1
|
Esat T, Borodin D, Oh J, Heinrich AJ, Tautz FS, Bae Y, Temirov R. A quantum sensor for atomic-scale electric and magnetic fields. NATURE NANOTECHNOLOGY 2024; 19:1466-1471. [PMID: 39054385 PMCID: PMC11486657 DOI: 10.1038/s41565-024-01724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
The detection of faint magnetic fields from single-electron and nuclear spins at the atomic scale is a long-standing challenge in physics. While current mobile quantum sensors achieve single-electron spin sensitivity, atomic spatial resolution remains elusive for existing techniques. Here we fabricate a single-molecule quantum sensor at the apex of the metallic tip of a scanning tunnelling microscope by attaching Fe atoms and a PTCDA (3,4,9,10-perylenetetracarboxylic-dianhydride) molecule to the tip apex. We address the molecular spin by electron spin resonance and achieve ~100 neV resolution in energy. In a proof-of-principle experiment, we measure the magnetic and electric dipole fields emanating from a single Fe atom and an Ag dimer on an Ag(111) surface with sub-angstrom spatial resolution. Our method enables atomic-scale quantum sensing experiments of electric and magnetic fields on conducting surfaces and may find applications in the sensing of spin-labelled biomolecules and of spin textures in quantum materials.
Collapse
Affiliation(s)
- Taner Esat
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, Jülich, Germany.
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany.
| | - Dmitriy Borodin
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea
- Department of Physics, Ewha Womans University, Seoul, South Korea
| | - Jeongmin Oh
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea
- Department of Physics, Ewha Womans University, Seoul, South Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea.
- Department of Physics, Ewha Womans University, Seoul, South Korea.
| | - F Stefan Tautz
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Experimentalphysik IV A, RWTH Aachen University, Aachen, Germany
| | - Yujeong Bae
- Center for Quantum Nanoscience (QNS), Institute for Basic Science (IBS), Seoul, South Korea.
- Department of Physics, Ewha Womans University, Seoul, South Korea.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, nanotech@surfaces Laboratory, Dübendorf, Switzerland.
| | - Ruslan Temirov
- Peter Grünberg Institute (PGI-3), Forschungszentrum Jülich, Jülich, Germany
- Jülich Aachen Research Alliance (JARA), Fundamentals of Future Information Technology, Jülich, Germany
- Faculty of Mathematics and Natural Sciences, Institute of Physics II, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Veldman LM, Stolte EW, Canavan MP, Broekhoven R, Willke P, Farinacci L, Otte S. Coherent spin dynamics between electron and nucleus within a single atom. Nat Commun 2024; 15:7951. [PMID: 39261483 PMCID: PMC11390743 DOI: 10.1038/s41467-024-52270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
The nuclear spin, being much more isolated from the environment than its electronic counterpart, presents opportunities for quantum experiments with prolonged coherence times. Electron spin resonance (ESR) combined with scanning tunnelling microscopy (STM) provides a bottom-up platform to study the fundamental properties of nuclear spins of single atoms on a surface. However, access to the time evolution of nuclear spins remained a challenge. Here, we present an experiment resolving the nanosecond coherent dynamics of a hyperfine-driven flip-flop interaction between the spin of an individual nucleus and that of an orbiting electron. We use the unique local controllability of the magnetic field emanating from the STM probe tip to bring the electron and nuclear spins in tune, as evidenced by a set of avoided level crossings in ESR-STM. Subsequently, we polarize both spins through scattering of tunnelling electrons and measure the resulting free evolution of the coupled spin system using a DC pump-probe scheme. The latter reveals a complex pattern of multiple interfering coherent oscillations, providing unique insight into hyperfine physics on a single atom level.
Collapse
Affiliation(s)
- Lukas M Veldman
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Evert W Stolte
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Mark P Canavan
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Rik Broekhoven
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Philip Willke
- Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Laëtitia Farinacci
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Sander Otte
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| |
Collapse
|
3
|
Baumann S, McMurtrie G, Hänze M, Betz N, Arnhold L, Malavolti L, Loth S. An Atomic-Scale Vector Network Analyzer. SMALL METHODS 2024; 8:e2301526. [PMID: 38381093 DOI: 10.1002/smtd.202301526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/16/2024] [Indexed: 02/22/2024]
Abstract
Electronic devices have been ever-shrinking toward atomic dimensions and have reached operation frequencies in the GHz range, thereby outperforming most conventional test equipment, such as vector network analyzers (VNA). Here the capabilities of a VNA on the atomic scale in a scanning tunneling microscope are implemented. Nonlinearities present in the voltage-current characteristic of atoms and nanostructures for phase-resolved microwave spectroscopy with unprecedented spatial resolution at GHz frequencies are exploited. The amplitude and phase response up to 9.3 GHz is determined, which permits accurate de-embedding of the transmission line and application of distortion-corrected waveforms in the tunnel junction itself. This enables quantitative characterization of the complex-valued admittance of individual magnetic iron atoms which show a lowpass response with a magnetic-field-tunable cutoff frequency.
