1
|
Hendrikse RL, Amador C, Wilson MR. DPD simulations of anionic surfactant micelles: a critical role for polarisable water models. SOFT MATTER 2024; 20:7521-7534. [PMID: 39268749 DOI: 10.1039/d4sm00873a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
We investigate the effects of polarisable water models in dissipative particle dynamics (DPD) simulations, focussing on the influence these models have on the aggregation behaviour of sodium dodecyl sulfate solutions. Studies in the literature commonly report that DPD approaches underpredict the micellar aggregation number of ionic surfactants compared to experimental values. One of the proposed reasons for this discrepancy is that existing water models are insufficient to accurately model micellar solutions, as they fail to account for structural changes in water close to micellar surfaces. We show that polarisable DPD water models lead to more realistic counterion behaviour in micellar solutions, including the degree of counterion disassociation. These water models can also accurately reproduce changes in the dielectric constant of surfactant solutions as a function of concentration. We find evidence that polarisable water leads to the formation of more stable micelles at higher aggregation numbers. However, we also show that the choice of water model is not responsible for the underestimated aggregation numbers observed in DPD simulations. This finding addresses a key question in the literature surrounding the importance of water models in DPD simulations of ionic micellar solutions.
Collapse
Affiliation(s)
| | - Carlos Amador
- Procter and Gamble, Newcastle Innovation Centre, Whitley Road, Newcastle upon Tyne, NE12 9BZ, UK
| | - Mark R Wilson
- Department of Chemistry, Durham University, Durham, DH1 3LE, UK.
| |
Collapse
|
2
|
Hong Y, Yoo S, Han J, Kim J, Lee Y, Jho Y, Kim YS, Hwang DS. Influence of the backbone chemistry and ionic functional groups of five pairs of oppositely charged polyelectrolytes on complex coacervation. Commun Chem 2024; 7:182. [PMID: 39147800 PMCID: PMC11327326 DOI: 10.1038/s42004-024-01271-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/06/2024] [Indexed: 08/17/2024] Open
Abstract
Complex coacervation plays an important role in various fields. Here, the influences of the backbone chemistry and ionic functional groups of five pairs of oppositely charged polyelectrolytes on complex coacervation were investigated. These pairs include synthetic polymers with aliphatic hydrocarbon backbones, peptides with amide bonds, and carbohydrates with glycosidic linkages. Despite sharing identical charged groups, specific pairs displayed distinct liquid/liquid and liquid/solid phase separations depending on the polyelectrolyte mixing ratio, buffer, and ionic strength. The coacervate phase boundary broadened in the orders: glycosidic linkages > amide backbone > aliphatic hydrocarbon backbone, and Tris-phosphate > Tris-acetate > Tris-chloride buffers. Coacervates prepared from polyelectrolytes with lower solubilities in water resisted disassembly at high salt concentrations, and their merge rate was slow. These observations suggest that the hydrophobic segments in polyelectrolytes interfere with the formation of complex coacervates; however, following coacervate formation, the hydrophobic segments render the coacervates stable and elastic.
Collapse
Affiliation(s)
- Yuri Hong
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Surim Yoo
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jihoon Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Junseong Kim
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
- Department of Physics and and Research Institute of Molecular Alchemy, Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Yongjin Lee
- Department of Chemical Engineering, Seoul National University (SNU), Seoul, Republic of Korea
| | - YongSeok Jho
- Department of Physics and and Research Institute of Molecular Alchemy, Gyeongsang National University (GNU), Jinju, Republic of Korea
| | - Youn Soo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| |
Collapse
|
3
|
Murakami H, Kanahara Y, Sasaki K. Freezing of Water Solvation Dynamics in Nanoconfinement by Reverse Micelles at Room Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13082-13091. [PMID: 38867455 DOI: 10.1021/acs.langmuir.4c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Much attention has recently been paid to anomalously low dielectric constants of nanoconfined water between two slabs at room temperature (Fumagalli et al. Science, 2018, 360, 1339). These low values imply that the dipole rotation of the interfacial water on the slab is completely suppressed. Such freezing has so far been observed for water confined between solids. In contrast, it remains unclear whether this holds for water in soft confinement, which is omnipresent naturally and artificially. Here, we address this question using encapsulated reverse micelles with a dye molecule, allowing us to study water sandwiched between the surfactant and dye molecules in solution. Moreover, we examine the solvation related to the dielectric property of water, which is reorientational motion in the hydration layer of the dye molecule, by persistent hole-burning spectroscopy. We first show that the dye molecule is surrounded by water without contact with the surfactant and that the dye molecule has two or three hydration layers on average. We next demonstrate that the solvation dynamics is frozen below the water droplet size of ∼4 nm, whereas they become liquid-like when the RM size is further increased. The average gap distance (∼1.5 nm) for freezing the solvation agrees with the gap distance with no rotational water motions between slabs. Our findings may have biological relevance, providing a new aspect for understanding biological function in cells.
Collapse
Affiliation(s)
- Hiroshi Murakami
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Kyoto 619-0215, Japan
| | - Yuko Kanahara
- Faculty of Human Life and Environment, Nara Women's University, Nara 630-8506, Japan
| | - Kaito Sasaki
- Department of Physics, School of Science, and Micro/Nano Technology Center, Tokai University, Kanagawa 259-1292, Japan
| |
Collapse
|
4
|
Dufils T, Schran C, Chen J, Geim AK, Fumagalli L, Michaelides A. Origin of dielectric polarization suppression in confined water from first principles. Chem Sci 2024; 15:516-527. [PMID: 38179530 PMCID: PMC10763014 DOI: 10.1039/d3sc04740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/23/2023] [Indexed: 01/06/2024] Open
Abstract
It has long been known that the dielectric constant of confined water should be different from that in bulk. Recent experiments have shown that it is vanishingly small, however the origin of the phenomenon remains unclear. Here we used ab initio molecular dynamics simulations (AIMD) and AIMD-trained machine-learning potentials to understand water's structure and electronic properties underpinning this effect. For the graphene and hexagonal boron-nitride substrates considered, we find that it originates in the spontaneous anti-parallel alignment of the water dipoles in the first two water layers near the solid interface. The interfacial layers exhibit net ferroelectric ordering, resulting in an overall anti-ferroelectric arrangement of confined water. Together with constrained hydrogen-bonding orientations, this leads to much reduced out-of-plane polarization. Furthermore, we directly contrast AIMD and simple classical force-field simulations, revealing important differences. This work offers insight into a property of water that is critical in modulating surface forces, the electric-double-layer formation and molecular solvation, and shows a way to compute it.
