1
|
Takahashi H, Borrelli R. Effective modeling of open quantum systems by low-rank discretization of structured environments. J Chem Phys 2024; 161:151101. [PMID: 39422205 DOI: 10.1063/5.0232232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
The accurate description of the interaction of a quantum system with its environment is a challenging problem ubiquitous across all areas of physics and lies at the foundation of quantum mechanics theory. Here, we pioneer a new strategy to create discrete low-rank models of the system-environment interaction, by exploiting the frequency and time domain information encoded in the fluctuation-dissipation relation connecting the system-bath correlation function and the spectral density. We demonstrate the effectiveness of our methodology by combining it with tensor-network methodologies and simulating the quantum dynamics of complex excitonic systems in a highly structured bosonic environment. The new modeling framework sets the basis for a leap in the analysis of open quantum systems, providing controlled accuracy at significantly reduced computational costs, with benefits in all connected research areas.
Collapse
|
2
|
Nuomin H, Wu J, Zhang P, Beratan DN. Efficient simulation of open quantum systems coupled to a reservoir through multiple channels. J Chem Phys 2024; 161:124114. [PMID: 39324530 DOI: 10.1063/5.0226183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
It is challenging to simulate open quantum systems that are connected to a reservoir through multiple channels. For example, vibrations may induce fluctuations in both energy gaps and electronic couplings, which represent two independent channels of system-bath couplings. Systems of this kind are ubiquitous in the processes of excited state radiationless decay. Combined with density matrix renormalization group (DMRG) and matrix product states (MPS) methods, we develop an interaction-picture chain mapping strategy for vibrational reservoirs to simulate the dynamics of these open systems, resulting in time-dependent spatially local system-bath couplings in the chain-mapped Hamiltonian. This transformation causes the entanglement generated by the system-bath interactions to be restricted within a narrow frequency window of vibrational modes, enabling efficient DMRG/MPS dynamical simulations. We demonstrate the utility of this approach by simulating singlet fission dynamics using a generalized spin-boson Hamiltonian with both diagonal and off-diagonal system-bath couplings. This approach generalizes an earlier interaction-picture chain mapping scheme, allowing for efficient and exact simulation of systems with multi-channel system-bath couplings using matrix product states, which may further our understanding of nonlocal exciton-phonon couplings in exciton transport and the non-Condon effect in energy and electron transfer.
Collapse
Affiliation(s)
- Hanggai Nuomin
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - Jiaxi Wu
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
- TAPIR, Mailcode 350-17, California Institute of Technology, Pasadena, California 91125, USA
- Kuang Yaming Honors School, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
| | - David N Beratan
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA
- Department of Physics, Duke University, Durham, North Carolina 27708, USA
- Department of Biochemistry, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
3
|
Qi HY, Su Y, Wang Y, Xu RX, Yan Y. Extended system-bath entanglement theorem with multiple baths in the presence of external fields. J Chem Phys 2024; 161:124104. [PMID: 39315876 DOI: 10.1063/5.0226351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
The system-bath entanglement theorem (SBET) was established in terms of linear response functions [Du et al., J. Chem. Phys. 152, 034102 (2020)] and generalized to correlation functions [Su et al., J. Chem. Phys. 160, 084104 (2024)] in our previous studies. This theorem connects the entangled system-bath properties to the local system and bare-bath ones. In this work, we extend the SBET to field-dressed conditions with multiple baths at different temperatures. As in reality, the external fields may interact with not only the system but also environments. The extended SBET facilitates, for example, photo-acoustic, photo-thermal, pump-probe related studies. The theorem under the field-free condition (multiple baths) and its counterpart in the classical limit is also presented.
Collapse
Affiliation(s)
- Hao-Yang Qi
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yu Su
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Long C, Cao L, Ge L, Li QX, Yan Y, Xu RX, Wang Y, Zheng X. Quantum neural network approach to Markovian dissipative dynamics of many-body open quantum systems. J Chem Phys 2024; 161:084105. [PMID: 39171705 DOI: 10.1063/5.0220357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024] Open
Abstract
Numerous variational methods have been proposed for solving quantum many-body systems, but they often face exponentially increasing computational complexity as the Hilbert space dimension grows. To address this, we introduce a novel approach using quantum neural networks to simulate the dissipative dynamics of many-body open quantum systems. This method combines neural-network quantum state representation with the time-dependent variational principle, both implemented via quantum algorithms. This results in accurate open quantum dynamics described by the Lindblad quantum master equation, exemplified by the spin-boson and transverse field Ising models. Our approach avoids the computational expense of classical algorithms and demonstrates the potential advantages of quantum computing for many-body simulations. To reduce measurement errors, we introduce a projection reset procedure, which could benefit other quantum simulations. In addition, our approach can be extended to simulate non-Markovian quantum dynamics.
