1
|
Huang CY, Chica DG, Cui ZH, Handa T, Thinel M, Olsen N, Liu Y, Ziebel ME, He G, Shao Y, Occhialini CA, Pelliciari J, Basov DN, Sfeir M, Pasupathy A, Bisogni V, Reichman DR, Roy X, Zhu X. Coupling of electronic transition to ferroelectric order in a 2D semiconductor. Nat Commun 2025; 16:1896. [PMID: 39988629 PMCID: PMC11847933 DOI: 10.1038/s41467-025-57061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/08/2025] [Indexed: 02/25/2025] Open
Abstract
A ferroelectric material often exhibits a soft transverse optical (TO) phonon mode which governs its phase transition. Charge coupling to this ferroelectric soft mode may further mediate emergent physical properties, including superconductivity and defect tolerance in semiconductors. However, direct experimental evidence for such coupling is scarce. Here we show that a photogenerated coherent phonon couples strongly to the electronic transition above the bandgap in the van der Waals (vdW) two-dimensional (2D) ferroelectric semiconductor NbOI2. Using terahertz time-domain spectroscopy and first-principles calculations, we identify this mode as the TO phonon responsible for ferroelectric order. This exclusive coupling occurs only with the above-gap electronic transition and is absent in the valence band as revealed by resonant inelastic X-ray scattering. Our findings suggest a new role of the soft TO phonon mode in electronic and optical properties of ferroelectric semiconductors.
Collapse
Affiliation(s)
- Chun-Ying Huang
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Daniel G Chica
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Zhi-Hao Cui
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Taketo Handa
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Morgan Thinel
- Department of Chemistry, Columbia University, New York, NY, USA
- Department of Physics, Columbia University, New York, NY, USA
| | - Nicholas Olsen
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Yufeng Liu
- Department of Chemistry, Columbia University, New York, NY, USA
| | | | - Guiying He
- Department of Physics, Graduate Center, City University of New York, New York, NY, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
| | - Yinming Shao
- Department of Physics, Columbia University, New York, NY, USA
- Department of Physics, Pennsylvania State University, University Park, PA, USA
| | - Connor A Occhialini
- Department of Physics, Columbia University, New York, NY, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Jonathan Pelliciari
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - Dmitri N Basov
- Department of Physics, Columbia University, New York, NY, USA
| | - Matthew Sfeir
- Department of Physics, Graduate Center, City University of New York, New York, NY, USA
- Photonics Initiative, Advanced Science Research Center, City University of New York, New York, NY, USA
| | - Abhay Pasupathy
- Department of Physics, Columbia University, New York, NY, USA
| | - Valentina Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| | - David R Reichman
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Xavier Roy
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Gilmore K. Quantifying vibronic coupling with resonant inelastic X-ray scattering. Phys Chem Chem Phys 2023; 25:217-231. [DOI: 10.1039/d2cp00968d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Electron–phonon interactions are fundamental to the behavior of chemical and physical systems.
Collapse
Affiliation(s)
- Keith Gilmore
- Physics Department and IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Großen Windkanal 2, 12489 Berlin, Germany
- European Theoretical Spectroscopy Facility (ETSF), Berlin, Germany
| |
Collapse
|
3
|
Gong D, Yang J, Hao L, Horak L, Xin Y, Karapetrova E, Strempfer J, Choi Y, Kim JW, Ryan PJ, Liu J. Reconciling Monolayer and Bilayer J_{eff}=1/2 Square Lattices in Hybrid Oxide Superlattice. PHYSICAL REVIEW LETTERS 2022; 129:187201. [PMID: 36374692 DOI: 10.1103/physrevlett.129.187201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The number of atomic layers confined in a two-dimensional structure is crucial for the electronic and magnetic properties. Single-layer and bilayer J_{eff}=1/2 square lattices are well-known examples where the presence of the extra layer turns the XY anisotropy to the c-axis anisotropy. We report on experimental realization of a hybrid SrIrO_{3}/SrTiO_{3} superlattice that integrates monolayer and bilayer square lattices in one layered structure. By synchrotron x-ray diffraction, resonant x-ray magnetic scattering, magnetization, and resistivity measurements, we found that the hybrid superlattice exhibits properties that are distinct from both the single-layer and bilayer systems and cannot be explained by a simple addition of them. In particular, the entire hybrid superlattice orders simultaneously through a single antiferromagnetic transition at temperatures similar to the bilayer system but with all the J_{eff}=1/2 moments mainly pointing in the ab plane similar to the single-layer system. The results show that bringing monolayer and bilayer with orthogonal properties in proximity to each other in a hybrid superlattice structure is a powerful way to stabilize a unique state not obtainable in a uniform structure.