Collapse
Affiliation(s)
- T Dufils
- Department of Physics and Astronomy, University of Manchester Manchester M13 9PL UK
- National Graphene Institute, University of Manchester Manchester M13 9PL UK
| | - C Schran
- Cavendish Laboratory, Department of Physics, University of Cambridge Cambridge CB3 0HE UK
- Lennard-Jones Centre, University of Cambridge Trinity Ln Cambridge CB2 1TN UK
| | - J Chen
- School of Physics, Peking University Beijing 100871 China
| | - A K Geim
- Department of Physics and Astronomy, University of Manchester Manchester M13 9PL UK
- National Graphene Institute, University of Manchester Manchester M13 9PL UK
| | - L Fumagalli
- Department of Physics and Astronomy, University of Manchester Manchester M13 9PL UK
- National Graphene Institute, University of Manchester Manchester M13 9PL UK
| | - A Michaelides
- Lennard-Jones Centre, University of Cambridge Trinity Ln Cambridge CB2 1TN UK
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
5
|
Boinovich LB, Emelyanenko AM. Recent progress in understanding the anti-icing behavior of materials. Adv Colloid Interface Sci 2024; 323:103057. [PMID: 38061218 DOI: 10.1016/j.cis.2023.103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 01/13/2024]
Abstract
Despite the significant progress in fundamental research in the physics of atmospheric icing or the revolutionary changes in modern materials and coatings achieved due to the recent development of nanotechnology and synthetic chemistry, the problem of reliable protection against atmospheric icing remains a hot topic of surface science. In this paper, we present a brief analysis of the mechanisms of anti-icing behavior that attracted the greatest interest of the scientific community and approaches which realize these mechanisms. We also note the strengths and weaknesses of such approaches and discuss future studies and prospects for the practical application of developed coatings.
Collapse
Affiliation(s)
- Ludmila B Boinovich
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prospect 31 bldg. 4, 119991 Moscow, Russia.
| | - Alexandre M Emelyanenko
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prospect 31 bldg. 4, 119991 Moscow, Russia
| |
Collapse
|
6
|
Sugiyama JI, Tokunaga Y, Hishida M, Tanaka M, Takeuchi K, Satoh D, Imashimizu M. Nonthermal acceleration of protein hydration by sub-terahertz irradiation. Nat Commun 2023; 14:2825. [PMID: 37217486 DOI: 10.1038/s41467-023-38462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
The collective intermolecular dynamics of protein and water molecules, which overlap in the sub-terahertz (THz) frequency region, are relevant for expressing protein functions but remain largely unknown. This study used dielectric relaxation (DR) measurements to investigate how externally applied sub-THz electromagnetic fields perturb the rapid collective dynamics and influence the considerably slower chemical processes in protein-water systems. We analyzed an aqueous lysozyme solution, whose hydration is not thermally equilibrated. By detecting time-lapse differences in microwave DR, we demonstrated that sub-THz irradiation gradually decreases the dielectric permittivity of the lysozyme solution by reducing the orientational polarization of water molecules. Comprehensive analysis combining THz and nuclear magnetic resonance spectroscopies suggested that the gradual decrease in the dielectric permittivity is not induced by heating but is due to a slow shift toward the hydrophobic hydration structure in lysozyme. Our findings can be used to investigate hydration-mediated protein functions based on sub-THz irradiation.
Collapse
Affiliation(s)
- Jun-Ichi Sugiyama
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan
| | - Yuji Tokunaga
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Mafumi Hishida
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
- Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku, Tokyo, 162-8601, Japan
| | - Masahito Tanaka
- Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Koh Takeuchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo, Tokyo, 113-0033, Japan
| | - Daisuke Satoh
- Research Institute for Measurement and Analytical Instrumentation, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
| | - Masahiko Imashimizu
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8565, Japan.
| |
Collapse
|
7
|
Fu S, Yang X. Recent advances in natural small molecules as drug delivery systems. J Mater Chem B 2023; 11:4584-4599. [PMID: 37084077 DOI: 10.1039/d3tb00070b] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Drug delivery systems (DDSs) are a multidisciplinary approach toward the effective delivery of drugs to their target sites. Natural small molecule (NSM) compounds with anticancer activity, self-assembly and co-assembly functions show great potential for application as novel DDSs in the biomedical field. NSMs are widely sourced, have many modification sites, and readily form hydrogen bonds, π-π interactions, van der Waals interactions, and other non-covalent bonds in solvents, resulting in ordered structures. Moreover, their good biocompatibility and bioactivity allow compositions based on these compounds to be used in life science applications such as tissue engineering, drug delivery and cell imaging, showing the potential medical value of NSMs as DDSs. In this review, we summarise the role, assembly principles and applications of natural products such as triterpenoids, diterpenoids, sterols, alkaloids and polysaccharides in the construction of small molecule systems, which are expected to provide an important reference for the development of more active natural nanomaterials and the study of single or multi-component interactions.
