1
|
Skipper K, Moore FJ, Royall CP. Identification and classification of clusters of dipolar colloids in an external field. J Chem Phys 2024; 161:144308. [PMID: 39382133 DOI: 10.1063/5.0225759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
Colloids can acquire a dipolar interaction in the presence of an external AC electric field. At high field strength, the particles form strings in the field direction. However, at weaker field strength, competition with isotropic interactions is expected. One means to investigate this interplay between dipolar and isotropic interactions is to consider clusters of such particles. Therefore, we have identified, using the GMIN basin-hopping tool, a rich library of lowest energy clusters of a dipolar colloidal system, where the dipole orientation is fixed to lie along the z axis and the dipole strength is varied for m-membered clusters of 7 ≤ m ≤ 13. In the regime where the isotropic and dipolar interactions are comparable, we find elongated polytetrahedral, octahedral, and spiral clusters as well as a set of non-rigid clusters, which emerge close to the transition to strings. We further implement a search algorithm that identifies these minimum energy clusters in bulk systems using the topological cluster classification [J. Chem. Phys. 139 234506 (2013)]. We demonstrate this methodology with computer simulations, which show instances of these clusters as a function of dipole strength.
Collapse
Affiliation(s)
- Katherine Skipper
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
| | - Fergus J Moore
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
| | - C Patrick Royall
- H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol BS8 1FD, United Kingdom
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
2
|
Spirandelli I, Coles R, Friesecke G, Evans ME. Exotic self-assembly of hard spheres in a morphometric solvent. Proc Natl Acad Sci U S A 2024; 121:e2314959121. [PMID: 38573965 PMCID: PMC11009619 DOI: 10.1073/pnas.2314959121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/09/2024] [Indexed: 04/06/2024] Open
Abstract
The self-assembly of spheres into geometric structures, under various theoretical conditions, offers valuable insights into complex self-assembly processes in soft systems. Previous studies have utilized pair potentials between spheres to assemble maximum contact clusters in simulations and experiments. The morphometric approach to solvation free energy that we utilize here goes beyond pair potentials; it is a geometry-based theory that incorporates a weighted combination of geometric measures over the solvent accessible surface for solute configurations in a solvent. In this paper, we demonstrate that employing the morphometric model of solvation free energy in simulating the self-assembly of sphere clusters results, under most conditions, in the previously observed maximum contact clusters. Under other conditions, it unveils an assortment of extraordinary sphere configurations, such as double helices and rhombohedra. These exotic structures arise specifically under conditions where the interactions take multibody potentials into account. This investigation establishes a foundation for comprehending the diverse range of geometric forms in self-assembled structures, emphasizing the significance of the morphometric approach in this context.
Collapse
Affiliation(s)
- Ivan Spirandelli
- Institute for Mathematics, University of Potsdam, Potsdam14476, Germany
| | - Rhoslyn Coles
- Institute for Mathematics, Technical University Berlin, Berlin10623, Germany
- Faculty of Mathematics, Technical University Chemnitz, Chemnitz09107, Germany
| | - Gero Friesecke
- Department of Mathematics, Technische Universität München, Garching85748, Germany
| | - Myfanwy E. Evans
- Institute for Mathematics, University of Potsdam, Potsdam14476, Germany
| |
Collapse
|
3
|
Stones AE, Aarts DGAL. Measuring many-body distribution functions in fluids using test-particle insertion. J Chem Phys 2023; 159:194502. [PMID: 37975484 DOI: 10.1063/5.0172664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023] Open
Abstract
We derive a hierarchy of equations, which allow a general n-body distribution function to be measured by test-particle insertion of between 1 and n particles. We apply it to measure the pair and three-body distribution functions in a simple fluid using snapshots from Monte Carlo simulations in the grand canonical ensemble. The resulting distribution functions obtained from insertion methods are compared with the conventional distance-histogram method: the insertion approach is shown to overcome the drawbacks of the histogram method, offering enhanced structural resolution and a more straightforward normalization. At high particle densities, the insertion method starts breaking down, which can be delayed by utilizing the underlying hierarchical structure of the insertion method. Our method will be especially useful in characterizing the structure of inhomogeneous fluids and investigating closure approximations in liquid state theory.
