1
|
Laso Garcia A, Yang L, Bouffetier V, Appel K, Baehtz C, Hagemann J, Höppner H, Humphries O, Kluge T, Mishchenko M, Nakatsutsumi M, Pelka A, Preston TR, Randolph L, Zastrau U, Cowan TE, Huang L, Toncian T. Cylindrical compression of thin wires by irradiation with a Joule-class short-pulse laser. Nat Commun 2024; 15:7896. [PMID: 39266548 PMCID: PMC11392940 DOI: 10.1038/s41467-024-52232-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/30/2024] [Indexed: 09/14/2024] Open
Abstract
Equation of state measurements at Jovian or stellar conditions are currently conducted by dynamic shock compression driven by multi-kilojoule multi-beam nanosecond-duration lasers. These experiments require precise design of the target and specific tailoring of the spatial and temporal laser profiles to reach the highest pressures. At the same time, the studies are limited by the low repetition rate of the lasers. Here, we show that by the irradiation of a thin wire with single-beam Joule-class short-pulse laser, a converging cylindrical shock is generated compressing the wire material to conditions relevant to the above applications. The shockwave was observed using Phase Contrast Imaging employing a hard X-ray Free Electron Laser with unprecedented temporal and spatial sensitivity. The data collected for Cu wires is in agreement with hydrodynamic simulations of an ablative shock launched by highly impulsive and transient resistive heating of the wire surface. The subsequent cylindrical shockwave travels toward the wire axis and is predicted to reach a compression factor of 9 and pressures above 800 Mbar. Simulations for astrophysical relevant materials underline the potential of this compression technique as a new tool for high energy density studies at high repetition rates.
Collapse
Affiliation(s)
- Alejandro Laso Garcia
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | - Long Yang
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | - Karen Appel
- European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Carsten Baehtz
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | - Johannes Hagemann
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 86, Hamburg, 22607, Germany
| | - Hauke Höppner
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | - Thomas Kluge
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | | | - Alexander Pelka
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | | | - Lisa Randolph
- European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Ulf Zastrau
- European XFEL, Holzkoppel 4, Schenefeld, 22869, Germany
| | - Thomas E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
- Technische Universität Dresden, Dresden, 01062, Germany
| | - Lingen Huang
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany.
| | - Toma Toncian
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany.
| |
Collapse
|
2
|
Zhou Z, Qiu Q. Molecular insights into the compression response of nitrogen / tetrafluoromethane liquid mixture from ab initio molecular dynamics. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Celliers PM, Millot M. Imaging velocity interferometer system for any reflector (VISAR) diagnostics for high energy density sciences. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:011101. [PMID: 36725591 DOI: 10.1063/5.0123439] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Two variants of optical imaging velocimetry, specifically the one-dimensional streaked line-imaging and the two-dimensional time-resolved area-imaging versions of the Velocity Interferometer System for Any Reflector (VISAR), have become important diagnostics in high energy density sciences, including inertial confinement fusion and dynamic compression of condensed matter. Here, we give a brief review of the historical development of these techniques, then describe the current implementations at major high energy density (HED) facilities worldwide, including the OMEGA Laser Facility and the National Ignition Facility. We illustrate the versatility and power of these techniques by reviewing diverse applications of imaging VISARs for gas-gun and laser-driven dynamic compression experiments for materials science, shock physics, condensed matter physics, chemical physics, plasma physics, planetary science and astronomy, as well as a broad range of HED experiments and laser-driven inertial confinement fusion research.
Collapse
Affiliation(s)
- Peter M Celliers
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Marius Millot
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
4
|
Abstract
Benzene (C6H6), while stable under ambient conditions, can become chemically reactive at high pressures and temperatures, such as under shock loading conditions. Here, we report in situ x-ray diffraction and small angle x-ray scattering measurements of liquid benzene shocked to 55 GPa, capturing the morphology and crystalline structure of the shock-driven reaction products at nanosecond timescales. The shock-driven chemical reactions in benzene observed using coherent XFEL x-rays were a complex mixture of products composed of carbon and hydrocarbon allotropes. In contrast to the conventional description of diamond, methane and hydrogen formation, our present results indicate that benzene’s shock-driven reaction products consist of layered sheet-like hydrocarbon structures and nanosized carbon clusters with mixed sp2-sp3 hybridized bonding. Implications of these findings range from guiding shock synthesis of novel compounds to the fundamentals of carbon transport in planetary physics. Shock-wave driven reactions of organic molecules may have played a key role in prebiotic chemistry, but their mechanisms are difficult to investigate. The authors, using time-resolved x-ray diffraction and small-angle x-ray scattering experiments, observe the transformation of liquid benzene during a shock, identifying carbon and hydrocarbon solid products.