Collapse
Affiliation(s)
- Shiyao Fu
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
| | - Xin Yang
- School of Medicine and Health, Harbin Institute of Technology, Nangang District, No. 92, West Dazhi Street, Harbin, 150001, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, No. 92, West Dazhi Street, Nangang District, Harbin, 150001, China
- Chongqing Research Institute, Harbin Institute of Technology, No. 188 Jihuayuan South Road, Yubei District, Chongqing, 401135, China
| |
Collapse
|
8
|
Majumdar J, Dasgupta S, Mandal S, Moid M, Jain M, Maiti PK. Does twist angle affect the properties of water confined inside twisted bilayer graphene? J Chem Phys 2023; 158:034501. [PMID: 36681635 DOI: 10.1063/5.0139256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Graphene nanoslit pores are used for nanofluidic devices, such as, in water desalination, ion-selective channels, ionic transistors, sensing, molecular sieving, blue energy harvesting, and protein sequencing. It is a strenuous task to prepare nanofluidic devices, because a small misalignment leads to a significant alteration in various properties of the devices. Here, we focus on the rotational misalignment between two parallel graphene sheets. Using molecular dynamics simulation, we probe the structure and dynamics of monolayer water confined inside graphene nanochannels for a range of commensurate twist angles. With SPC/E and TIP4P/2005 water models, our simulations reveal the independence of the equilibrium number density- n ∼ 13 nm-2 for SPC/E and n ∼ 11.5 nm-2 for TIP4P/2005- across twists. Based on the respective densities of the water models, the structure and dielectric constant are invariant of twist angles. The confined water structure at this density shows square ice ordering for SPC/E water only. TIP4P/2005 shows ordering at the vicinity of a critical density (n ∼ 12.5 nm-2). The average perpendicular dielectric constant of the confined water remains anomalously low (∼2 for SPC/E and ∼6 for TIP4P/2005) for the studied twist angles. We find that the friction coefficient of confined water molecules varies for small twist angles, while becoming independent for twists greater than 5.1°. Our results indicate that a small, angular misalignment will not impair the dielectric properties of monolayer water within a graphene slit-pore, but can significantly influence its dynamics.
Collapse
Affiliation(s)
- Jeet Majumdar
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Subhadeep Dasgupta
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Soham Mandal
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Mohd Moid
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Manish Jain
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| | - Prabal K Maiti
- Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
9
|
Teschke O, Castro JR, Gomes WE, Soares DM. Variable Interfacial Water Nanosized Arrangements Measured by Atomic Force Microscopy. ACS OMEGA 2022; 7:28875-28884. [PMID: 36033701 PMCID: PMC9404190 DOI: 10.1021/acsomega.2c01982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
While there seems to be broad agreement that cluster formation does exist near solid surfaces, its presence at the liquid/vapor interface is controversial. We report experimental studies we have carried out on interfacial water attached on hydrophobic and hydrophilic surfaces. Nanosized steps in the measured force vs distance to the surface curves characterize water cluster profiles. An expansion of the interfacial structure with time is observed; the initial profile extent is typically ∼1 nm, and for longer times expanded structures of ∼70 nm are observed. Our previous results showed that the interfacial water structure has a relative permittivity of ε ≈ 3 at the air/water interface homogeneously increasing to ε ≈ 80 at 300 nm inside the bulk, but here we have shown that the interfacial dielectric permittivity may have an oscillating profile describing the spatial steps in the force vs distance curves. This low dielectric permittivity arrangements of clusters extend the region with ε ≈ 3 inside bulk water and exhibit a behavior similar to that of water networks that expand in time.
Collapse
Affiliation(s)
- Omar Teschke
- Laboratorio
de Nanoestruturas e Interfaces, Instituto de Fisica, UNICAMP, 13083-859 Campinas, São
Paulo, Brazil
| | - Jose Roberto Castro
- Laboratorio
de Nanoestruturas e Interfaces, Instituto de Fisica, UNICAMP, 13083-859 Campinas, São
Paulo, Brazil
| | - Wyllerson Evaristo Gomes
- Pontificia
Universidade Catolica de Campinas, Faculdade de Quimica, 13012-970 Campinas, São Paulo, Brazil
| | - David Mendez Soares
- Laboratorio
de Nanoestruturas e Interfaces, Instituto de Fisica, UNICAMP, 13083-859 Campinas, São
Paulo, Brazil
| |
Collapse
|
10
|
Zhou S. On Capacitance and Energy Storage of Supercapacitor with Dielectric Constant Discontinuity. NANOMATERIALS 2022; 12:nano12152534. [PMID: 35893502 PMCID: PMC9330726 DOI: 10.3390/nano12152534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022]
Abstract
The classical density functional theory (CDFT) is applied to investigate influences of electrode dielectric constant on specific differential capacitance Cd and specific energy storage E of a cylindrical electrode pore electrical double layer. Throughout all calculations the electrode dielectric constant varies from 5, corresponding to a dielectric electrode, to εwr= 108 corresponding to a metal electrode. Main findings are summarized as below. (i): By using a far smaller value of the solution relative dielectric constant εr=10, which matches with the reality of extremely narrow tube, one discloses that a rather high saturation voltage is needed to attain the saturation energy storage in the ultra-small pore. (ii): Use of a realistic low εr=10 value brings two obvious effects. First, influence of bulk electrolyte concentration on the Cd is rather small except when the electrode potential is around the zero charge potential; influence on the E curve is almost unobservable. Second, there remain the Cd and E enhancing effects caused by counter-ion valency rise, but strength of the effects reduces greatly with dropping of the εr value; in contrast, the Cd and E reducing effects coming from the counter-ion size enhancing remain significant enough for the low εr value. (iii) A large value of electrode relative dielectric constant εrw always reduces both the capacitance and energy storage; moreover, the effect of the εrw value gets eventually unobservable for small enough pore when the εrw value is beyond the scope corresponding to dielectric electrode. It is analyzed that the above effects take their rise in the repulsion and attraction on the counter-ions and co-ions caused by the electrode bound charges and a strengthened inter-counter-ion electrostatic repulsion originated in the low εr value.