Collapse
Affiliation(s)
- Adam Edward Stones
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - Dirk G A L Aarts
- Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
4
|
Mannattil M, Schwarz JM, Santangelo CD. Thermal Fluctuations of Singular Bar-Joint Mechanisms. PHYSICAL REVIEW LETTERS 2022; 128:208005. [PMID: 35657887 DOI: 10.1103/physrevlett.128.208005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 06/15/2023]
Abstract
A bar-joint mechanism is a deformable assembly of freely rotating joints connected by stiff bars. Here we develop a formalism to study the equilibration of common bar-joint mechanisms with a thermal bath. When the constraints in a mechanism cease to be linearly independent, singularities can appear in its shape space, which is the part of its configuration space after discarding rigid motions. We show that the free-energy landscape of a mechanism at low temperatures is dominated by the neighborhoods of points that correspond to these singularities. We consider two example mechanisms with shape-space singularities and find that they are more likely to be found in configurations near the singularities than others. These findings are expected to help improve the design of nanomechanisms for various applications.
Collapse
Affiliation(s)
- Manu Mannattil
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - J M Schwarz
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
- Indian Creek Farm, Ithaca, New York 14850, USA
| | | |
Collapse
|
5
|
Lam MA, Khusid B, Kondic L, Meyer WV. Role of diffusion in crystallization of hard-sphere colloids. Phys Rev E 2021; 104:054607. [PMID: 34942784 DOI: 10.1103/physreve.104.054607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/12/2021] [Indexed: 11/07/2022]
Abstract
Vital for a variety of industries, colloids also serve as an excellent model to probe phase transitions at the individual particle level. Despite extensive studies, origins of the glass transition in hard-sphere colloids discovered about 30 y ago remain elusive. Results of our numerical simulations and asymptotic analysis suggest that cessation of long-time particle diffusivity does not suppress crystallization of a metastable liquid-phase hard-sphere colloid. Once a crystallite forms, its growth is then controlled by the particle diffusion in the depletion zone surrounding the crystallite. Using simulations, we evaluate the solid-liquid interface mobility from data on colloidal crystallization in terrestrial and microgravity experiments and demonstrate that there is no drastic difference between the respective mobility values. The insight into the effect of vanishing particle mobility and particle sedimentation on crystallization of colloids will help engineer colloidal materials with controllable structure.
Collapse
Affiliation(s)
- Michael A Lam
- New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Boris Khusid
- New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - Lou Kondic
- New Jersey Institute of Technology, Newark, New Jersey 07102, USA
| | - William V Meyer
- Universities Space Research Association at NASA Glenn Research Center, Cleveland, Ohio 44135, USA
| |
Collapse
|
6
|
Luo C, Janssen LMC. Glassy dynamics of sticky hard spheres beyond the mode-coupling regime. SOFT MATTER 2021; 17:7645-7661. [PMID: 34373889 PMCID: PMC8900603 DOI: 10.1039/d1sm00712b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Sticky hard spheres, i.e., hard particles decorated with a short-ranged attractive interaction potential, constitute a relatively simple model with highly non-trivial glassy dynamics. The mode-coupling theory of the glass transition (MCT) offers a qualitative account of the complex reentrant dynamics of sticky hard spheres, but the predicted glass transition point is notoriously underestimated. Here we apply an improved first-principles-based theory, referred to as generalized mode-coupling theory (GMCT), to sticky hard spheres. This theoretical framework seeks to go beyond MCT by hierarchically expanding the dynamics in higher-order density correlation functions. We predict the phase diagrams from the first few levels of the GMCT hierarchy and the dynamics-related critical exponents, all of which are much closer to the empirical observations than MCT. Notably, the prominent reentrant glassy dynamics, the glass-glass transition, and the higher-order bifurcation singularity classes (A3 and A4) of sticky hard spheres are found to be preserved within GMCT at arbitrary order. Moreover, we demonstrate that when the hierarchical order of GMCT increases, the effect of the short-ranged attractive interactions becomes more evident in the dynamics. This implies that GMCT is more sensitive to subtle microstructural differences than MCT, and that the framework provides a promising first-principles approach to systematically go beyond the MCT regime.