Collapse
Affiliation(s)
- Susanne Baumann
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany
| | - Gregory McMurtrie
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany
| | - Max Hänze
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Nicolaj Betz
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany
| | - Lukas Arnhold
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany
| | - Luigi Malavolti
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| | - Sebastian Loth
- Institute for Functional Matter and Quantum Technologies, University of Stuttgart, 70569, Stuttgart, Germany
- Max Planck Institute for Solid State Research, 70569, Stuttgart, Germany
| |
Collapse
|
4
|
Wang H, Fan P, Chen J, Jiang L, Gao HJ, Lado JL, Yang K. Construction of topological quantum magnets from atomic spins on surfaces. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01775-2. [PMID: 39209998 DOI: 10.1038/s41565-024-01775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Artificial quantum systems have emerged as platforms to realize topological matter in a well-controlled manner. So far, experiments have mostly explored non-interacting topological states, and the realization of many-body topological phases in solid-state platforms with atomic resolution has remained challenging. Here we construct topological quantum Heisenberg spin lattices by assembling spin chains and two-dimensional spin arrays from spin-1/2 Ti atoms on an insulating MgO film in a scanning tunnelling microscope. We engineer both topological and trivial phases of the quantum spin model and thereby realize first- and second-order topological quantum magnets. We probe the many-body excitations of the quantum magnets by single-atom electron spin resonance with an energy resolution better than 100 neV. Making use of the atomically localized magnetic field of the scanning tunnelling microscope tip, we visualize various many-body topological bound modes including topological edge states, topological defects and higher-order corner modes. Our results provide a bottom-up approach for the simulation of exotic quantum many-body phases of interacting spins.
Collapse
Affiliation(s)
- Hao Wang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Fan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lili Jiang
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Jun Gao
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jose L Lado
- Department of Applied Physics, Aalto University, Espoo, Finland.
| | - Kai Yang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Wang Y, Chen Y, Bui HT, Wolf C, Haze M, Mier C, Kim J, Choi DJ, Lutz CP, Bae Y, Phark SH, Heinrich AJ. An atomic-scale multi-qubit platform. Science 2023; 382:87-92. [PMID: 37797000 DOI: 10.1126/science.ade5050] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
Individual electron spins in solids are promising candidates for quantum science and technology, where bottom-up assembly of a quantum device with atomically precise couplings has long been envisioned. Here, we realized atom-by-atom construction, coherent operations, and readout of coupled electron-spin qubits using a scanning tunneling microscope. To enable the coherent control of "remote" qubits that are outside of the tunnel junction, we complemented each electron spin with a local magnetic field gradient from a nearby single-atom magnet. Readout was achieved by using a sensor qubit in the tunnel junction and implementing pulsed double electron spin resonance. Fast single-, two-, and three-qubit operations were thereby demonstrated in an all-electrical fashion. Our angstrom-scale qubit platform may enable quantum functionalities using electron spin arrays built atom by atom on a surface.
Collapse
Affiliation(s)
- Yu Wang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Yi Chen
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
| | - Hong T Bui
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Masahiro Haze
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- The Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Cristina Mier
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - Jinkyung Kim
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Deung-Jang Choi
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | | | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Soo-Hyon Phark
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
6
|
Yin R, Wang Z, Tan S, Ma C, Wang B. On-Surface Synthesis of Graphene Nanoribbons with Atomically Precise Structural Heterogeneities and On-Site Characterizations. ACS NANO 2023; 17:17610-17623. [PMID: 37666005 DOI: 10.1021/acsnano.3c06128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Graphene nanoribbons (GNRs) are strips of graphene, with widths of a few nanometers, that are promising candidates for future applications in nanodevices and quantum information processing due to their highly tunable structure-dependent electronic, spintronic, topological, and optical properties. Implantation of periodic structural heterogeneities, such as heteroatoms, nanopores, and non-hexagonal rings, has become a powerful manner for tailoring the designer properties of GNRs. The bottom-up synthesis approach, by combining on-surface chemical reactions based on rationally designed molecular precursors and in situ tip-based microscopic and spectroscopic techniques, promotes the construction of atomically precise GNRs with periodic structural modulations. However, there are still obstacles and challenges lying on the way toward the understanding of the intrinsic structure-property relations, such as the strong screening and Fermi level pinning effect of the normally used transition metal substrates and the lack of collective tip-based techniques that can cover multi-internal degrees of freedom of the GNRs. In this Perspective, we briefly review the recent progress in the on-surface synthesis of GNRs with diverse structural heterogeneities and highlight the structure-property relations as characterized by the noncontact atomic force microscopy and scanning tunneling microscopy/spectroscopy. We furthermore motivate to deliver the need for developing strategies to achieve quasi-freestanding GNRs and for exploiting multifunctional tip-based techniques to collectively probe the intrinsic properties.