Collapse
Affiliation(s)
- Shiqi Zhou
- School of Physics and Electronics, Central South University, Changsha 410083, China
| |
Collapse
|
11
|
Abstract
In this study, we examine the spectral dielectric properties of liquid water in charged nanopores over a wide range of frequencies (0.3 GHz to 30 THz) and pore widths (0.3 to 5 nm). This has been achieved using classical molecular dynamics simulations of hydrated Na-smectite, the prototypical swelling clay mineral. We observe a drastic (20-fold) and anisotropic decrease in the static relative permittivity of the system as the pore width decreases. This large decrement in static permittivity reflects a strong attenuation of the main Debye relaxation mode of liquid water. Remarkably, this strong attenuation entails very little change in the time scale of the collective relaxation. Our results indicate that water confined in charged nanopores is a distinct solvent with a much weaker collective nature than bulk liquid water, in agreement with recent observations of water in uncharged nanopores. Finally, we observe remarkable agreement between the dielectric properties of the simulated clay system against a compiled set of soil samples at various volumetric water contents. This implies that saturation may not be the sole property dictating the dielectric properties of soil samples, rather that the pore-size distribution of fully saturated nanopores may also play a critically important role.
Collapse
Affiliation(s)
- Thomas R Underwood
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States.,High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
12
|
Ajith VJ, Patil S. Translational Diffusion of a Fluorescent Tracer Molecule in Nanoconfined Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1034-1044. [PMID: 35007074 DOI: 10.1021/acs.langmuir.1c02550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Diffusion of tracer dye molecules in water confined to the nanoscale is an important subject with a direct bearing on many technological applications. It is not yet clear, however, if the dynamics of water in hydrophilic as well as hydrophobic nanochannels remains bulk-like. Here, we present diffusion measurement of a fluorescent dye molecule in water confined to the nanoscale between two hydrophilic surfaces whose separation can be controlled with a precision of less than a nm. We observe that the fluorescence intensities correlate over fast (∼30 μs) and slow (∼1000 μs) time components. The slow time scale is due to adsorption of fluorophores to the confining walls, and it disappears in the presence of 1 M salt. The fast component is attributed to diffusion of dye molecules in the gap. It is found to be bulk-like for sub-10 nm separations and indicates that the viscosity of water under confinement remains unaltered up to a confinement gap as small as ∼5 nm. Our findings contradict some of the recent measurements of diffusion under nanoconfinement; however, they are consistent with many estimates of self-diffusion using molecular dynamics simulations and measurements using neutron scattering experiments.
Collapse
Affiliation(s)
- V J Ajith
- Department of Physics, Indian Institute of Science Education and Research Pune, Pune 411008, Maharashtra, India
| | - Shivprasad Patil
- Department of Physics, Indian Institute of Science Education and Research Pune, Pune 411008, Maharashtra, India
| |
Collapse
|
13
|
Abstract
It has long been anticipated that dielectric constants of polar liquids are reduced in the interfacial layer. Recent experiments and computer simulations support these expectations. A strong reduction of the dielectric constant is found in the direction perpendicular to a planar substrate, while the parallel response is bulk-like. This Perspective highlights recent theoretical calculations and simulations with an eye on relating them to properties observable in the laboratory. The average interface dielectric constant computed from simulations connects to thin films experiments, but this cannot be extended to screening of charges. In contrast to dielectric theories where a single dielectric constant gauges both the polarization energy and screening, these two signatures of dielectric polarization diverge on the molecular scale. The reduction of the dielectric constant of water in thin films is currently viewed as a combined effect of geometric confinement imposed by the substrate and the reconstruction of water hydrogen bonds in the surface layer.
Collapse
Affiliation(s)
- Dmitry V Matyushov
- School of Molecular Sciences and Department of Physics, Arizona State University, PO Box 871504, Tempe, Arizona 85287-1504, United States
| |
Collapse
|
14
|
Muñoz-Santiburcio D, Marx D. Confinement-Controlled Aqueous Chemistry within Nanometric Slit Pores. Chem Rev 2021; 121:6293-6320. [PMID: 34006106 DOI: 10.1021/acs.chemrev.0c01292] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this Focus Review, we put the spotlight on very recent insights into the fascinating world of wet chemistry in the realm offered by nanoconfinement of water in mechanically rather rigid and chemically inert planar slit pores wherein only monolayer and bilayer water lamellae can be hosted. We review the effect of confinement on different aspects such as hydrogen bonding, ion diffusion, and charge defect migration of H+(aq) and OH-(aq) in nanoconfined water depending on slit pore width. A particular focus is put on the strongly modulated local dielectric properties as quantified in terms of anisotropic polarization fluctuations across such extremely confined water films and their putative effects on chemical reactions therein. The stunning findings disclosed only recently extend wet chemistry in particular and solvation science in general toward extreme molecular confinement conditions.
Collapse
Affiliation(s)
- Daniel Muñoz-Santiburcio
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany.,CIC nanoGUNE BRTA, Tolosa Hiribidea 76, 20018 San Sebastián, Spain
| | - Dominik Marx
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, 44780 Bochum, Germany
| |
Collapse
|
15
|
Monet G, Bresme F, Kornyshev A, Berthoumieux H. Nonlocal Dielectric Response of Water in Nanoconfinement. PHYSICAL REVIEW LETTERS 2021; 126:216001. [PMID: 34114838 DOI: 10.1103/physrevlett.126.216001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
Recent experiments reporting a very low dielectric permittivity for nanoconfined water have renewed the interest in the structure and dielectric properties of water in narrow gaps. Here, we describe such systems with a minimal Landau-Ginzburg field theory composed of a nonlocal bulk-determined term and a local water-surface interaction term. We show how the interplay between the boundary conditions and intrinsic bulk correlations encodes the dielectric properties of confined water. Our theoretical analysis is supported by molecular dynamics simulations and comparison with the experimental data.
