronic structure calculations for a general and broad audience.
Collapse
Affiliation(s)
- Martin Stöhr
- Physics and Materials Science Research Unit, University of Luxembourg, L-1511 Luxembourg, Luxembourg.
| | | | | |
Collapse
|