Collapse
Affiliation(s)
- Ruoting Yin
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhengya Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shijing Tan
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Chuanxu Ma
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Bing Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Synergetic Innovation Center of Quantum Information & Quantum Physics, New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
7
|
Zhang X, Reina-Gálvez J, Wolf C, Wang Y, Aubin H, Heinrich AJ, Choi T. Influence of the Magnetic Tip on Heterodimers in Electron Spin Resonance Combined with Scanning Tunneling Microscopy. ACS NANO 2023; 17:16935-16942. [PMID: 37643247 DOI: 10.1021/acsnano.3c04024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Investigating the quantum properties of individual spins adsorbed on surfaces by electron spin resonance combined with scanning tunneling microscopy (ESR-STM) has shown great potential for the development of quantum information technology on the atomic scale. A magnetic tip exhibiting high spin polarization is critical for performing an ESR-STM experiment. While the tip has been conventionally treated as providing a static magnetic field in ESR-STM, it was found that the tip can exhibit bistability, influencing ESR spectra. Ideally, the ESR splitting caused by the magnetic interaction between two spins on a surface should be independent of the tip. However, we found that the measured ESR splitting of a metal atom-molecule heterodimer can be tip-dependent. Detailed theoretical analysis reveals that this tip-dependent ESR splitting is caused by a different interaction energy between the tip and each spin of the heterodimer. Our work provides a comprehensive reference for characterizing tip features in ESR-STM experiments and highlights the importance of employing a proper physical model when describing the ESR tip, in particular, for heterospin systems.
Collapse
Affiliation(s)
- Xue Zhang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
- Spin-X Institute, School of Microelectronics, South China University of Technology, Guangzhou 511442, People's Republic of China
| | - Jose Reina-Gálvez
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Wang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hervé Aubin
- Universités Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, 91120 Palaiseau, France
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Taeyoung Choi
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
8
|
Phark S, Bui HT, Ferrón A, Fernández‐Rossier J, Reina‐Gálvez J, Wolf C, Wang Y, Yang K, Heinrich AJ, Lutz CP. Electric-Field-Driven Spin Resonance by On-Surface Exchange Coupling to a Single-Atom Magnet. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302033. [PMID: 37466177 PMCID: PMC10520627 DOI: 10.1002/advs.202302033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/11/2023] [Indexed: 07/20/2023]
Abstract
Coherent control of individual atomic and molecular spins on surfaces has recently been demonstrated by using electron spin resonance (ESR) in a scanning tunneling microscope (STM). Here, a combined experimental and modeling study of the ESR of a single hydrogenated Ti atom that is exchange-coupled to a Fe adatom positioned 0.6-0.8 nm away by means of atom manipulation is presented. Continuous wave and pulsed ESR of the Ti spin show a Rabi rate with two contributions, one from the tip and the other from the Fe, whose spin interactions with Ti are modulated by the radio-frequency electric field. The Fe contribution is comparable to the tip, as revealed by its dominance when the tip is retracted, and tunable using a vector magnetic field. The new ESR scheme allows on-surface individual spins to be addressed and coherently controlled without the need for magnetic interaction with a tip. This study establishes a feasible implementation of spin-based multi-qubit systems on surfaces.
Collapse
Affiliation(s)
- Soo‐hyon Phark
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
- IBM Research DivisionAlmaden Research CenterSan JoseCA95120USA
| | - Hong Thi Bui
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | - Alejandro Ferrón
- Instituto de Modelado e Innovación Tecnológica (CONICET‐UNNE) and Facultad de Ciencias ExactasNaturales y AgrimensuraUniversidad Nacional del NordesteAvenida Libertad 5400CorrientesW3404AASArgentina
| | | | - Jose Reina‐Gálvez
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | - Christoph Wolf
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | - Yu Wang
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | - Kai Yang
- IBM Research DivisionAlmaden Research CenterSan JoseCA95120USA
- Beijing National Laboratory for Condensed Matter Physics and Institute of PhysicsChinese Academy of SciencesBeijing100864China
| | - Andreas J. Heinrich
- Center for Quantum NanoscienceInstitute for Basic Science (IBS)Seoul03760Republic of Korea
- Department of PhysicsEwha Womans UniversitySeoul03760Republic of Korea
| | | |
Collapse
|
9
|
Drost R, Kezilebieke S, Lado JL, Liljeroth P. Real-Space Imaging of Triplon Excitations in Engineered Quantum Magnets. PHYSICAL REVIEW LETTERS 2023; 131:086701. [PMID: 37683177 DOI: 10.1103/physrevlett.131.086701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/15/2023] [Accepted: 07/24/2023] [Indexed: 09/10/2023]
Abstract
Quantum magnets provide a powerful platform to explore complex quantum many-body phenomena. One example is triplon excitations, exotic many-body modes emerging from propagating singlet-triplet transitions. We engineer a minimal quantum magnet from organic molecules and demonstrate the emergence of dispersive triplon modes in one- and two-dimensional assemblies probed with scanning tunneling microscopy and spectroscopy. Our results provide the first demonstration of dispersive triplon excitations from a real-space measurement.
Collapse
Affiliation(s)
- Robert Drost
- Aalto University, Department of Applied Physics, 00076 Aalto, Finland
| | - Shawulienu Kezilebieke
- Department of Physics, Department of Chemistry and Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| | - Jose L Lado
- Aalto University, Department of Applied Physics, 00076 Aalto, Finland
| | - Peter Liljeroth
- Aalto University, Department of Applied Physics, 00076 Aalto, Finland
| |
Collapse
|
10
|
Phark SH, Chen Y, Bui HT, Wang Y, Haze M, Kim J, Bae Y, Heinrich AJ, Wolf C. Double-Resonance Spectroscopy of Coupled Electron Spins on a Surface. ACS NANO 2023. [PMID: 37406167 DOI: 10.1021/acsnano.3c04754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Scanning-tunneling microscopy (STM) combined with electron spin resonance (ESR) has enabled single-spin spectroscopy with nanoelectronvolt energy resolution and angstrom-scale spatial resolution, which allows quantum sensing and magnetic resonance imaging at the atomic scale. Extending this spectroscopic tool to a study of multiple spins, however, is nontrivial due to the extreme locality of the STM tunnel junction. Here we demonstrate double electron-electron spin resonance spectroscopy in an STM for two coupled atomic spins by simultaneously and independently driving them using two continuous-wave radio frequency voltages. We show the ability to drive and detect the resonance of a spin that is remote from the tunnel junction while read-out is achieved via the spin in the tunnel junction. Open quantum system simulations for two coupled spins reproduce all double-resonance spectra and further reveal a relaxation time of the remote spin that is longer by an order of magnitude than that of the local spin in the tunnel junction. Our technique can be applied to quantum-coherent multi-spin sensing, simulation, and manipulation in engineered spin structures on surfaces.