Collapse
Affiliation(s)
- G Monet
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC, UMR 7600), F-75005 Paris, France
| | - F Bresme
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ 2AZ London, United Kingdom
| | - A Kornyshev
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ 2AZ London, United Kingdom
| | - H Berthoumieux
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée (LPTMC, UMR 7600), F-75005 Paris, France
| |
Collapse
|
16
|
Olivieri JF, Hynes JT, Laage D. Confined Water's Dielectric Constant Reduction Is Due to the Surrounding Low Dielectric Media and Not to Interfacial Molecular Ordering. J Phys Chem Lett 2021; 12:4319-4326. [PMID: 33914550 DOI: 10.1021/acs.jpclett.1c00447] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Liquid water confined within nanometer-sized channels exhibits a surprisingly low dielectric constant along the direction orthogonal to the channel walls. This is typically assumed to result from a pronounced heterogeneity across the sample: the dielectric constant would be bulk-like everywhere except at the interface, where it would be dramatically reduced by strong restrictions on interfacial molecules. Here we study the dielectric properties of water confined within graphene slit channels via classical molecular dynamics simulations. We show that the permittivity reduction is not due to any important alignment of interfacial water molecules, but instead to the long-ranged anisotropic dipole correlations combined with an excluded-volume effect of the low-dielectric confining material. The bulk permittivity is gradually recovered only over several nanometers due to the impact of long-range electrostatics, rather than structural features. This has important consequences for the control of, e.g., ion transport and chemical reactivity in nanoscopic channels and droplets.
Collapse
Affiliation(s)
- Jean-François Olivieri
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - James T Hynes
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309, United States
| | - Damien Laage
- PASTEUR, Department of Chemistry, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
17
|
|
18
|
Biased Brownian Motion of KIF1A and the Role of Tubulin's C-Terminal Tail Studied by Molecular Dynamics Simulation. Int J Mol Sci 2021; 22:ijms22041547. [PMID: 33557020 PMCID: PMC7913626 DOI: 10.3390/ijms22041547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 12/29/2022] Open
Abstract
KIF1A is a kinesin family protein that moves over a long distance along the microtubule (MT) to transport synaptic vesicle precursors in neurons. A single KIF1A molecule can move toward the plus-end of MT in the monomeric form, exhibiting the characteristics of biased Brownian motion. However, how the bias is generated in the Brownian motion of KIF1A has not yet been firmly established. To elucidate this, we conducted a set of molecular dynamics simulations and observed the binding of KIF1A to MT. We found that KIF1A exhibits biased Brownian motion along MT as it binds to MT. Furthermore, we show that the bias toward the plus-end is generated by the ratchet-like energy landscape for the KIF1A-MT interaction, in which the electrostatic interaction and the negatively-charged C-terminal tail (CTT) of tubulin play an essential role. The relevance to the post-translational modifications of CTT is also discussed.
Collapse
|
19
|
Qi C, Zhu Z, Wang C, Zheng Y. Anomalously Low Dielectric Constant of Ordered Interfacial Water. J Phys Chem Lett 2021; 12:931-937. [PMID: 33439661 DOI: 10.1021/acs.jpclett.0c03299] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Despite considerable effort, the dielectric constant of interfacial water at solid surfaces is still not fully understood, thus hindering our understanding of the ubiquitous physical interactions in many materials and biological surfaces. In this study, we used molecular dynamics simulations to show that the parallel dielectric constant at the solid/water interface depends on solid-water interactions as well as the interfacial water structure on various solid crystal faces. In particular, ordered water structures can lead to a significant reduction (∼44%) in the parallel dielectric constant at the solid/water interface compared with that of bulk water. This sharp decrease in the parallel dielectric constant can be attributed to the specific antiferroelectric ordered structure of interfacial water molecules, which significantly suppresses the amplitude of the dipolar fluctuation associated with both the number of hydrogen bonds and the degree of order of interfacial water.
Collapse
Affiliation(s)
- Chonghai Qi
- School of Physics, Shandong University, Jinan 250100, China
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhi Zhu
- School of Optical-Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chunlei Wang
- Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Zhangjiang Lab Interdisplinary Research Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yujun Zheng
- School of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
20
|
Chen M, Li L, Zhu R, Zhu J, He H. Intrinsic water layering next to soft, solid, hydrophobic, and hydrophilic substrates. J Chem Phys 2020; 153:224702. [DOI: 10.1063/5.0030021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Meng Chen
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
| | - Lin Li
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runliang Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxi Zhu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongping He
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Institutions of Earth Science, Chinese Academy of Sciences (CAS), Guangzhou 510640, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Motevaselian MH, Aluru NR. Universal Reduction in Dielectric Response of Confined Fluids. ACS NANO 2020; 14:12761-12770. [PMID: 32966055 DOI: 10.1021/acsnano.0c03173] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dielectric permittivity is central to many biological and physiochemical systems, as it affects the long-range electrostatic interactions. Similar to many fluid properties, confinement greatly alters the dielectric response of polar liquids. Many studies have focused on the reduction of the dielectric response of water under confinement. Here, using molecular dynamics simulations, statistical-mechanical theories, and multiscale methods, we study the out-of-plane (z-axis) dielectric response of protic and aprotic fluids confined inside slit-like graphene channels. We show that the reduction in perpendicular permittivity is universal for all the fluids and exhibits a Langevin-like behavior as a function of channel width. We show that this reduction is due to the favorable in-plane (x-y plane) dipole-dipole electrostatic interactions of the interfacial fluid layer. Furthermore, we observe an anomalously low dielectric response under an extreme confinement.