Collapse
|
5
|
Lütgert J, Vorberger J, Hartley NJ, Voigt K, Rödel M, Schuster AK, Benuzzi-Mounaix A, Brown S, Cowan TE, Cunningham E, Döppner T, Falcone RW, Fletcher LB, Galtier E, Glenzer SH, Laso Garcia A, Gericke DO, Heimann PA, Lee HJ, McBride EE, Pelka A, Prencipe I, Saunders AM, Schölmerich M, Schörner M, Sun P, Vinci T, Ravasio A, Kraus D. Measuring the structure and equation of state of polyethylene terephthalate at megabar pressures. Sci Rep 2021; 11:12883. [PMID: 34145307 PMCID: PMC8213800 DOI: 10.1038/s41598-021-91769-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
We present structure and equation of state (EOS) measurements of biaxially orientated polyethylene terephthalate (PET, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$({\hbox {C}}_{10} {\hbox {H}}_8 {\hbox {O}}_4)_n$$\end{document}(C10H8O4)n, also called mylar) shock-compressed to (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$155 \pm 20$$\end{document}155±20) GPa and (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$6000 \pm 1000$$\end{document}6000±1000) K using in situ X-ray diffraction, Doppler velocimetry, and optical pyrometry. Comparing to density functional theory molecular dynamics (DFT-MD) simulations, we find a highly correlated liquid at conditions differing from predictions by some equations of state tables, which underlines the influence of complex chemical interactions in this regime. EOS calculations from ab initio DFT-MD simulations and shock Hugoniot measurements of density, pressure and temperature confirm the discrepancy to these tables and present an experimentally benchmarked correction to the description of PET as an exemplary material to represent the mixture of light elements at planetary interior conditions.
Collapse
Affiliation(s)
- J Lütgert
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany. .,Institute for Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany.
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - N J Hartley
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - K Voigt
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Institute for Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany
| | - M Rödel
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Institute for Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany
| | - A K Schuster
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Institute for Solid State and Materials Physics, Technische Universität Dresden, 01069, Dresden, Germany
| | - A Benuzzi-Mounaix
- LULI, CNRS, CEA, Sorbonne Université, Ecole Polytechnique - Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - S Brown
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - T E Cowan
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Institute of Nuclear and Particle Physics, Technische Universität Dresden, 01069, Dresden, Germany
| | - E Cunningham
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - T Döppner
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - R W Falcone
- Department of Physics, University of California, Berkeley, CA, 94720, USA.,Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - E Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - S H Glenzer
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - A Laso Garcia
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - D O Gericke
- CFSA, Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - P A Heimann
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - H J Lee
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - E E McBride
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.,European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - A Pelka
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - I Prencipe
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - A M Saunders
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - M Schölmerich
- European XFEL GmbH, Holzkoppel 4, 22869, Schenefeld, Germany
| | - M Schörner
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA.,Institut für Physik, Albert-Einstein-Str. 23, Universität Rostock, 18059, Rostock, Germany
| | - P Sun
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - T Vinci
- LULI, CNRS, CEA, Sorbonne Université, Ecole Polytechnique - Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - A Ravasio
- LULI, CNRS, CEA, Sorbonne Université, Ecole Polytechnique - Institut Polytechnique de Paris, 91128, Palaiseau, France
| | - D Kraus
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany.,Institut für Physik, Albert-Einstein-Str. 23, Universität Rostock, 18059, Rostock, Germany
| |
Collapse
|
6
|
Katagiri K, Ozaki N, Ohmura S, Albertazzi B, Hironaka Y, Inubushi Y, Ishida K, Koenig M, Miyanishi K, Nakamura H, Nishikino M, Okuchi T, Sato T, Seto Y, Shigemori K, Sueda K, Tange Y, Togashi T, Umeda Y, Yabashi M, Yabuuchi T, Kodama R. Liquid Structure of Tantalum under Internal Negative Pressure. PHYSICAL REVIEW LETTERS 2021; 126:175503. [PMID: 33988455 DOI: 10.1103/physrevlett.126.175503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/09/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
In situ femtosecond x-ray diffraction measurements and ab initio molecular dynamics simulations were performed to study the liquid structure of tantalum shock released from several hundred gigapascals (GPa) on the nanosecond timescale. The results show that the internal negative pressure applied to the liquid tantalum reached -5.6 (0.8) GPa, suggesting the existence of a liquid-gas mixing state due to cavitation. This is the first direct evidence to prove the classical nucleation theory which predicts that liquids with high surface tension can support GPa regime tensile stress.
