1
|
Roy AJ, Bergermann A, Bethkenhagen M, Redmer R. Mixture of hydrogen and methane under planetary interior conditions. Phys Chem Chem Phys 2024; 26:14374-14383. [PMID: 38712595 DOI: 10.1039/d4cp00058g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We employ first-principles molecular dynamics simulations to provide equation-of-state data, pair distribution functions (PDFs), diffusion coefficients, and band gaps of a mixture of hydrogen and methane under planetary interior conditions as relevant for Uranus, Neptune, and similar icy exoplanets. We test the linear mixing approximation, which is fulfilled within a few percent for the chosen P-T conditions. Evaluation of the PDFs reveals that methane molecules dissociate into carbon clusters and free hydrogen atoms at temperatures greater than 3000 K. At high temperatures, the clusters are found to be short-lived. Furthermore, we calculate the electrical conductivity from which we derive the non-metal-to-metal transition region of the mixture. We also calculate the electrical conductivity along the P-T profile of Uranus [N. Nettelmann et al., Planet. Space Sci., 2013, 77, 143-151] and observe the transition of the mixture from a molecular to an atomic fluid as a function of the radius of the planet. The density and temperature ranges chosen in our study can be achieved using dynamic shock compression experiments and seek to aid such future experiments. Our work also provides a relevant data set for a better understanding of the interior, evolution, luminosity, and magnetic field of the ice giants in our solar system and beyond.
Collapse
Affiliation(s)
- Argha Jyoti Roy
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - Armin Bergermann
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| | - Mandy Bethkenhagen
- LULI, CNRS, CEA, Sorbonne Université, École Polytechnique - Institut Polytechnique de Paris, 91128 Palaiseau, France.
| | - Ronald Redmer
- Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
| |
Collapse
|
2
|
Li X, Su H, Liang W, Zhou W, Rahman A, Xu Z, Zhong C, Mai D, Dai R, Gou H, Wang Z, Zheng X, Wu Q, Zhang Z. Inference of a "Hot Ice" Layer in Nitrogen-Rich Planets: Demixing the Phase Diagram and Phase Composition for Variable Concentration Helium-Nitrogen Mixtures Based on Isothermal Compression. J Phys Chem A 2022; 126:3745-3757. [PMID: 35648656 DOI: 10.1021/acs.jpca.2c02132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Van der Waals (vdW) chemistry in simple molecular systems may be important for understanding the structure and properties of the interiors of the outer planets and their satellites, where pressures are high and such components may be abundant. In the current study, Raman spectra and visual observation are employed to investigate the phase separation and composition determination for helium-nitrogen mixtures with helium concentrations from 20 to 95% along the 295 K isothermal compression. Fluid-fluid-solid triple-phase equilibrium and several equilibria of two phases including fluid-fluid and fluid-solid have been observed in different helium-nitrogen mixtures upon loading or unloading pressure. The homogeneous fluid in helium-nitrogen mixtures separates into a helium-rich fluid (F1) and a nitrogen-rich fluid (F2) with increasing pressure. The triple-phase point occurs at 295 K and 8.8 GPa for a solid-phase (N2)11He vdW compound, fluid F1 with around 50% helium, and fluid F2 with 95% helium. Helium concentrations of F1 coexisted with the (N2)11He vdW compound or δ-N2 in helium-nitrogen mixtures with different helium concentrations between 40 and 50% and between 20 and 40%, respectively. In addition, the helium concentration of F2 is the same in helium-nitrogen mixtures with different helium concentrations and decreases upon loading pressure. Pressure-induced nitrogen molecule ordering at 32.6 GPa and a structural phase transition at 110 GPa are observed in (N2)11He. In addition, at 187 GPa, a pressure-induced transition to an amorphous state is identified.
Collapse
Affiliation(s)
- Xiangdong Li
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hao Su
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wentao Liang
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wenju Zhou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Azizur Rahman
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zilong Xu
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Cheng Zhong
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Di Mai
- Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rucheng Dai
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China.,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research, Beijing 100094, China
| | - Zhongping Wang
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China.,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xianxu Zheng
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 360001, China
| | - Qiang Wu
- Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 360001, China
| | - Zengming Zhang
- The Centre for Physical Experiments, University of Science and Technology of China, Hefei, Anhui 230026, China.,Frontiers Science Center for Planetary Exploration and Emerging Technologies, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
3
|
Ranieri U, Conway LJ, Donnelly ME, Hu H, Wang M, Dalladay-Simpson P, Peña-Alvarez M, Gregoryanz E, Hermann A, Howie RT. Formation and Stability of Dense Methane-Hydrogen Compounds. PHYSICAL REVIEW LETTERS 2022; 128:215702. [PMID: 35687440 DOI: 10.1103/physrevlett.128.215702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/02/2022] [Accepted: 04/20/2022] [Indexed: 06/15/2023]
Abstract
Through a series of x-ray diffraction, optical spectroscopy diamond anvil cell experiments, combined with density functional theory calculations, we explore the dense CH_{4}-H_{2} system. We find that pressures as low as 4.8 GPa can stabilize CH_{4}(H_{2})_{2} and (CH_{4})_{2}H_{2}, with the latter exhibiting extreme hardening of the intramolecular vibrational mode of H_{2} units within the structure. On further compression, a unique structural composition, (CH_{4})_{3}(H_{2})_{25}, emerges. This novel structure holds a vast amount of molecular hydrogen and represents the first compound to surpass 50 wt % H_{2}. These compounds, stabilized by nuclear quantum effects, persist over a broad pressure regime, exceeding 160 GPa.