Collapse
Affiliation(s)
- Mohammad H Motevaselian
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Narayana R Aluru
- Department of Mechanical Science and Engineering, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
22
|
Liang D, Dahal U, Zhang YK, Lochbaum C, Ray D, Hamers RJ, Pedersen JA, Cui Q. Interfacial water and ion distribution determine ζ potential and binding affinity of nanoparticles to biomolecules. NANOSCALE 2020; 12:18106-18123. [PMID: 32852025 DOI: 10.1039/d0nr03792c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The molecular features that dictate interactions between functionalized nanoparticles and biomolecules are not well understood. This is in part because for highly charged nanoparticles in solution, establishing a clear connection between the molecular features of surface ligands and common experimental observables such as ζ potential requires going beyond the classical models based on continuum and mean field models. Motivated by these considerations, molecular dynamics simulations are used to probe the electrostatic properties of functionalized gold nanoparticles and their interaction with a charged peptide in salt solutions. Counterions are observed to screen the bare ligand charge to a significant degree even at the moderate salt concentration of 50 mM. As a result, the apparent charge density and ζ potential are largely insensitive to the bare ligand charge densities, which fall in the range of ligand densities typically measured experimentally for gold nanoparticles. While this screening effect was predicted by classical models such as the Manning condensation theory, the magnitudes of the apparent surface charge from microscopic simulations and mean-field models are significantly different. Moreover, our simulations found that the chemical features of the surface ligand (e.g., primary vs. quaternary amines, heterogeneous ligand lengths) modulate the interfacial ion and water distributions and therefore the interfacial potential. The importance of interfacial water is further highlighted by the observation that introducing a fraction of hydrophobic ligands enhances the strength of electrostatic binding of the charged peptide. Finally, the simulations highlight that the electric double layer is perturbed upon binding interactions. As a result, it is the bare charge density rather than the apparent charge density or ζ potential that better correlates with binding affinity of the nanoparticle to a charged peptide. Overall, our study highlights the importance of molecular features of the nanoparticle/water interface and underscores a set of design rules for the modulation of electrostatic driven interactions at nano/bio interfaces.
Collapse
Affiliation(s)
- Dongyue Liang
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Besford QA, Christofferson AJ, Kalayan J, Sommer JU, Henchman RH. The Attraction of Water for Itself at Hydrophobic Quartz Interfaces. J Phys Chem B 2020; 124:6369-6375. [PMID: 32589426 DOI: 10.1021/acs.jpcb.0c04545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structural forces within aqueous water at a solid interface can significantly change surface reactivity and the affinity of solutes toward it. We show using molecular dynamics simulations how hydrophilic and hydrophobic quartz surfaces perturb the orientational structure of aqueous water, ultimately strengthening dipolar forces between molecules in proximity to the interface. When derived as a function of distance from each surface, it was found that both surfaces indirectly enhance the long-range dipolar attraction of water for itself toward the interfacial region. This was found to be longer-ranged for water molecules solvating the hydrophobic surface than those solvating the hydrophilic surface, with a range of up to 2.5 nm from the hydrophobic surface. Our results give direct quantification of surface-induced changes in solvent-solvent attraction, ultimately providing a counterintuitive addition to the balance of hydrophobic forces at aqueous-solid interfaces.
Collapse
Affiliation(s)
- Quinn A Besford
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute for Polymer Research Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | | | - Jas Kalayan
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M13 9PL, U.K.,School of Chemistry, The University of Manchester, Oxford M13 9PL, U.K
| | - Jens-Uwe Sommer
- Institute Theory of Polymers, Leibniz Institute for Polymer Research Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Richard H Henchman
- Manchester Institute of Biotechnology, The University of Manchester, Manchester M13 9PL, U.K.,School of Chemistry, The University of Manchester, Oxford M13 9PL, U.K
| |
Collapse
|
24
|
Qian J, Gao X, Pan B. Nanoconfinement-Mediated Water Treatment: From Fundamental to Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8509-8526. [PMID: 32511915 DOI: 10.1021/acs.est.0c01065] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Safe and clean water is of pivotal importance to all living species and the ecosystem on earth. However, the accelerating economy and industrialization of mankind generate water pollutants with much larger quantity and higher complexity than ever before, challenging the efficacy of traditional water treatment technologies. The flourishing researches on nanomaterials and nanotechnologies in the past decade have generated new understandings on many fundamental processes and brought revolutionary upgrades to various traditional technologies in almost all areas, including water treatment. An indispensable step toward the real application of nanomaterials in water treatment is to confine them in large processable substrate to address various inherent issues, such as spontaneous aggregation, difficult operation and potential environmental risks. Strikingly, when the size of the spatial restriction provided by the substrate is on the order of only one or several nanometers, referred to as nanoconfinement, the phase behavior of matter and the energy diagram of a chemical reaction could be utterly changed. Nevertheless, the relationship between such changes under nanoconfinement and their implications for water treatment is rarely elucidated systematically. In this Critical Review, we will briefly summarize the current state-of-the-art of the nanomaterials, as well as the nanoconfined analogues (i.e., nanocomposites) developed for water treatment. Afterward, we will put emphasis on the effects of nanoconfinement from three aspects, that is, on the structure and behavior of water molecules, on the formation (e.g., crystallization) of confined nanomaterials, and on the nanoenabled chemical reactions. For each aspect, we will build the correlation between the nanoconfinement effects and the current studies for water treatment. More importantly, we will make proposals for future studies based on the missing links between some of the nanoconfinement effects and the water treatment technologies. Through this Critical Review, we aim to raise the research attention on using nanoconfinement as a fundamental guide or even tool to advance water treatment technologies.
Collapse
Affiliation(s)
- Jieshu Qian
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094 China
| | - Xiang Gao
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
| | - Bingcai Pan
- Research Center for Environmental Nanotechnology (ReCENT), School of Environment, Nanjing University, Nanjing 210023 China
- State Key Laboratory of Pollution Control and Resources Reuse, Nanjing University, Nanjing 210023 China
| |
Collapse
|
25
|
Chu M, Miller M, Dutta P. Interfacial Density Profiles of Polar and Nonpolar Liquids at Hydrophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:906-910. [PMID: 31913043 DOI: 10.1021/acs.langmuir.9b03785] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A density-depleted region ("gap") is known to exist between water and hydrophobic surfaces. Using X-ray reflectivity, we have observed similar gaps between hydrophobic self-assembled monolayers (SAMs) and four other polar liquids. For these liquids and for water, the observed electron density depletion is nonzero and is in most cases slightly greater than the depletion attributable to the layer of hydrogen atoms at the SAM surface. On the other hand, the observed X-ray reflectivity from the interfaces between SAMs and three nonpolar liquids studied can be explained either without gaps or with smaller gaps. Thus, polar liquids (including but not limited to water) stand away from even the terminal hydrogen atoms at hydrophobic surfaces, while nonpolar liquids interpenetrate the terminal region. There is no consistent correlation between the sizes of the gaps and the liquid-SAM contact angles, the relative polarities of the polar liquids, or their bulk densities.