Collapse
Affiliation(s)
- Chengjie Luo
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Liesbeth M C Janssen
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
7
|
Royall CP, Faers MA, Fussell SL, Hallett JE. Real space analysis of colloidal gels: triumphs, challenges and future directions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:453002. [PMID: 34034239 DOI: 10.1088/1361-648x/ac04cb] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Colloidal gels constitute an important class of materials found in many contexts and with a wide range of applications. Yet as matter far from equilibrium, gels exhibit a variety of time-dependent behaviours, which can be perplexing, such as an increase in strength prior to catastrophic failure. Remarkably, such complex phenomena are faithfully captured by an extremely simple model-'sticky spheres'. Here we review progress in our understanding of colloidal gels made through the use of real space analysis and particle resolved studies. We consider the challenges of obtaining a suitable experimental system where the refractive index and density of the colloidal particles is matched to that of the solvent. We review work to obtain a particle-level mechanism for rigidity in gels and the evolution of our understanding of time-dependent behaviour, from early-time aggregation to ageing, before considering the response of colloidal gels to deformation and then move on to more complex systems of anisotropic particles and mixtures. Finally we note some more exotic materials with similar properties.
Collapse
Affiliation(s)
- C Patrick Royall
- Gulliver UMR CNRS 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- HH Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
- School of Chemistry, University of Bristol, Cantock Close, Bristol, BS8 1TS, United Kingdom
- Centre for Nanoscience and Quantum Information, Tyndall Avenue, Bristol, BS8 1FD, United Kingdom
| | - Malcolm A Faers
- Bayer AG, Crop Science Division, Formulation Technology, Alfred Nobel Str. 50, 40789 Monheim, Germany
| | - Sian L Fussell
- School of Chemistry, University of Bristol, Cantock Close, Bristol, BS8 1TS, United Kingdom
- Bristol Centre for Functional Nanomaterials, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| | - James E Hallett
- Physical and Theoretical Chemistry Laboratory, South Parks Road, University of Oxford, OX1 3QZ, United Kingdom
| |
Collapse
|
8
|
Gao F, Glaser J, Glotzer SC. The role of complementary shape in protein dimerization. SOFT MATTER 2021; 17:7376-7383. [PMID: 34304260 DOI: 10.1039/d1sm00468a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Shape guides colloidal nanoparticles to form complex assemblies, but its role in defining interfaces in biomolecular complexes is less clear. In this work, we isolate the role of shape in protein complexes by studying the reversible binding processes of 46 protein dimer pairs, and investigate when entropic effects from shape complementarity alone are sufficient to predict the native protein binding interface. We employ depletants using a generic, implicit depletion model to amplify the magnitude of the entropic forces arising from lock-and-key binding and isolate the effect of shape complementarity in protein dimerization. For 13% of the complexes studied here, protein shape is sufficient to predict native complexes as equilibrium assemblies. We elucidate the results by analyzing the importance of competing binding configurations and how it affects the assembly. A machine learning classifier, with a precision of 89.14% and a recall of 77.11%, is able to identify the cases where shape alone predicts the native protein interface.