Collapse
Affiliation(s)
- Dongliang Gong
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Junyi Yang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Lin Hao
- Anhui Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory, HFIPS, Anhui, Chinese Academy of Sciences, Hefei 230031, China
| | - Lukas Horak
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 3, Prague 12116, Czech Republic
| | - Yan Xin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA
| | - Evguenia Karapetrova
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Jörg Strempfer
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Jong-Woo Kim
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Philip J Ryan
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
4
|
Ren J, Lin L, Lieutenant K, Schulz C, Wong D, Gimm T, Bande A, Wang X, Petit T. Role of Dopants on the Local Electronic Structure of Polymeric Carbon Nitride Photocatalysts. SMALL METHODS 2021; 5:e2000707. [PMID: 34927893 DOI: 10.1002/smtd.202000707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/02/2020] [Indexed: 06/14/2023]
Abstract
Polymeric carbon nitride (PCN) is a promising class of materials for solar-to-chemical energy conversion. The increase of the photocatalytic activity of PCN is often achieved by the incorporation of heteroatoms, whose impact on the electronic structure of PCN remains poorly explored. This work reveals that the local electronic structure of PCN is strongly altered by doping with sulfur and iron using X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS). From XAS at the carbon and nitrogen K-edges, sulfur atoms are found to mostly affect carbon atoms, in contrast to iron doping mostly altering nitrogen sites. In RIXS at the nitrogen K-edge, a vibrational progression, affected by iron doping, is evidenced, which is attributed to a vibronic coupling between excited electrons in nitrogen atoms and C-N stretching modes in PCN heterocycling rings. This work opens new perspectives for the characterization of vibronic coupling in polymeric photocatalysts.
Collapse
Affiliation(s)
- Jian Ren
- Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin, 12489, Germany
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, 14195, Germany
| | - Lihua Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Klaus Lieutenant
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin, 12489, Germany
| | - Christian Schulz
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin, 12489, Germany
| | - Deniz Wong
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin, 12489, Germany
| | - Thorren Gimm
- Joint Research Group Simulation of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, 14109, Germany
| | - Annika Bande
- Young Investigator Group Theory of Electron Dynamics and Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, Berlin, 14109, Germany
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350002, China
| | - Tristan Petit
- Institute for Nanospectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 15, Berlin, 12489, Germany
| |
Collapse
|
5
|
Feng X, Sallis S, Shao YC, Qiao R, Liu YS, Kao LC, Tremsin AS, Hussain Z, Yang W, Guo J, Chuang YD. Disparate Exciton-Phonon Couplings for Zone-Center and Boundary Phonons in Solid-State Graphite. PHYSICAL REVIEW LETTERS 2020; 125:116401. [PMID: 32975957 DOI: 10.1103/physrevlett.125.116401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/26/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
The exciton-phonon coupling in highly oriented pyrolytic graphite is studied using resonant inelastic x-ray scattering (RIXS) spectroscopy. With ∼70 meV energy resolution, multiple low energy excitations associated with coupling to phonons can be clearly resolved in the RIXS spectra. Using resonance dependence and the closed form for RIXS cross section without considering the intermediate state mixing of phonon modes, the dimensionless coupling constant g is determined to be 5 and 0.35, corresponding to the coupling strength of 0.42 eV+/-20 meV and 0.20 eV+/-20 meV, for zone center and boundary phonons, respectively. The reduced g value for the zone-boundary phonon may be related to its double resonance nature.
Collapse
Affiliation(s)
- Xuefei Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Shawn Sallis
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yu-Cheng Shao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Physics, University of Houston, Houston, Texas 77204, USA
| | - Ruimin Qiao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yi-Sheng Liu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Li Cheng Kao
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anton S Tremsin
- Space Science Laboratory, University of California, Berkeley, California 94720, USA
| | - Zahid Hussain
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Wanli Yang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
6
|
Lin JQ, Miao H, Mazzone DG, Gu GD, Nag A, Walters AC, García-Fernández M, Barbour A, Pelliciari J, Jarrige I, Oda M, Kurosawa K, Momono N, Zhou KJ, Bisogni V, Liu X, Dean MPM. Strongly Correlated Charge Density Wave in La_{2-x}Sr_{x}CuO_{4} Evidenced by Doping-Dependent Phonon Anomaly. PHYSICAL REVIEW LETTERS 2020; 124:207005. [PMID: 32501068 DOI: 10.1103/physrevlett.124.207005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
The discovery of charge-density-wave-related effects in the resonant inelastic x-ray scattering spectra of cuprates holds the tantalizing promise of clarifying the interactions that stabilize the electronic order. Here, we report a comprehensive resonant inelastic x-ray scattering study of La_{2-x}Sr_{x}CuO_{4} finding that charge-density wave effects persist up to a remarkably high doping level of x=0.21 before disappearing at x=0.25. The inelastic excitation spectra remain essentially unchanged with doping despite crossing a topological transition in the Fermi surface. This indicates that the spectra contain little or no direct coupling to electronic excitations near the Fermi surface, rather they are dominated by the resonant cross section for phonons and charge-density-wave-induced phonon softening. We interpret our results in terms of a charge-density wave that is generated by strong correlations and a phonon response that is driven by the charge-density-wave-induced modification of the lattice.