Collapse
Affiliation(s)
- Umbertoluca Ranieri
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
- Dipartimento di Fisica, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lewis J Conway
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
| | - Mary-Ellen Donnelly
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
| | - Huixin Hu
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
| | - Mengnan Wang
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
| | - Philip Dalladay-Simpson
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
| | - Miriam Peña-Alvarez
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
| | - Eugene Gregoryanz
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
- Key Laboratory of Materials Physics, Institute of Solid State Physics, CAS, Hefei, China
| | - Andreas Hermann
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
| | - Ross T Howie
- Center for High Pressure Science and Technology Advanced Research, 1690 Cailun Road, Shanghai, 201203, China
- Centre for Science at Extreme Conditions and The School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Zhang J, Liu H, Ma Y, Chen C. Direct H-He chemical association in superionic FeO2H2He at Deep-Earth conditions. Natl Sci Rev 2021; 9:nwab168. [PMID: 35928982 PMCID: PMC9344844 DOI: 10.1093/nsr/nwab168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Hydrogen and helium are known to play crucial roles in geological and astrophysical environments; however, they are inert toward each other across wide pressure-temperature (P-T) conditions. Given their prominent presence and influence on the formation and evolution of celestial bodies, it is of fundamental interest to explore the nature of interactions between hydrogen and helium. Using an advanced crystal structure search method, we have identified a quaternary compound FeO2H2He stabilized in a wide range of P-T conditions. Ab initio molecular dynamics simulations further reveal a novel superionic state of FeO2H2He hosting liquid-like diffusive hydrogen in the FeO2He sublattice, creating a conducive environment for H-He chemical association, at P-T conditions corresponding to the Earth's lowest mantle regions. To our surprise, this chemically facilitated coalescence of otherwise immiscible molecular species highlights a promising avenue for exploring this long-sought but hitherto unattainable state of matter. This finding raises strong prospects for exotic H-He mixtures inside Earth and possibly also in other astronomical bodies.
Collapse
Affiliation(s)
- Jurong Zhang
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials & Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Hanyu Liu
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials & Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Yanming Ma
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials & Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
5
|
Zhang G, Zhang H, Ninet S, Zhu H, Beneut K, Liu C, Mezouar M, Gao C, Datchi F. Transformation of Ammonium Azide at High Pressure and Temperature. MATERIALS 2020; 13:ma13184102. [PMID: 32942780 PMCID: PMC7560398 DOI: 10.3390/ma13184102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/06/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022]
Abstract
The compression of ammonium azide (AA) has been considered to be a promising route for producing high energy-density polynitrogen compounds. So far though, there is no experimental evidence that pure AA can be transformed into polynitrogen materials under high pressure at room temperature. We report here on high pressure (P) and temperature (T) experiments on AA embedded in N2 and on pure AA in the range 0-30 GPa, 300-700 K. The decomposition of AA into N2 and NH3 was observed in liquid N2 around 15 GPa-700 K. For pressures above 20 GPa, our results show that AA in N2 transforms into a new crystalline compound and solid ammonia when heated above 620 K. This compound is stable at room temperature and on decompression down to at least 7.0 GPa. Pure AA also transforms into a new compound at similar P-T conditions, but the product is different. The newly observed phases are studied by Raman spectroscopy and X-ray diffraction and compared to nitrogen and hydronitrogen compounds that have been predicted in the literature. While there is no exact match with any of them, similar vibrational features are found between the product that was obtained in AA + N2 with a polymeric compound of N9H formula.