Collapse
Affiliation(s)
- Soo-Hyon Phark
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Yi Chen
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, People's Republic of China
| | - Hong T Bui
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Yu Wang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| | - Masahiro Haze
- The Institute for Solid State Physics, University of Tokyo, Kashiwa 277-8581, Japan
| | - Jinkyung Kim
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Korea
- Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
11
|
Chen S, Shi W, Ho W. Single-Molecule Continuous-Wave Terahertz Rectification Spectroscopy and Microscopy. NANO LETTERS 2023; 23:2915-2920. [PMID: 36999877 DOI: 10.1021/acs.nanolett.3c00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We report rectification spectroscopy (RS) for single molecules performed with continuous-wave terahertz (CW THz) radiation at the tunneling junction of a scanning tunneling microscope (STM) at 8 K. CW THz-RS serves as a new technique in single-molecule vibrational and magnetic excitation spectroscopy besides inelastic electron tunneling spectroscopy (IETS). By quantitatively studying IETS and THz RS, we show that CW THz induces a sinusoidal bias modulation with amplitude linearly dependent on the THz far-field amplitude. Such THz-induced bias modulation amplitude appears to be sensitive to the THz beam alignment but insensitive to variation in the tunneling gap far smaller than the THz wavelength.
Collapse
Affiliation(s)
- Siyu Chen
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - Wenlu Shi
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
| | - W Ho
- Department of Physics and Astronomy, University of California, Irvine, California 92697-4575, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
12
|
Hazan Z, Averbukh M, Manassen Y. ESR-STM on diamagnetic molecule: C 60 on graphene. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107377. [PMID: 36709618 DOI: 10.1016/j.jmr.2023.107377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Electron Spin Resonance-Scanning Tunneling Microscopy (ESR-STM) of C60 radical ion on graphene is a first demonstration of ESR-STM on diamagnetic molecules. ESR-STM signal at gaverage=2.0±0.1 was measured in accordance with macroscopic ESR of C60 radical ion. The ESR-STM signal was bias voltage dependent, as it reflects the charge state of the molecule. The signal appears in the bias voltage which enables the ionization of the lowest unoccupied molecular orbital (LUMO) - creation of radical anion, and the highest occupied molecular orbital (HOMO) - creation of a radical cation of the C60 molecule when it deposited on graphene. In parallel, ESR-STM signal at gaverage=1.7±0.1 was ascribed to Tungsten oxide (WO3) at the tip apex. In several experiments, triplet spectrum was observed, and we ascribed their origin to zero-field splitting of doubly ionized C120O-2 dimer, as argued in previous ESR experiments of C60 samples. Second possibility is hyperfine coupling with two 13C nuclei. In addition, we further validate the interference mechanism previously suggested for ESR-STM noise spectroscopy. The ability of ESR-STM to observe ESR of diamagnetic molecules in parallel with observing their electronic structure, provides a general single molecule identification technique.
Collapse
Affiliation(s)
- Zion Hazan
- Department of Physics, Ben Gurion University, P.O. Box 653, Beer Sheva 84105, Israel
| | - Michael Averbukh
- Department of Physics, Ben Gurion University, P.O. Box 653, Beer Sheva 84105, Israel
| | - Yishay Manassen
- Department of Physics, Ben Gurion University, P.O. Box 653, Beer Sheva 84105, Israel.
| |
Collapse
|
13
|
Hwang J, Krylov D, Elbertse R, Yoon S, Ahn T, Oh J, Fang L, Jang WJ, Cho FH, Heinrich AJ, Bae Y. Development of a scanning tunneling microscope for variable temperature electron spin resonance. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:093703. [PMID: 36182474 DOI: 10.1063/5.0096081] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Recent advances in improving the spectroscopic energy resolution in scanning tunneling microscopy (STM) have been achieved by integrating electron spin resonance (ESR) with STM. Here, we demonstrate the design and performance of a homebuilt STM capable of ESR at temperatures ranging from 1 to 10 K. The STM is incorporated with a homebuilt Joule-Thomson refrigerator and a two-axis vector magnet. Our STM design allows for the deposition of atoms and molecules directly into the cold STM, eliminating the need to extract the sample for deposition. In addition, we adopt two methods to apply radio-frequency (RF) voltages to the tunnel junction: the early design of wiring to the STM tip directly and a more recent idea to use an RF antenna. Direct comparisons of ESR results measured using the two methods and simulations of electric field distribution around the tunnel junction show that, despite their different designs and capacitive coupling to the tunnel junction, there is no discernible difference in the driving and detection of ESR. Furthermore, at a magnetic field of ∼1.6 T, we observe ESR signals (near 40 GHz) sustained up to 10 K, which is the highest temperature for ESR-STM measurement reported to date, to the best of our knowledge. Although the ESR intensity exponentially decreases with increasing temperature, our ESR-STM system with low noise at the tunnel junction allows us to measure weak ESR signals with intensities of a few fA. Our new design of an ESR-STM system, which is operational in a large frequency and temperature range, can broaden the use of ESR spectroscopy in STM and enable the simple modification of existing STM systems, which will hopefully accelerate a generalized use of ESR-STM.