Collapse
Affiliation(s)
- J Q Lin
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - H Miao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D G Mazzone
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - G D Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A Nag
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - A C Walters
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - M García-Fernández
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - A Barbour
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - J Pelliciari
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - I Jarrige
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M Oda
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
| | - K Kurosawa
- Department of Physics, Hokkaido University, Sapporo 060-0810, Japan
| | - N Momono
- Department of Sciences and Informatics, Muroran Institute of Technology, Muroran 050-8585, Japan
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - V Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - M P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
7
|
Yang J, Hao L, Meyers D, Dasa T, Xu L, Horak L, Shafer P, Arenholz E, Fabbris G, Choi Y, Haskel D, Karapetrova J, Kim JW, Ryan PJ, Xu H, Batista CD, Dean MPM, Liu J. Strain-Modulated Slater-Mott Crossover of Pseudospin-Half Square-Lattice in (SrIrO_{3})_{1}/(SrTiO_{3})_{1} Superlattices. PHYSICAL REVIEW LETTERS 2020; 124:177601. [PMID: 32412287 DOI: 10.1103/physrevlett.124.177601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
We report on the epitaxial strain-driven electronic and antiferromagnetic modulations of a pseudospin-half square-lattice realized in superlattices of (SrIrO_{3})_{1}/(SrTiO_{3})_{1}. With increasing compressive strain, we find the low-temperature insulating behavior to be strongly suppressed with a corresponding systematic reduction of both the Néel temperature and the staggered moment. However, despite such a suppression, the system remains weakly insulating above the Néel transition. The emergence of metallicity is observed under large compressive strain but only at temperatures far above the Néel transition. These behaviors are characteristics of the Slater-Mott crossover regime, providing a unique experimental model system of the spin-half Hubbard Hamiltonian with a tunable intermediate coupling strength.
Collapse
Affiliation(s)
- Junyi Yang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Lin Hao
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Derek Meyers
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Tamene Dasa
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Liubin Xu
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Lukas Horak
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 5, 121 16 Prague, Czech Republic
| | - Padraic Shafer
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Elke Arenholz
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department of Materials Science & Engineering, University of California, Berkeley, California 94720, USA
| | - Gilberto Fabbris
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - Daniel Haskel
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - Jenia Karapetrova
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - Jong-Woo Kim
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - Philip J Ryan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - Haixuan Xu
- Department of Material Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Cristian D Batista
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Mark P M Dean
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, USA
| |
Collapse
|
8
|
Schulz C, Lieutenant K, Xiao J, Hofmann T, Wong D, Habicht K. Characterization of the soft X-ray spectrometer PEAXIS at BESSY II. JOURNAL OF SYNCHROTRON RADIATION 2020; 27:238-249. [PMID: 31868758 PMCID: PMC6927519 DOI: 10.1107/s1600577519014887] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 11/04/2019] [Indexed: 06/02/2023]
Abstract
The performance of the recently commissioned spectrometer PEAXIS for resonant inelastic soft X-ray scattering (RIXS) and X-ray photoelectron spectroscopy and its hosting beamline U41-PEAXIS at the BESSY II synchrotron are characterized. The beamline provides linearly polarized light from 180 eV to 1600 eV allowing for RIXS measurements in the range 200-1200 eV. The monochromator optics can be operated in different configurations to provide either high flux with up to 1012 photons s-1 within the focal spot at the sample or high energy resolution with a full width at half maximum of <40 meV at an incident photon energy of ∼400 eV. The measured total energy resolution of the RIXS spectrometer is in very good agreement with theoretically predicted values obtained by ray-tracing simulations. PEAXIS features a 5 m-long RIXS spectrometer arm that can be continuously rotated about the sample position by 106° within the horizontal photon scattering plane, thus enabling the study of momentum-transfer-dependent excitations. Selected scientific examples are presented to demonstrate the instrument capabilities, including measurements of excitations in single-crystalline NiO and in liquid acetone employing a fluid cell sample manipulator. Planned upgrades of the beamline and the RIXS spectrometer to further increase the energy resolution to ∼100 meV at 1000 eV incident photon energy are discussed.