Collapse
Affiliation(s)
- Cun Long
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Long Cao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liwei Ge
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qun-Xiang Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiao Zheng
- Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
5
|
Lacroix T, Le Dé B, Riva A, Dunnett AJ, Chin AW. MPSDynamics.jl: Tensor network simulations for finite-temperature (non-Markovian) open quantum system dynamics. J Chem Phys 2024; 161:084116. [PMID: 39206827 DOI: 10.1063/5.0223107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
The MPSDynamics.jl package provides an easy-to-use interface for performing open quantum systems simulations at zero and finite temperatures. The package has been developed with the aim of studying non-Markovian open system dynamics using the state-of-the-art numerically exact Thermalized-Time Evolving Density operator with Orthonormal Polynomials Algorithm based on environment chain mapping. The simulations rely on a tensor network representation of the quantum states as matrix product states (MPS) and tree tensor network states. Written in the Julia programming language, MPSDynamics.jl is a versatile open-source package providing a choice of several variants of the Time-Dependent Variational Principle method for time evolution (including novel bond-adaptive one-site algorithms). The package also provides strong support for the measurement of single and multi-site observables, as well as the storing and logging of data, which makes it a useful tool for the study of many-body physics. It currently handles long-range interactions, time-dependent Hamiltonians, multiple environments, bosonic and fermionic environments, and joint system-environment observables.
Collapse
Affiliation(s)
- Thibaut Lacroix
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany
| | - Brieuc Le Dé
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 Place Jussieu, 75005 Paris, France
| | - Angela Riva
- LPENS, Département de Physique, École Normale Supérieure, Centre Automatique et Systèmes (CAS), MINES ParisTech, Université PSL, Sorbonne Université, CNRS, Inria, 75005 Paris, France
| | - Angus J Dunnett
- Multiverse Computing, 7 rue de la Croix Martre, 91120 Palaiseau, France
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 Place Jussieu, 75005 Paris, France
| |
Collapse
|
6
|
Cygorek M, Gauger EM. ACE: A general-purpose non-Markovian open quantum systems simulation toolkit based on process tensors. J Chem Phys 2024; 161:074111. [PMID: 39158046 DOI: 10.1063/5.0221182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/01/2024] [Indexed: 08/20/2024] Open
Abstract
We describe a general-purpose computational toolkit for simulating open quantum systems, which provides numerically exact solutions for composites of zero-dimensional quantum systems that may be strongly coupled to multiple, quite general non-Markovian environments. It is based on process tensor matrix product operators (PT-MPOs), which efficiently encapsulate environment influences. The code features implementations of several PT-MPO algorithms, in particular Automated Compression of Environments for general environments comprised of independent modes as well as schemes for generalized spin boson models. The latter includes a divide-and-conquer scheme for periodic PT-MPOs, which enable million time step simulations for realistic models. PT-MPOs can be precalculated and reused for efficiently probing different time-dependent system Hamiltonians. They can also be stacked together and combined to provide numerically complete solutions of small networks of open quantum systems. The code is written in C++ and is fully controllable by configuration files, for which we have developed a versatile and compact human-readable format.
Collapse
Affiliation(s)
- Moritz Cygorek
- Condensed Matter Theory, Department of Physics, TU Dortmund, 44221 Dortmund, Germany
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Erik M Gauger
- SUPA, Institute of Photonics and Quantum Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
7
|
Xu Y, Liu C, Ma H. Kylin-V: An open-source package calculating the dynamic and spectroscopic properties of large systems. J Chem Phys 2024; 161:052501. [PMID: 39087896 DOI: 10.1063/5.0220712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/14/2024] [Indexed: 08/02/2024] Open
Abstract
Quantum dynamics simulation and computational spectroscopy serve as indispensable tools for the theoretical understanding of various fundamental physical and chemical processes, ranging from charge transfer to photochemical reactions. When simulating realistic systems, the primary challenge stems from the overwhelming number of degrees of freedom and the pronounced many-body correlations. Here, we present Kylin-V, an innovative quantum dynamics package designed for accurate and efficient simulations of dynamics and spectroscopic properties of vibronic Hamiltonians for molecular systems and their aggregates. Kylin-V supports various quantum dynamics and computational spectroscopy methods, such as time-dependent density matrix renormalization group and our recently proposed single-site and hierarchical mapping approaches, as well as vibrational heat-bath configuration interaction. In this paper, we introduce the methodologies implemented in Kylin-V and illustrate their performances through a diverse collection of numerical examples.