Collapse
Affiliation(s)
- K Katagiri
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
| | - N Ozaki
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
| | - S Ohmura
- Research Center for Condensed Matter Physics, Department of Environmental and Civil Engineering, Hiroshima Institute of Technology, Hiroshima 731-5193 Japan
| | - B Albertazzi
- LULI, CNRS, CEA, Ecole Polytechnique, UPMC, Université Paris 06: Sorbonne Universites, Institut Polytechnique de Paris, F-91128 Palaiseau cedex, France
| | - Y Hironaka
- Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
- Open and Transdisciplinary Research Initiative, OTRI, Osaka University, Osaka 565-0871, Japan
| | - Y Inubushi
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - K Ishida
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - M Koenig
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- LULI, CNRS, CEA, Ecole Polytechnique, UPMC, Université Paris 06: Sorbonne Universites, Institut Polytechnique de Paris, F-91128 Palaiseau cedex, France
| | - K Miyanishi
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - H Nakamura
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - M Nishikino
- Kansai Photon Science Institute, National Institutes for Quantum and Radiological Science and Technology, Kyoto 619-0215, Japan
| | - T Okuchi
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Osaka 590-0494, Japan
| | - T Sato
- Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Y Seto
- Graduate School of Science, Kobe University, Hyogo 657-0013, Japan
| | - K Shigemori
- Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
| | - K Sueda
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Y Tange
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
| | - T Togashi
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - Y Umeda
- Institute for Planetary Materials, Okayama University, Tottori 682-0193, Japan
| | - M Yabashi
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - T Yabuuchi
- Japan Synchrotron Radiation Research Institute, Hyogo 679-5198, Japan
- RIKEN SPring-8 Center, Hyogo 679-5148, Japan
| | - R Kodama
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
7
|
Frydrych S, Vorberger J, Hartley NJ, Schuster AK, Ramakrishna K, Saunders AM, van Driel T, Falcone RW, Fletcher LB, Galtier E, Gamboa EJ, Glenzer SH, Granados E, MacDonald MJ, MacKinnon AJ, McBride EE, Nam I, Neumayer P, Pak A, Voigt K, Roth M, Sun P, Gericke DO, Döppner T, Kraus D. Demonstration of X-ray Thomson scattering as diagnostics for miscibility in warm dense matter. Nat Commun 2020; 11:2620. [PMID: 32457297 PMCID: PMC7251136 DOI: 10.1038/s41467-020-16426-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/29/2020] [Indexed: 11/12/2022] Open
Abstract
The gas and ice giants in our solar system can be seen as a natural laboratory for the physics of highly compressed matter at temperatures up to thousands of kelvins. In turn, our understanding of their structure and evolution depends critically on our ability to model such matter. One key aspect is the miscibility of the elements in their interiors. Here, we demonstrate the feasibility of X-ray Thomson scattering to quantify the degree of species separation in a 1:1 carbon-hydrogen mixture at a pressure of ~150 GPa and a temperature of ~5000 K. Our measurements provide absolute values of the structure factor that encodes the microscopic arrangement of the particles. From these data, we find a lower limit of [Formula: see text]% of the carbon atoms forming isolated carbon clusters. In principle, this procedure can be employed for investigating the miscibility behaviour of any binary mixture at the high-pressure environment of planetary interiors, in particular, for non-crystalline samples where it is difficult to obtain conclusive results from X-ray diffraction. Moreover, this method will enable unprecedented measurements of mixing/demixing kinetics in dense plasma environments, e.g., induced by chemistry or hydrodynamic instabilities.