Collapse
Affiliation(s)
- Christian Schulz
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Klaus Lieutenant
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Jie Xiao
- Department of Highly Sensitive X-ray Spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Tommy Hofmann
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Deniz Wong
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Klaus Habicht
- Department of Methods for Characterization of Transport Phenomena in Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
- Institut für Physik und Astronomie, Universität Potsdam, D-14476 Potsdam, Germany
| |
Collapse
|
9
|
Rossi M, Arpaia R, Fumagalli R, Moretti Sala M, Betto D, Kummer K, De Luca GM, van den Brink J, Salluzzo M, Brookes NB, Braicovich L, Ghiringhelli G. Experimental Determination of Momentum-Resolved Electron-Phonon Coupling. PHYSICAL REVIEW LETTERS 2019; 123:027001. [PMID: 31386544 DOI: 10.1103/physrevlett.123.027001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Indexed: 06/10/2023]
Abstract
We provide a novel experimental method to quantitatively estimate the electron-phonon coupling and its momentum dependence from resonant inelastic x-ray scattering (RIXS) spectra based on the detuning of the incident photon energy away from an absorption resonance. We apply it to the cuprate parent compound NdBa_{2}Cu_{3}O_{6} and find that the electronic coupling to the oxygen half-breathing phonon branch is strongest at the Brillouin zone boundary, where it amounts to ∼0.17 eV, in agreement with previous studies. In principle, this method is applicable to any absorption resonance suitable for RIXS measurements and will help to define the contribution of lattice vibrations to the peculiar properties of quantum materials.
Collapse
Affiliation(s)
- Matteo Rossi
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Riccardo Arpaia
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Roberto Fumagalli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Marco Moretti Sala
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| | - Davide Betto
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble, France
| | - Kurt Kummer
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble, France
| | - Gabriella M De Luca
- Dipartimento di Fisica "E. Pancini," Università degli Studi di Napoli "Federico II," Complesso Monte Sant'Angelo-Via Cinthia, I-80126 Napoli, Italy
- CNR-SPIN, Complesso Monte Sant'Angelo-Via Cinthia, I-80126 Napoli, Italy
| | - Jeroen van den Brink
- Institute for Theoretical Solid State Physics, IFW Dresden, Helmholtzstrasse 20, D-01069 Dresden, Germany
- Department of Physics, Technical University Dresden, D-01062 Dresden, Germany
| | - Marco Salluzzo
- CNR-SPIN, Complesso Monte Sant'Angelo-Via Cinthia, I-80126 Napoli, Italy
| | - Nicholas B Brookes
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble, France
| | - Lucio Braicovich
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, CS 40220, F-38043 Grenoble, France
| | - Giacomo Ghiringhelli
- Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
- CNR-SPIN, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
10
|
Meyers D, Cao Y, Fabbris G, Robinson NJ, Hao L, Frederick C, Traynor N, Yang J, Lin J, Upton MH, Casa D, Kim JW, Gog T, Karapetrova E, Choi Y, Haskel D, Ryan PJ, Horak L, Liu X, Liu J, Dean MPM. Magnetism in iridate heterostructures leveraged by structural distortions. Sci Rep 2019; 9:4263. [PMID: 30862782 PMCID: PMC6414659 DOI: 10.1038/s41598-019-39422-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/18/2019] [Indexed: 11/09/2022] Open
Abstract
Fundamental control of magnetic coupling through heterostructure morphology is a prerequisite for rational engineering of magnetic ground states. We report the tuning of magnetic interactions in superlattices composed of single and bilayers of SrIrO3 inter-spaced with SrTiO3 in analogy to the Ruddlesden-Popper series iridates. Magnetic scattering shows predominately c-axis antiferromagnetic orientation of the magnetic moments for the bilayer, as in Sr3Ir2O7. However, the magnetic excitation gap, measured by resonant inelastic x-ray scattering, is quite different between the two structures, evidencing a significant change in the stability of the competing magnetic phases. In contrast, the single layer iridate hosts a more bulk-like gap. We find these changes are driven by bending of the c-axis Ir-O-Ir bond, which is much weaker in the single layer, and subsequent local environment changes, evidenced through x-ray diffraction and magnetic excitation modeling. Our findings demonstrate how large changes in the magnetic interactions can be tailored and probed in spin-orbit coupled heterostructures by engineering subtle structural modulations.
Collapse
Affiliation(s)
- D Meyers
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA.
| | - Yue Cao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - G Fabbris
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Neil J Robinson
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA
| | - Lin Hao
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - C Frederick
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - N Traynor
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - J Yang
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Jiaqi Lin
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - M H Upton
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - D Casa
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - Jong-Woo Kim
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - T Gog
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - E Karapetrova
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - Yongseong Choi
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - D Haskel
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA
| | - P J Ryan
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois, 60439, USA.,School of Physical Sciences, Dublin City University, Dublin 9, Ireland
| | - Lukas Horak
- Department of Condensed Matter Physics, Charles University, Ke Karlovu 3, Prague, 12116, Czech Republic
| | - X Liu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China.,Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Jian Liu
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee, 37996, USA.
| | - M P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York, 11973, USA.
| |
Collapse
|