Collapse
Affiliation(s)
- Yihe Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chungen Liu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Haibo Ma
- Qingdao Institute for Theoretical and Computational Sciences, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
8
|
Sayer T, Montoya-Castillo A. Generalized quantum master equations can improve the accuracy of semiclassical predictions of multitime correlation functions. J Chem Phys 2024; 161:011101. [PMID: 38949578 DOI: 10.1063/5.0219205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 07/02/2024] Open
Abstract
Multitime quantum correlation functions are central objects in physical science, offering a direct link between the experimental observables and the dynamics of an underlying model. While experiments such as 2D spectroscopy and quantum control can now measure such quantities, the accurate simulation of such responses remains computationally expensive and sometimes impossible, depending on the system's complexity. A natural tool to employ is the generalized quantum master equation (GQME), which can offer computational savings by extending reference dynamics at a comparatively trivial cost. However, dynamical methods that can tackle chemical systems with atomistic resolution, such as those in the semiclassical hierarchy, often suffer from poor accuracy, limiting the credence one might lend to their results. By combining work on the accuracy-boosting formulation of semiclassical memory kernels with recent work on the multitime GQME, here we show for the first time that one can exploit a multitime semiclassical GQME to dramatically improve both the accuracy of coarse mean-field Ehrenfest dynamics and obtain orders of magnitude efficiency gains.
Collapse
Affiliation(s)
- Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
9
|
Le Dé B, Jaouadi A, Mangaud E, Chin AW, Desouter-Lecomte M. Managing temperature in open quantum systems strongly coupled with structured environments. J Chem Phys 2024; 160:244102. [PMID: 38913841 DOI: 10.1063/5.0214051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
In non-perturbative non-Markovian open quantum systems, reaching either low temperatures with the hierarchical equations of motion (HEOM) or high temperatures with the Thermalized Time Evolving Density Operator with Orthogonal Polynomials Algorithm (T-TEDOPA) formalism in Hilbert space remains challenging. We compare different ways of modeling the environment. Sampling the Fourier transform of the bath correlation function, also called temperature dependent spectral density, proves to be very effective. T-TEDOPA [Tamascelli et al., Phys. Rev. Lett. 123, 090402 (2019)] uses a linear chain of oscillators with positive and negative frequencies, while HEOM is based on the complex poles of an optimized rational decomposition of the temperature dependent spectral density [Xu et al., Phys. Rev. Lett. 129, 230601 (2022)]. Resorting to the poles of the temperature independent spectral density and of the Bose function separately is an alternative when the problem due to the huge number of Bose poles at low temperatures is circumvented. Two examples illustrate the effectiveness of the HEOM and T-TEDOPA approaches: a benchmark pure dephasing case and a two-bath model simulating the dynamics of excited electronic states coupled through a conical intersection. We show the efficiency of T-TEDOPA to simulate dynamics at a finite temperature by using either continuous spectral densities or only all the intramolecular oscillators of a linear vibronic model calibrated from ab initio data of a phenylene ethynylene dimer.