Collapse
Affiliation(s)
- Fengyi Gao
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
9
|
Luo C, Janssen LMC. Generalized mode-coupling theory of the glass transition. II. Analytical scaling laws. J Chem Phys 2020; 153:214506. [PMID: 33291926 DOI: 10.1063/5.0026979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Generalized mode-coupling theory (GMCT) constitutes a systematically correctable, first-principles theory to study the dynamics of supercooled liquids and the glass transition. It is a hierarchical framework that, through the incorporation of increasingly many particle density correlations, can remedy some of the inherent limitations of the ideal mode-coupling theory (MCT). However, despite MCT's limitations, the ideal theory also enjoys several remarkable successes, notably including the analytical scaling laws for the α- and β-relaxation dynamics. Here, we mathematically derive similar scaling laws for arbitrary-order multi-point density correlation functions obtained from GMCT under arbitrary mean-field closure levels. More specifically, we analytically derive the asymptotic and preasymptotic solutions for the long-time limits of multi-point density correlators, the critical dynamics with two power-law decays, the factorization scaling laws in the β-relaxation regime, and the time-density superposition principle in the α-relaxation regime. The two characteristic power-law-divergent relaxation times for the two-step decay and the non-trivial relation between their exponents are also obtained. The validity ranges of the leading-order scaling laws are also provided by considering the leading preasymptotic corrections. Furthermore, we test these solutions for the Percus-Yevick hard-sphere system. We demonstrate that GMCT preserves all the celebrated scaling laws of MCT while quantitatively improving the exponents, rendering the theory a promising candidate for an ultimately quantitative first-principles theory of glassy dynamics.
Collapse
Affiliation(s)
- Chengjie Luo
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Liesbeth M C Janssen
- Theory of Polymers and Soft Matter, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
10
|
Bommineni PK, Klement M, Engel M. Spontaneous Crystallization in Systems of Binary Hard Sphere Colloids. PHYSICAL REVIEW LETTERS 2020; 124:218003. [PMID: 32530682 DOI: 10.1103/physrevlett.124.218003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/08/2020] [Indexed: 06/11/2023]
Abstract
Computer simulations of the fluid-to-solid phase transition in the hard sphere system were instrumental for our understanding of crystallization processes. But while colloid experiments and theory have been predicting the stability of several binary hard sphere crystals for many years, simulations were not successful to confirm this phenomenon. Here, we report the growth of binary hard sphere crystals isostructural to Laves phases, AlB_{2}, and NaZn_{13} in simulation directly from the fluid. We analyze particle kinetics during Laves phase growth using event-driven molecular dynamics simulations with and without swap moves that speed up diffusion. The crystallization process transitions from nucleation and growth to spinodal decomposition already deep within the fluid-solid coexistence regime. Finally, we present packing fraction-size ratio state diagrams in the vicinity of the stability regions of three binary crystals.
Collapse
Affiliation(s)
- Praveen K Bommineni
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
| | - Marco Klement
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
| | - Michael Engel
- Institute for Multiscale Simulation, IZNF, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstrasse 3, 91058 Erlangen, Germany
| |
Collapse
|
11
|
Robinson JF, Turci F, Roth R, Royall CP. Many-body correlations from integral geometry. Phys Rev E 2020; 100:062126. [PMID: 31962515 DOI: 10.1103/physreve.100.062126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 11/07/2022]
Abstract
In a recent letter we presented a framework for predicting the concentrations of many-particle local structures inside the bulk liquid as a route to assessing changes in the liquid approaching dynamical arrest. Central to this framework was the morphometric approach, a synthesis of integral geometry and liquid-state theory, which has traditionally been derived from fundamental measure theory. We present the morphometric approach in a new context as a generalization of scaled-particle theory, and we derive several morphometric theories for hard spheres of fundamental and practical interest. Our central result is a new theory that is particularly suited to the treatment of many-body correlation functions in the hard-sphere liquid, which we demonstrate by numerical tests against simulation.
Collapse
Affiliation(s)
- Joshua F Robinson
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Francesco Turci
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Roland Roth
- Institut für Theoretische Physik, Universität Tübingen, 72076 Tübingen, Germany
| | - C Patrick Royall
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom.,School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom.,Centre for Nanoscience and Quantum Information, University of Bristol, Bristol BS8 1FD, United Kingdom
| |
Collapse
|