Collapse
Affiliation(s)
- Guozhao Zhang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4 Place Jussieu, F-75005 Paris, France; (H.Z.); (S.N.); (K.B.)
| | - Haiwa Zhang
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4 Place Jussieu, F-75005 Paris, France; (H.Z.); (S.N.); (K.B.)
| | - Sandra Ninet
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4 Place Jussieu, F-75005 Paris, France; (H.Z.); (S.N.); (K.B.)
| | - Hongyang Zhu
- School of Physics and Electronic Engineering, Linyi University, Linyi 276005, China;
| | - Keevin Beneut
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4 Place Jussieu, F-75005 Paris, France; (H.Z.); (S.N.); (K.B.)
| | - Cailong Liu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Technology of Liaocheng University, Liaocheng 252059, China;
| | - Mohamed Mezouar
- European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble CEDEX, France;
| | - Chunxiao Gao
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
- Correspondence: (C.G.); (F.D.)
| | - Frédéric Datchi
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), Sorbonne Université, CNRS UMR 7590, MNHN, 4 Place Jussieu, F-75005 Paris, France; (H.Z.); (S.N.); (K.B.)
- Correspondence: (C.G.); (F.D.)
| |
Collapse
|
6
|
Helled R, Mazzola G, Redmer R. Understanding dense hydrogen at planetary conditions. NATURE REVIEWS PHYSICS 2020; 2:562-574. [DOI: 10.1038/s42254-020-0223-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/20/2020] [Indexed: 01/03/2025]
|
7
|
Jiang X, Zheng Y, Xue XX, Dai J, Feng Y. Ab initio study of the miscibility for solid hydrogen-helium mixtures at high pressure. J Chem Phys 2020; 152:074701. [PMID: 32087670 DOI: 10.1063/1.5138253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Understanding the behavior of H2-He binary mixtures at high pressure is of great importance. Two more recent experiments [J. Lim and C. S. Yoo, Phys. Rev. Lett. 120, 165301 (2018) and R. Turnbull et al., ibid. 121, 195702 (2018)] are in conflict, regarding the miscibility between H2 and He in solids at high pressure. On the basis of first-principles calculations combined with the structure prediction method, we investigate the miscibility for solid H2-He mixtures at pressures from 0 GPa to 200 GPa. It is found that there is no sign of miscibility and chemical reactivity in H2-He mixtures with any H:He ratio. Moreover, instead of H2-He mixtures, the calculated Raman modes of the N-H mixtures can better explain the characteristic peaks observed experimentally, which were claimed to be the H-He vibrational modes. These calculation results are more in line with the experimental findings by Turnbull et al. [Phys. Rev. Lett. 121, 195702 (2018)].
Collapse
Affiliation(s)
- Xingxing Jiang
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Yueshao Zheng
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Xiong-Xiong Xue
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jiayu Dai
- Department of Physics, National University of Defense Technology, Changsha 410073, China
| | - Yexin Feng
- Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China
| |
Collapse
|
8
|
Ultrahigh-pressure isostructural electronic transitions in hydrogen. Nature 2019; 573:558-562. [PMID: 31554980 DOI: 10.1038/s41586-019-1565-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/02/2019] [Indexed: 11/08/2022]
Abstract
High-pressure transitions are thought to modify hydrogen molecules to a molecular metallic solid and finally to an atomic metal1, which is predicted to have exotic physical properties and the topology of a two-component (electron and proton) superconducting superfluid condensate2,3. Therefore, understanding such transitions remains an important objective in condensed matter physics4,5. However, measurements of the crystal structure of solid hydrogen, which provides crucial information about the metallization of hydrogen under compression, are lacking for most high-pressure phases, owing to the considerable technical challenges involved in X-ray and neutron diffraction measurements under extreme conditions. Here we present a single-crystal X-ray diffraction study of solid hydrogen at pressures of up to 254 gigapascals that reveals the crystallographic nature of the transitions from phase I to phases III and IV. Under compression, hydrogen molecules remain in the hexagonal close-packed (hcp) crystal lattice structure, accompanied by a monotonic increase in anisotropy. In addition, the pressure-dependent decrease of the unit cell volume exhibits a slope change when entering phase IV, suggesting a second-order isostructural phase transition. Our results indicate that the precursor to the exotic two-component atomic hydrogen may consist of electronic transitions caused by a highly distorted hcp Brillouin zone and molecular-symmetry breaking.
Collapse
|
9
|
Wang Y, Zhang X, Jiang S, Geballe ZM, Pakornchote T, Somayazulu M, Prakapenka VB, Greenberg E, Goncharov AF. Helium-hydrogen immiscibility at high pressures. J Chem Phys 2019; 150:114504. [DOI: 10.1063/1.5086270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yu Wang
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Xiao Zhang
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Shuqing Jiang
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Zachary M. Geballe
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA
| | - Teerachote Pakornchote
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA
- Department of Physics, Chulalongkorn University, Bangkok 10330, Thailand
| | - Maddury Somayazulu
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA
| | - Vitali B. Prakapenka
- Center for Advanced Radiations Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Eran Greenberg
- Center for Advanced Radiations Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander F. Goncharov
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA
| |
Collapse
|