Collapse
Affiliation(s)
- Brieuc Le Dé
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS, F-75005 Paris, France
| | - Amine Jaouadi
- LyRIDS, ECE Paris, Graduate School of Engineering, Paris F-75015, France
| | - Etienne Mangaud
- MSME, Université Gustave Eiffel, UPEC, CNRS, F-77454 Marne-La-Vallée, France
| | - Alex W Chin
- Institut des Nanosciences de Paris, Sorbonne Université, CNRS, F-75005 Paris, France
| | | |
Collapse
|
10
|
Kim CW, Franco I. General framework for quantifying dissipation pathways in open quantum systems. II. Numerical validation and the role of non-Markovianity. J Chem Phys 2024; 160:214112. [PMID: 38833365 DOI: 10.1063/5.0202862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024] Open
Abstract
In the previous paper [C. W. Kim and I. Franco, J. Chem. Phys. 160, 214111-1-214111-13 (2024)], we developed a theory called MQME-D, which allows us to decompose the overall energy dissipation process in open quantum system dynamics into contributions by individual components of the bath when the subsystem dynamics is governed by a Markovian quantum master equation (MQME). Here, we contrast the predictions of MQME-D against the numerically exact results obtained by combining hierarchical equations of motion (HEOM) with a recently reported protocol for monitoring the statistics of the bath. Overall, MQME-D accurately captures the contributions of specific bath components to the overall dissipation while greatly reducing the computational cost compared to exact computations using HEOM. The computations show that MQME-D exhibits errors originating from its inherent Markov approximation. We demonstrate that its accuracy can be significantly increased by incorporating non-Markovianity by exploiting time scale separations (TSS) in different components of the bath. Our work demonstrates that MQME-D combined with TSS can be reliably used to understand how energy is dissipated in realistic open quantum system dynamics.
Collapse
Affiliation(s)
- Chang Woo Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, South Korea
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
11
|
Chen X, Franco I. Bexcitonics: Quasiparticle approach to open quantum dynamics. J Chem Phys 2024; 160:204116. [PMID: 38814013 DOI: 10.1063/5.0198567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
We develop a quasiparticle approach to capture the dynamics of open quantum systems coupled to bosonic thermal baths of arbitrary complexity based on the Hierarchical Equations of Motion (HEOM). This is done by generalizing the HEOM dynamics and mapping it into that of the system in interaction with a few bosonic fictitious quasiparticles that we call bexcitons. Bexcitons arise from a decomposition of the bath correlation function into discrete features. Specifically, bexciton creation and annihilation couple the auxiliary density matrices in the HEOM. The approach provides a systematic strategy to construct exact quantum master equations that include the system-bath coupling to all orders even for non-Markovian environments. Specifically, by introducing different metrics and representations for the bexcitons it is possible to straightforwardly generate different variants of the HEOM, demonstrating that all these variants share a common underlying quasiparticle picture. Bexcitonic properties, while unphysical, offer a coarse-grained view of the correlated system-bath dynamics and its numerical convergence. For instance, we use it to analyze the instability of the HEOM when the bath is composed of underdamped oscillators and show that it leads to the creation of highly excited bexcitons. The bexcitonic picture can also be used to develop more efficient approaches to propagate the HEOM. As an example, we use the particle-like nature of the bexcitons to introduce mode-combination of bexcitons in both number and coordinate representation that uses the multi-configuration time-dependent Hartree to efficiently propagate the HEOM dynamics.
Collapse
Affiliation(s)
- Xinxian Chen
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
| | - Ignacio Franco
- Department of Chemistry, University of Rochester, Rochester, New York 14627, USA
- Department of Physics, University of Rochester, Rochester, New York 14627, USA
| |
Collapse
|
12
|
Hunter KE, Mao Y, Chin AW, Zuehlsdorff TJ. Environmentally Driven Symmetry Breaking Quenches Dual Fluorescence in Proflavine. J Phys Chem Lett 2024; 15:4623-4632. [PMID: 38647005 DOI: 10.1021/acs.jpclett.4c00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Nonadiabatic couplings between several electronic excited states are ubiquitous in many organic chromophores and can significantly influence optical properties. A recent experimental study demonstrated that the proflavine molecule exhibits surprising dual fluorescence in the gas phase, which is suppressed in polar solvent environments. Here, we uncover the origin of this phenomenon by parametrizing a linear-vibronic coupling Hamiltonian from spectral densities of system-bath coupling constructed along molecular dynamics trajectories, fully accounting for interactions with the condensed-phase environment. The finite-temperature absorption, steady-state emission, and time-resolved emission spectra are then computed using powerful, numerically exact tensor network approaches. We find that the dual fluorescence in vacuum is driven by a single well-defined coupling mode but is quenched in solution due to dynamic solvent-driven symmetry breaking that mixes the two low-lying electronic states. We expect the computational framework developed here to be widely applicable to the study of non-Condon effects in complex condensed-phase environments.