Collapse
Affiliation(s)
- S Frydrych
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 9, Darmstadt, 64289, Germany
| | - J Vorberger
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
| | - N J Hartley
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - A K Schuster
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
- Institute of Solid State and Materials Physics, Technische Universität Dresden, Dresden, 01069, Germany
| | - K Ramakrishna
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
- Institute of Solid State and Materials Physics, Technische Universität Dresden, Dresden, 01069, Germany
| | - A M Saunders
- Department of Physics, University of California, Berkeley, CA, 94720, USA
| | - T van Driel
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - R W Falcone
- Department of Physics, University of California, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - L B Fletcher
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - E Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - E J Gamboa
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - S H Glenzer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - E Granados
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - M J MacDonald
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- University of Michigan, Ann Arbor, MI, 48109, USA
| | - A J MacKinnon
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - E E McBride
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
- European XFEL GmbH, Holzkoppel 4, Schenefeld, 22869, Germany
| | - I Nam
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - P Neumayer
- GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, Darmstadt, 64291, Germany
| | - A Pak
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - K Voigt
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany
- Institute of Solid State and Materials Physics, Technische Universität Dresden, Dresden, 01069, Germany
| | - M Roth
- Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstraße 9, Darmstadt, 64289, Germany
| | - P Sun
- SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 94025, USA
| | - D O Gericke
- Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - T Döppner
- Lawrence Livermore National Laboratory, Livermore, CA, 94550, USA
| | - D Kraus
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, Dresden, 01328, Germany.
- Institute of Solid State and Materials Physics, Technische Universität Dresden, Dresden, 01069, Germany.
| |
Collapse
|
8
|
Ramakrishna K, Vorberger J. Ab initio dielectric response function of diamond and other relevant high pressure phases of carbon. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:095401. [PMID: 31703214 DOI: 10.1088/1361-648x/ab558e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The electronic structure and dielectric properties of the diamond, body centered cubic diamond (bc8), and hexagonal diamond (lonsdaleite) phases of carbon are computed using density functional theory and many-body perturbation theory with the emphasis on the excitonic picture of the solid phases relevant in the regimes of high-pressure physics and warm dense matter. We also discuss the capabilities of reproducing the inelastic x-ray scattering spectra in comparison with the existing models in light of recent x-ray scattering experiments on carbon and carbon bearing materials in the Megabar range.
Collapse
Affiliation(s)
- Kushal Ramakrishna
- Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328 Dresden, Germany. Technische Universität Dresden, 01062 Dresden, Germany
| | | |
Collapse
|
9
|
Abstract
Methane and other hydrocarbons are major components of the mantle regions of icy planets. Several recent computational studies have investigated the high-pressure behaviour of specific hydrocarbons. To develop a global picture of hydrocarbon stability, to identify relevant decomposition reactions, and probe eventual formation of diamond, a complete study of all hydrocarbons is needed. Using density functional theory calculations we survey here all known C-H crystal structures augmented by targeted crystal structure searches to build hydrocarbon phase diagrams in the ground state and at elevated temperatures. We find that an updated pressure-temperature phase diagram for methane is dominated at intermediate pressures by CH 4 :H 2 van der Waals inclusion compounds. We discuss the P-T phase diagram for CH and CH 2 (i.e., polystyrene and polyethylene) to illustrate that diamond formation conditions are strongly composition dependent. Finally, crystal structure searches uncover a new CH 4 (H 2 ) 2 van der Waals compound, the most hydrogen-rich hydrocarbon, stable between 170 and 220 GPa.
Collapse
|
10
|
Evidence for Crystalline Structure in Dynamically-Compressed Polyethylene up to 200 GPa. Sci Rep 2019; 9:4196. [PMID: 30862904 PMCID: PMC6414497 DOI: 10.1038/s41598-019-40782-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/04/2019] [Indexed: 11/08/2022] Open
Abstract
We investigated the high-pressure behavior of polyethylene (CH2) by probing dynamically-compressed samples with X-ray diffraction. At pressures up to 200 GPa, comparable to those present inside icy giant planets (Uranus, Neptune), shock-compressed polyethylene retains a polymer crystal structure, from which we infer the presence of significant covalent bonding. The A2/m structure which we observe has previously been seen at significantly lower pressures, and the equation of state measured agrees with our findings. This result appears to contrast with recent data from shock-compressed polystyrene (CH) at higher temperatures, which demonstrated demixing and recrystallization into a diamond lattice, implying the breaking of the original chemical bonds. As such chemical processes have significant implications for the structure and energy transfer within ice giants, our results highlight the need for a deeper understanding of the chemistry of high pressure hydrocarbons, and the importance of better constraining planetary temperature profiles.
Collapse
|