Collapse
Affiliation(s)
- Miaoqi Chu
- Department of Physics and Astronomy , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3112 , United States
| | - Mitchell Miller
- Department of Physics and Astronomy , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3112 , United States
| | - Pulak Dutta
- Department of Physics and Astronomy , Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208-3112 , United States
| |
Collapse
|
26
|
Zhu Z, Chang C, Shu Y, Song B. Transition to a Superpermeation Phase of Confined Water Induced by a Terahertz Electromagnetic Wave. J Phys Chem Lett 2020; 11:256-262. [PMID: 31855440 DOI: 10.1021/acs.jpclett.9b03228] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Excellent permeation of one-dimensional (1-D) confined water across membrane channels is implicated in physiological processes and widely inspires the design of novel nanodevices and materials. Here, through molecular dynamics simulations, we proposed a phase transition to superpermeation (approximately 1 order of magnitude enhancement) of confined water across a 1-D water channel caused by a terahertz electromagnetic stimulus with a limited thermal effect. The underlying mechanism is revealed to be a combination of strength matching and frequency resonance between a relatively weak stimulus and the hydrogen bond network of 1-D confined water, rather than the bulk water outside. This combination causes an anomalously structural phase transition of only the confined water while efficiently limiting the thermal effect of bulk water. Our findings are promising for promoting the developments of advanced nanofluidic systems and terahertz technology and even physiological research.
Collapse
Affiliation(s)
- Zhi Zhu
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, School of Optical-Electrical Computer Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
| | - Chao Chang
- Innovation Laboratory of Terahertz Biophysics , National Innovation Institute of Defense Technology , Beijing 100071 , China
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education , Xi'an Jiaotong University , Xi'an 710049 , China
| | - Yousheng Shu
- State Key Laboratory of Medical Neurobiology, Institute for Translational Brain Research, MOE Frontier Center for Brain Science, Department of Neurology, Huashan Hospital , Fudan University , Shanghai 200032 , China
| | - Bo Song
- Terahertz Technology Innovation Research Institute, Shanghai Key Lab of Modern Optical System, Terahertz Science Cooperative Innovation Center, School of Optical-Electrical Computer Engineering , University of Shanghai for Science and Technology , Shanghai 200093 , China
| |
Collapse
|
27
|
Zhao Y, Qiao C, Fang Z, Wang H, Zhu S, Wang J, Ren J, Guan S, Jia Y. Inverted Hydration Layers on Bio-Magnesium Surfaces in the Initial Degradation Stage and their Influence on Adsorption of Amino Acid Analogues: The Metadynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:17009-17015. [PMID: 31804087 DOI: 10.1021/acs.langmuir.9b02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Deeply exploring the interaction of biomolecules with magnesium in solution is essential to understand the formation of complex bio-magnesium interfaces accompanied with corrosion products. Using the accelerated metadynamics simulations, we have investigated the interactions of amino acid analogues on clean and hydroxylated Mg(0001) surfaces by identifying their free energy barriers and adsorption sites. We find that there are two hydration layers stacked on the clean Mg(0001) surfaces and the hydroxylated Mg(0001) surfaces, which mainly determine the free energy barriers and adsorbed configurations. Further studies reveal that the water molecules in double hydration layers present two opposite orientations, depending on the charge distribution of the substrate. Specifically, oxygen atoms of water concentrate in the center of double hydration layers for a clean Mg surface but transfer to the outside surface once the Mg substrate is degraded. The reversed hydration layers greatly reduce the binding affinities of positively charged and electroneutral analogues. Overall, our simulation findings provide new insights into the interaction mechanism of biomolecules on a bio-magnesium device in the implantation initial stage, which is noteworthy for revealing the magnesium degradation mechanism in vivo.
Collapse
Affiliation(s)
- Yu Zhao
- Key Laboratory for Special Functional Materials of Ministry of Education & School of Materials Science and Engineering , Henan University , Kaifeng 475004 , China
| | - Chong Qiao
- School of Materials Science and Engineering , Zhengzhou University of Aeronautics , Zhengzhou 450046 , China
| | | | | | | | | | | | | | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education & School of Materials Science and Engineering , Henan University , Kaifeng 475004 , China
- International Laboratory for Quantum Functional Materials of Henan & School of Physics , Zhengzhou University , Zhengzhou 45000 , China
| |
Collapse
|
28
|
Kopanichuk IV, Novikov VA, Vanin AA, Brodskaya EN. The electric properties of AOT reverse micelles by molecular dynamics simulations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Madsen KE, Wade KA, Haasch RT, Buchholz DB, Bassett KL, Nicolau BG, Gewirth AA. Origin of Enhanced Cyclability in Covalently Modified LiMn 1.5Ni 0.5O 4 Cathodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39890-39901. [PMID: 31577115 DOI: 10.1021/acsami.9b12912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High-voltage lithium-ion cathode materials exhibit exceptional energy densities; however, rapid capacity fade during cell cycling prohibits their widespread utilization. Surface modification of cathode-active materials by organic self-assembled monolayers (SAMs) has emerged as an approach to improve the longevity of high-voltage electrodes; however, the surface chemistry at the electrode/electrolyte interphase and its dependence on monolayer structure remains unclear. Herein, we investigate the interplay between monolayer structure, electrochemical performance, and surface chemistry of high-voltage LiMn1.5Ni0.5O4 (LMNO) electrodes by the application of silane-based SAMs of variable length and chemical composition. We demonstrate that the application of both hydrophobic and hydrophilic monolayers results in improved galvanostatic capacity retention relative to unmodified LMNO. The extent of this improvement is tied to the structure of the monolayer with fluorinated alkyl-silanes exhibiting the greatest overall capacity retention, above 96% after 100 charge/discharge cycles. Postmortem surface analysis reveals that the presence of the monolayer enhances the deposition of LiF at the electrode surface during cell cycling and that the total surface concentration correlates with the overall improvements in capacity retention. We propose that the enhanced deposition of highly insulating LiF increases the anodic stability of the interphase, contributing to the improved galvanostatic performance of modified electrodes. Moreover, this work demonstrates that the modification of the electrode surface by the selection of an appropriate monolayer is an effective approach to tune the properties and behavior of the electrode/electrolyte interphase formed during battery operation.