Collapse
Affiliation(s)
- Jiyoon Hwang
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Denis Krylov
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Robbie Elbertse
- Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, Delft 2628 CJ, The Netherlands
| | - Sangwon Yoon
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Taehong Ahn
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Jeongmin Oh
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Lei Fang
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Won-Jun Jang
- Samsung Advanced Institute of Technology, Suwon 13595, South Korea
| | - Franklin H Cho
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, South Korea
| |
Collapse
|
14
|
Wang G, Wang Y, Li S, Yang Q, Li D, Pantelides ST, Lin J. Engineering the Crack Structure and Fracture Behavior in Monolayer MoS 2 By Selective Creation of Point Defects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200700. [PMID: 35644032 PMCID: PMC9353506 DOI: 10.1002/advs.202200700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Monolayer transition-metal dichalcogenides, e.g., MoS2 , typically have high intrinsic strength and Young's modulus, but low fracture toughness. Under high stress, brittle fracture occurs followed by cleavage along a preferential lattice direction, leading to catastrophic failure. Defects have been reported to modulate the fracture behavior, but pertinent atomic mechanism still remains elusive. Here, sulfur (S) and MoSn point defects are selectively created in monolayer MoS2 using helium- and gallium-ion-beam lithography, both of which reduce the stiffness of the monolayer, but enhance its fracture toughness. By monitoring the atomic structure of the cracks before and after the loading fracture, distinct atomic structures of the cracks and fracture behaviors are found in the two types of defect-containing monolayer MoS2 . Combined with molecular dynamics simulations, the key role of individual S and MoSn point defects is identified in the fracture process and the origin of the enhanced fracture toughness is elucidated. It is a synergistic effect of defect-induced deflection and bifurcation of cracks that enhance the energy release rate, and the formation of widen crack tip when fusing with point defects that prevents the crack propagation. The findings of this study provide insights into defect engineering and flexible device applications of monolayer MoS2 .
Collapse
Affiliation(s)
- Gang Wang
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and DevicesSouthern University of Science and TechnologyShenzhen518055China
| | - Yun‐Peng Wang
- School of Physics and ElectronicsHunan Key Laboratory for Super‐Micro Structure and Ultrafast ProcessCentral South University932 South Lushan RoadChangsha410083China
| | - Songge Li
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and DevicesSouthern University of Science and TechnologyShenzhen518055China
| | - Qishuo Yang
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and DevicesSouthern University of Science and TechnologyShenzhen518055China
| | - Daiyue Li
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and DevicesSouthern University of Science and TechnologyShenzhen518055China
| | - Sokrates T. Pantelides
- Department of Physics and Astronomy and Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTN37235USA
| | - Junhao Lin
- Department of Physics and Shenzhen Key Laboratory of Advanced Quantum Functional Materials and DevicesSouthern University of Science and TechnologyShenzhen518055China
| |
Collapse
|
15
|
Zhuang Q, Wang X, Ye L, Yan Y, Zheng X. Origin of Asymmetric Splitting of Kondo Peak in Spin-Polarized Scanning Tunneling Spectroscopy: Insights from First-Principles-Based Simulations. J Phys Chem Lett 2022; 13:2094-2100. [PMID: 35225612 DOI: 10.1021/acs.jpclett.2c00228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The spin-polarized scanning tunneling microscope (SP-STM) has served as a versatile tool for probing and manipulating the spintronic properties of atomic and molecular devices with high precision. The interplay between the local spin state and its surrounding magnetic environment significantly affects the transport behavior of the device. Particularly, in the contact regime, the strong hybridization between the SP-STM tip and the magnetic atom or molecule could give rise to unconventional Kondo resonance signatures in the differential conductance (dI/dV) spectra. This poses challenges for the simulation of a realistic tip control process. By combining the density functional theory and the hierarchical equations of motion methods, we achieve first-principles-based simulation of the control of a Ni-tip/Co/Cu(100) junction in both the tunneling and contact regimes. The calculated dI/dV spectra reproduce faithfully the experimental data. A cotunneling mechanism is proposed to elucidate the physical origin of the observed unconventional Kondo signatures.