Collapse
Affiliation(s)
- Kye E Hunter
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Yuezhi Mao
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California 92182, United States
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, Paris 75005, France
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
13
|
Vovchenko IV, Zyablovsky AA, Pukhov AA, Andrianov ES. Transient temperature dynamics of reservoirs connected through an open quantum system. Phys Rev E 2024; 109:044144. [PMID: 38755848 DOI: 10.1103/physreve.109.044144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/27/2024] [Indexed: 05/18/2024]
Abstract
The dynamics of open quantum systems connected with several reservoirs attract great attention due to their importance in quantum optics, biology, quantum thermodynamics, transport phenomena, etc. In many problems, the Born approximation is applicable, which implies that the influence of the open quantum system on the reservoirs can be neglected. However, in the case of long-time dynamics or mesoscopic reservoirs, the reverse influence can be crucial. In this paper, we investigate the transient dynamics of several bosonic reservoirs connected through an open quantum system. We use an adiabatic approach to study the temporal dynamics of temperatures of the reservoirs during relaxation to thermodynamic equilibrium. We show that there are various types of temperature dynamics that strongly depend on the values of dissipative rates and initial temperatures. We demonstrate that temperatures of the reservoirs, including the hottest and coldest ones, can exhibit nonmonotonic behavior. Moreover, there are moments of time during which the reservoir with an initially intermediate temperature becomes the hottest or coldest reservoir. The obtained results pave the way for managing energy flows in mesoscale and nanoscale systems.
Collapse
Affiliation(s)
- I V Vovchenko
- Moscow Institute of Physics and Technology, 9 Institutskiy pereulok, Dolgoprudny 141700, Moscow region, Russia and Kotelnikov Institute of Radioengineering and Electronics, Mokhovaya 11-7, Moscow 125009, Russia
| | - A A Zyablovsky
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moscow 127055, Russia; Moscow Institute of Physics and Technology, 9 Institutskiy pereulok, Dolgoprudny 141700, Moscow region, Russia; Institute for Theoretical and Applied Electromagnetics, 13 Izhorskaya, Moscow 125412, Russia; and Kotelnikov Institute of Radioengineering and Electronics, Mokhovaya 11-7, Moscow 125009, Russia
| | - A A Pukhov
- Moscow Institute of Physics and Technology, 9 Institutskiy pereulok, Dolgoprudny 141700, Moscow region, Russia and Institute for Theoretical and Applied Electromagnetics, 13 Izhorskaya, Moscow 125412, Russia
| | - E S Andrianov
- Dukhov Research Institute of Automatics (VNIIA), 22 Sushchevskaya, Moscow 127055, Russia; Moscow Institute of Physics and Technology, 9 Institutskiy pereulok, Dolgoprudny 141700, Moscow region, Russia; and Institute for Theoretical and Applied Electromagnetics, 13 Izhorskaya, Moscow 125412, Russia
| |
Collapse
|
14
|
Chuang YT, Hsu LY. Microscopic theory of exciton-polariton model involving multiple molecules: Macroscopic quantum electrodynamics formulation and essence of direct intermolecular interactions. J Chem Phys 2024; 160:114105. [PMID: 38501476 DOI: 10.1063/5.0192704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
Cavity quantum electrodynamics (CQED) and its extensions are widely used for the description of exciton-polariton systems. However, the exciton-polariton models based on CQED vary greatly within different contexts. One of the most significant discrepancies among these CQED models is whether one should include direct intermolecular interactions in the CQED Hamiltonian. To answer this question, in this article, we derive an effective dissipative CQED model including free-space dipole-dipole interactions (CQED-DDI) from a microscopic Hamiltonian based on macroscopic quantum electrodynamics. Dissipative CQED-DDI successfully captures the nature of vacuum fluctuations in dielectric media and separates them into free-space effects and dielectric-induced effects. The former include spontaneous emissions, dephasings, and dipole-dipole interactions in free space; the latter include exciton-polariton interactions and photonic losses due to dielectric media. We apply dissipative CQED-DDI to investigate the exciton-polariton dynamics (the population dynamics of molecules above a plasmonic surface) and compare the results with those based on the methods proposed by several previous studies. We find that direct intermolecular interactions are a crucial element when employing CQED-like models to study exciton-polariton systems involving multiple molecules.