Collapse
Affiliation(s)
- Kenneth E Madsen
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Kevin A Wade
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Richard T Haasch
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - D Bruce Buchholz
- Department of Materials Science and Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Kimberly L Bassett
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Bruno G Nicolau
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| | - Andrew A Gewirth
- Department of Chemistry , University of Illinois at Urbana-Champaign , 600 South Mathews Avenue , Urbana , Illinois 61801 , United States
| |
Collapse
|
30
|
Loche P, Wolde-Kidan A, Schlaich A, Bonthuis DJ, Netz RR. Comment on "Hydrophobic Surface Enhances Electrostatic Interaction in Water". PHYSICAL REVIEW LETTERS 2019; 123:049601. [PMID: 31491251 DOI: 10.1103/physrevlett.123.049601] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 06/10/2023]
Affiliation(s)
- Philip Loche
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | - Douwe Jan Bonthuis
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
- Institute of Theoretical and Computational Physics, Graz University of Technology, 8010 Graz, Austria
| | - Roland R Netz
- Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
31
|
Ohnuki J, Sato T, Sasaki T, Umezawa K, Takano M. Ohnuki et al. Reply. PHYSICAL REVIEW LETTERS 2019; 123:049602. [PMID: 31491245 DOI: 10.1103/physrevlett.123.049602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Jun Ohnuki
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| | - Takato Sato
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| | - Tohru Sasaki
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| | - Koji Umezawa
- Department of Biomedical Engineering/Institute for Biomedical Sciences, Shinshu University, Nagano, 399-4598, Japan
| | - Mitsunori Takano
- Department of Pure and Applied Physics, Waseda University, Tokyo 169-8555, Japan
| |
Collapse
|
32
|
Coupling of Redox and Structural States in Cytochrome P450 Reductase Studied by Molecular Dynamics Simulation. Sci Rep 2019; 9:9341. [PMID: 31249341 PMCID: PMC6597723 DOI: 10.1038/s41598-019-45690-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/10/2019] [Indexed: 01/09/2023] Open
Abstract
Cytochrome P450 reductase (CPR) is the key protein that regulates the electron transfer from NADPH to various heme-containing monooxygenases. CPR has two flavin-containing domains: one with flavin adenine dinucleotide (FAD), called FAD domain, and the other with flavin mononucleotide (FMN), called FMN domain. It is considered that the electron transfer occurs via FAD and FMN (NADPH → FAD → FMN → monooxygenase) and is regulated by an interdomain open-close motion. It is generally thought that the structural state is coupled with the redox state, which, however, has not yet been firmly established. In this report, we studied the coupling of the redox and the structural states by full-scale molecular dynamics (MD) simulation of CPR (total 86.4 μs). Our MD result showed that while CPR predominantly adopts the closed state both in the oxidized and reduced states, it exhibits a tendency to open in the reduced state. We also found a correlation between the FAD-FMN distance and the predicted FMN-monooxygenase distance, which is embedded in the equilibrium thermal fluctuation of CPR. Based on these results, a physical mechanism for the electron transfer by CPR is discussed.
Collapse
|
33
|
Varghese S, Kannam SK, Hansen JS, P Sathian S. Effect of Hydrogen Bonds on the Dielectric Properties of Interfacial Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8159-8166. [PMID: 31121091 DOI: 10.1021/acs.langmuir.9b00543] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The dielectric constant for water is reduced under confinement. Although this phenomenon is well known, the underlying physical mechanism for the reduction is still in debate. In this work, we investigate the effect of the orientation of hydrogen bonds on the dielectric properties of confined water using molecular dynamics simulations. We find a reduced rotational diffusion coefficient for water molecules close to the solid surface. The reduced rotational diffusion arises due to the hindered rotation away from the plane parallel to the channel walls. The suppressed rotation in turn affects the orientational polarization of water, leading to a low value for the dielectric constant at the interface. We attribute the constrained out-of-plane rotation to originate from a higher density of planar hydrogen bonds formed by the interfacial water molecules.
Collapse
Affiliation(s)
- Sleeba Varghese
- Department of Applied Mechanics , Indian Institute of Technology Madras , Chennai 600036 , India
| | - Sridhar Kumar Kannam
- Faculty of Science, Engineering and Technology , Swinburne University of Technology , Melbourne , Victoria 3122 , Australia
- School of Applied Sciences , RMIT University , Melbourne , Victoria 3001 , Australia
| | - Jesper Schmidt Hansen
- Department of Science and Environment , Roskilde University , Roskilde 4000 , Denmark
| | - Sarith P Sathian
- Department of Applied Mechanics , Indian Institute of Technology Madras , Chennai 600036 , India
| |
Collapse
|
34
|
Sarhangi SM, Waskasi MM, Hashemianzadeh SM, Matyushov DV. Effective Dielectric Constant of Water at the Interface with Charged C60 Fullerenes. J Phys Chem B 2019; 123:3135-3143. [DOI: 10.1021/acs.jpcb.9b00901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Setare Mostajabi Sarhangi
- Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Seyed Majid Hashemianzadeh
- Molecular Simulation Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | |
Collapse
|