Collapse
Affiliation(s)
- Qingfeng Zhuang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaoli Wang
- School of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong 253023, China
| | - Lyuzhou Ye
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Chen Y, Bae Y, Heinrich AJ. Harnessing the Quantum Behavior of Spins on Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2107534. [PMID: 34994026 DOI: 10.1002/adma.202107534] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/28/2021] [Indexed: 06/14/2023]
Abstract
The desire to control and measure individual quantum systems such as atoms and ions in a vacuum has led to significant scientific and engineering developments in the past decades that form the basis of today's quantum information science. Single atoms and molecules on surfaces, on the other hand, are heavily investigated by physicists, chemists, and material scientists in search of novel electronic and magnetic functionalities. These two paths crossed in 2015 when it was first clearly demonstrated that individual spins on a surface can be coherently controlled and read out in an all-electrical fashion. The enabling technique is a combination of scanning tunneling microscopy (STM) and electron spin resonance, which offers unprecedented coherent controllability at the Angstrom length scale. This review aims to illustrate the essential ingredients that allow the quantum operations of single spins on surfaces. Three domains of applications of surface spins, namely quantum sensing, quantum control, and quantum simulation, are discussed with physical principles explained and examples presented. Enabled by the atomically-precise fabrication capability of STM, single spins on surfaces might one day lead to the realization of quantum nanodevices and artificial quantum materials at the atomic scale.
Collapse
Affiliation(s)
- Yi Chen
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, Korea
| | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
17
|
Zhang X, Wolf C, Wang Y, Aubin H, Bilgeri T, Willke P, Heinrich AJ, Choi T. Electron spin resonance of single iron phthalocyanine molecules and role of their non-localized spins in magnetic interactions. Nat Chem 2021; 14:59-65. [PMID: 34764471 DOI: 10.1038/s41557-021-00827-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 09/27/2021] [Indexed: 11/09/2022]
Abstract
Electron spin resonance (ESR) spectroscopy is a crucial tool, through spin labelling, in investigations of the chemical structure of materials and of the electronic structure of materials associated with unpaired spins. ESR spectra measured in molecular systems, however, are established on large ensembles of spins and usually require a complicated structural analysis. Recently, the combination of scanning tunnelling microscopy with ESR has proved to be a powerful tool to image and coherently control individual atomic spins on surfaces. Here we extend this technique to single coordination complexes-iron phthalocyanines (FePc)-and investigate the magnetic interactions between their molecular spin with either another molecular spin (in FePc-FePc dimers) or an atomic spin (in FePc-Ti pairs). We show that the molecular spin density of FePc is both localized at the central Fe atom and also distributed to the ligands (Pc), which yields a strongly molecular-geometry-dependent exchange coupling.
Collapse
Affiliation(s)
- Xue Zhang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Ewha Womans University, Seoul, Republic of Korea
| | - Christoph Wolf
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Ewha Womans University, Seoul, Republic of Korea
| | - Yu Wang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Ewha Womans University, Seoul, Republic of Korea
| | - Hervé Aubin
- Universités Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies, Palaiseau, France
| | - Tobias Bilgeri
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Philip Willke
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea.,Ewha Womans University, Seoul, Republic of Korea.,Physikalisches Institut, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea. .,Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| | - Taeyoung Choi
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, Republic of Korea. .,Department of Physics, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
18
|
Probing resonating valence bond states in artificial quantum magnets. Nat Commun 2021; 12:993. [PMID: 33579921 PMCID: PMC7881118 DOI: 10.1038/s41467-021-21274-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/15/2021] [Indexed: 11/08/2022] Open
Abstract
Designing and characterizing the many-body behaviors of quantum materials represents a prominent challenge for understanding strongly correlated physics and quantum information processing. We constructed artificial quantum magnets on a surface by using spin-1/2 atoms in a scanning tunneling microscope (STM). These coupled spins feature strong quantum fluctuations due to antiferromagnetic exchange interactions between neighboring atoms. To characterize the resulting collective magnetic states and their energy levels, we performed electron spin resonance on individual atoms within each quantum magnet. This gives atomic-scale access to properties of the exotic quantum many-body states, such as a finite-size realization of a resonating valence bond state. The tunable atomic-scale magnetic field from the STM tip allows us to further characterize and engineer the quantum states. These results open a new avenue to designing and exploring quantum magnets at the atomic scale for applications in spintronics and quantum simulations. The resonating valence bond state is a spin-liquid state where spins continuously alter their singlet partners. Here Yang et al. use spin-1/2 atoms precision-placed by a scanning tunnelling microscope to create artificial quantum magnets exhibiting the resonating valence bond state.
Collapse
|
19
|
Garnier L, Verlhac B, Abufager P, Lorente N, Ormaza M, Limot L. The Kondo Effect of a Molecular Tip As a Magnetic Sensor. NANO LETTERS 2020; 20:8193-8199. [PMID: 33119321 DOI: 10.1021/acs.nanolett.0c03271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A single molecule offers to tailor and control the probing capability of a scanning tunneling microscope when placed on the tip. With the help of first-principles calculations, we show that on-tip spin sensitivity is possible through the Kondo ground state of a spin S = 1/2 cobaltocene molecule. When attached to the tip apex, we observe a reproducible Kondo resonance, which splits apart upon tuning the exchange coupling of cobaltocene to an iron atom on the surface. The spin-split Kondo resonance provides quantitative information on the exchange field and on the spin polarization of the iron atom. We also demonstrate that molecular vibrations cause the emergence of Kondo side peaks, which, unlike the Kondo resonance, are sensitive to cobaltocene adsorption.
Collapse
Affiliation(s)
- Léo Garnier
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg F-67000, France
| | - Benjamin Verlhac
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg F-67000, France
| | - Paula Abufager
- Instituto de Física de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Avenida Pellegrini 250 (2000), Rosario 2000, Argentina
| | - Nicolás Lorente
- Centro de Física de Materiales (CFM), Donostia-San San Sebastián20018, Spain
- Donostia International Physics Center (DIPC), Donostia-San Sebastián20018, Spain
| | - Maider Ormaza
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg F-67000, France
| | - Laurent Limot
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, Strasbourg F-67000, France
| |
Collapse
|
20
|
Seifert TS, Kovarik S, Juraschek DM, Spaldin NA, Gambardella P, Stepanow S. Longitudinal and transverse electron paramagnetic resonance in a scanning tunneling microscope. SCIENCE ADVANCES 2020; 6:eabc5511. [PMID: 32998882 PMCID: PMC7527223 DOI: 10.1126/sciadv.abc5511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy is widely used to characterize paramagnetic complexes. Recently, EPR combined with scanning tunneling microscopy (STM) achieved single-spin sensitivity with sub-angstrom spatial resolution. The excitation mechanism of EPR in STM, however, is broadly debated, raising concerns about widespread application of this technique. We present an extensive experimental study and modeling of EPR-STM of Fe and hydrogenated Ti atoms on a MgO surface. Our results support a piezoelectric coupling mechanism, in which the EPR species oscillate adiabatically in the inhomogeneous magnetic field of the STM tip. An analysis based on Bloch equations combined with atomic-multiplet calculations identifies different EPR driving forces. Specifically, transverse magnetic field gradients drive the spin-1/2 hydrogenated Ti, whereas longitudinal magnetic field gradients drive the spin-2 Fe. Also, our results highlight the potential of piezoelectric coupling to induce electric dipole moments, thereby broadening the scope of EPR-STM to nonpolar species and nonlinear excitation schemes.
Collapse
Affiliation(s)
- Tom S Seifert
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland.
| | - Stepan Kovarik
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Dominik M Juraschek
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
21
|
Ternes M, Lutz CP, Heinrich AJ, Schneider WD. Sensing the Spin of an Individual Ce Adatom. PHYSICAL REVIEW LETTERS 2020; 124:167202. [PMID: 32383899 DOI: 10.1103/physrevlett.124.167202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 04/01/2020] [Indexed: 06/11/2023]
Abstract
The magnetic moment of rare earth elements originates from electrons in the partially filled 4f orbitals. Accessing this moment electrically by scanning tunneling spectroscopy is hampered by shielding of outerlying orbitals. Here, we show that we can detect the magnetic moment of an individual Ce atom adsorbed on a Cu_{2}N ultrathin film on Cu(100) by using a sensor tip that has its apex functionalized with a Kondo screened spin system. We calibrate the sensor tip by deliberately coupling it to a well characterized Fe atom. Subsequently, we use the splitting of the tip's Kondo resonance when approaching a spectroscopically dark Ce atom to sense its magnetic moment.
Collapse
Affiliation(s)
- Markus Ternes
- RWTH Aachen University, Institute of Physics, D-52074 Aachen, Germany
- Peter-Grünberg-Institute, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | | | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Physics Department, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Wolf-Dieter Schneider
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Institut de Physique, CH-1015 Lausanne, Switzerland
- Fritz-Haber-Institute of the Max-Planck-Society, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
22
|
Popkov V, Prosen T, Zadnik L. Exact Nonequilibrium Steady State of Open XXZ/XYZ Spin-1/2 Chain with Dirichlet Boundary Conditions. PHYSICAL REVIEW LETTERS 2020; 124:160403. [PMID: 32383905 DOI: 10.1103/physrevlett.124.160403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/23/2020] [Indexed: 06/11/2023]
Abstract
We investigate a dissipatively driven XYZ spin-1/2 chain in the Zeno limit of strong dissipation, described by the Lindblad master equation. The nonequilibrium steady state is expressed in terms of a matrix product ansatz using novel site-dependent Lax operators. The components of Lax operators satisfy a simple set of linear recurrence equations that generalize the defining algebraic relations of the quantum group U_{q}(sl_{2}). We reveal connection between the nonequilibrium steady state of the nonunitary dynamics and the respective integrable model with edge magnetic fields, described by coherent unitary dynamics.
Collapse
Affiliation(s)
- Vladislav Popkov
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
- Bergische Universität Wuppertal, Gauss-Strasse 20, D-42097 Wuppertal, Germany
| | - Tomaž Prosen
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Lenart Zadnik
- Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Hauptmann N, Haldar S, Hung TC, Jolie W, Gutzeit M, Wegner D, Heinze S, Khajetoorians AA. Quantifying exchange forces of a spin spiral on the atomic scale. Nat Commun 2020; 11:1197. [PMID: 32139680 PMCID: PMC7057993 DOI: 10.1038/s41467-020-15024-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/13/2020] [Indexed: 11/09/2022] Open
Abstract
The large interest in chiral magnetic structures for realization of nanoscale magnetic storage or logic devices has necessitated methods which can quantify magnetic interactions at the atomic scale. To overcome the limitations of the typically used current-based sensing of atomic-scale exchange interactions, a force-based detection scheme is highly advantageous. Here, we quantify the atomic-scale exchange force field between a ferromagnetic tip and a cycloidal spin spiral using our developed combination of current and exchange force detection. Compared to the surprisingly weak spin polarization, the exchange force field is more sensitive to atomic-scale variations in the magnetization. First-principles calculations reveal that the measured atomic-scale variations in the exchange force originate from different contributions of direct and indirect (Zener type) exchange mechanisms, depending on the chemical tip termination. Our work opens the perspective of quantifying different exchange mechanisms of chiral magnetic structures with atomic-scale precision using 3D magnetic exchange force field measurements.
Collapse
Affiliation(s)
- Nadine Hauptmann
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands.
| | - Soumyajyoti Haldar
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität, Kiel, Germany
| | - Tzu-Chao Hung
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Wouter Jolie
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Mara Gutzeit
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität, Kiel, Germany
| | - Daniel Wegner
- Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, Netherlands
| | - Stefan Heinze
- Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität, Kiel, Germany
| | | |
Collapse
|
24
|
Willke P, Singha A, Zhang X, Esat T, Lutz CP, Heinrich AJ, Choi T. Tuning Single-Atom Electron Spin Resonance in a Vector Magnetic Field. NANO LETTERS 2019; 19:8201-8206. [PMID: 31661282 DOI: 10.1021/acs.nanolett.9b03559] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spin resonance of single spin centers bears great potential for chemical structure analysis, quantum sensing, and quantum coherent manipulation. Essential for these experiments is the presence of a two-level spin system whose energy splitting can be chosen by applying a magnetic field. In recent years, a combination of electron spin resonance (ESR) and scanning tunneling microscopy (STM) has been demonstrated as a technique to detect magnetic properties of single atoms on surfaces and to achieve sub-microelectronvolts energy resolution. Nevertheless, up to now the role of the required magnetic fields has not been elucidated. Here, we perform single-atom ESR on individual Fe atoms adsorbed on magnesium oxide (MgO) using a two-dimensional vector magnetic field as well as the local field of the magnetic STM tip in a commercially available STM. We show how the ESR amplitude can be greatly improved by optimizing the magnetic fields, revealing in particular an enhanced signal at large in-plane magnetic fields. Moreover, we demonstrate that the stray field from the magnetic STM tip is a versatile tool. We use it here to drive the electron spin more efficiently and to perform ESR measurements at constant frequency by employing tip-field sweeps. Lastly, we show that it is possible to perform ESR using only the tip field, under zero external magnetic field, which promises to make this technique available in many existing STM systems.
Collapse
Affiliation(s)
- Philip Willke
- Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea
- Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Aparajita Singha
- Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea
- Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Xue Zhang
- Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea
- Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Taner Esat
- Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea
- Ewha Womans University , Seoul 03760 , Republic of Korea
| | | | - Andreas J Heinrich
- Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea
- Department of Physics , Ewha Womans University , Seoul 03760 , Republic of Korea
| | - Taeyoung Choi
- Center for Quantum Nanoscience , Institute for Basic Science (IBS) , Seoul 03760 , Republic of Korea
- Department of Physics , Ewha Womans University , Seoul 03760 , Republic of Korea
| |
Collapse
|
25
|
Verlhac B, Bachellier N, Garnier L, Ormaza M, Abufager P, Robles R, Bocquet ML, Ternes M, Lorente N, Limot L. Atomic-scale spin sensing with a single molecule at the apex of a scanning tunneling microscope. Science 2019; 366:623-627. [DOI: 10.1126/science.aax8222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 10/08/2019] [Indexed: 11/03/2022]
Affiliation(s)
- B. Verlhac
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - N. Bachellier
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - L. Garnier
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - M. Ormaza
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| | - P. Abufager
- Instituto de Física de Rosario, CONICET and Universidad Nacional de Rosario, Av. Pellegrini 250 (2000) Rosario, Argentina
| | - R. Robles
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
| | - M.-L. Bocquet
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, PSL Research University, Sorbonne Universités, UPMC Univ. Paris 06, CNRS, 75005 Paris, France
| | - M. Ternes
- Institute of Physics II B, RWTH Aachen University, 52074 Aachen, Germany
- Peter Grünberg Institut (PGI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - N. Lorente
- Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), 20018 Donostia-San Sebastián, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Spain
| | - L. Limot
- Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France
| |
Collapse
|
26
|
Yang K, Paul W, Phark SH, Willke P, Bae Y, Choi T, Esat T, Ardavan A, Heinrich AJ, Lutz CP. Coherent spin manipulation of individual atoms on a surface. Science 2019; 366:509-512. [DOI: 10.1126/science.aay6779] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/01/2019] [Indexed: 11/03/2022]
Affiliation(s)
- Kai Yang
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | - William Paul
- IBM Almaden Research Center, San Jose, CA 95120, USA
| | - Soo-Hyon Phark
- IBM Almaden Research Center, San Jose, CA 95120, USA
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Philip Willke
- IBM Almaden Research Center, San Jose, CA 95120, USA
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yujeong Bae
- IBM Almaden Research Center, San Jose, CA 95120, USA
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Taeyoung Choi
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Taner Esat
- IBM Almaden Research Center, San Jose, CA 95120, USA
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Ewha Womans University, Seoul 03760, Republic of Korea
| | - Arzhang Ardavan
- CAESR, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Andreas J. Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | | |
Collapse
|