Collapse
Affiliation(s)
- Yi-Ting Chuang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Lorenzoni N, Cho N, Lim J, Tamascelli D, Huelga SF, Plenio MB. Systematic Coarse Graining of Environments for the Nonperturbative Simulation of Open Quantum Systems. PHYSICAL REVIEW LETTERS 2024; 132:100403. [PMID: 38518302 DOI: 10.1103/physrevlett.132.100403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 03/24/2024]
Abstract
Conducting precise electronic-vibrational dynamics simulations of molecular systems poses significant challenges when dealing with realistic environments composed of numerous vibrational modes. Here, we introduce a technique for the construction of effective phonon spectral densities that capture accurately open-system dynamics over a finite time interval of interest. When combined with existing nonperturbative simulation tools, our approach can reduce significantly the computational costs associated with many-body open-system dynamics.
Collapse
Affiliation(s)
- Nicola Lorenzoni
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Namgee Cho
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - James Lim
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Dario Tamascelli
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Susana F Huelga
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik und IQST, Albert-Einstein-Allee 11, Universität Ulm, D-89081 Ulm, Germany
| |
Collapse
|
16
|
Su Y, Wang Y, Xu RX, Yan Y. Generalized system-bath entanglement theorem for Gaussian environments. J Chem Phys 2024; 160:084104. [PMID: 38385516 DOI: 10.1063/5.0193530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The entanglement between system and bath often plays a pivotal role in complex systems spanning multiple orders of magnitude. A system-bath entanglement theorem was previously established for Gaussian environments in J. Chem. Phys. 152, 034102 (2020) regarding linear response functions. This theorem connects the entangled responses to the local system and bare bath properties. In this work, we generalize it to correlation functions. Key steps in derivations involve using the generalized Langevin dynamics for hybridizing bath modes and the Bogoliubov transformation that maps the original finite-temperature reservoir to an effective zero-temperature vacuum by employing an auxiliary bath. The generalized theorem allows us to evaluate the system-bath entangled correlations and the bath mode correlations in the total composite space, as long as we know the bare-bath statistical properties and obtain the reduced system correlations. To demonstrate the cross-scale entanglements, we utilize the generalized theorem to calculate the solvation free energy of an electron transfer system with intramolecular vibrational modes.
Collapse
Affiliation(s)
- Yu Su
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Yao Wang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - Rui-Xue Xu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| | - YiJing Yan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China and Hefei National Laboratory, University of Science and Technology of China, Hefei, Anhui 230088, China
| |
Collapse
|
17
|
Bhattacharyya S, Sayer T, Montoya-Castillo A. Anomalous Transport of Small Polarons Arises from Transient Lattice Relaxation or Immovable Boundaries. J Phys Chem Lett 2024; 15:1382-1389. [PMID: 38288689 DOI: 10.1021/acs.jpclett.3c03380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Elucidating transport mechanisms is crucial for advancing material design, yet state-of-the-art theory is restricted to exact simulations of small lattices with severe finite-size effects or approximate ones that assume the nature of transport. We leverage algorithmic advances to tame finite-size effects and exactly simulate small polaron formation and transport in the Holstein model. We further analyze the applicability of the ubiquitously used equilibrium-based Green-Kubo relations and nonequilibrium methods to predict charge mobility. We find that these methods can converge to different values and track this disparity to finite-size dependence and the sensitivity of Green-Kubo relations to the system's topology. Contrary to standard perturbative calculations, our results demonstrate that small polarons exhibit anomalous transport that manifests transiently due to nonequilibrium lattice relaxation or permanently as a signature of immovable boundaries. These findings can offer new interpretations of transport experiments on polymers and transition metal oxides.
Collapse
Affiliation(s)
- Srijan Bhattacharyya
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Andrés Montoya-Castillo
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
18
|
Attal L, Falvo C, Calvo F, Parneix P. Modeling the dynamics of quantum systems coupled to large-dimensional baths using effective energy states. J Chem Phys 2024; 160:044107. [PMID: 38270236 DOI: 10.1063/5.0184299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
The quantum dynamics of a low-dimensional system in contact with a large but finite harmonic bath is theoretically investigated by coarse-graining the bath into a reduced set of effective energy states. In this model, the couplings between the system and the bath are obtained from statistically averaging over the discrete, degenerate effective states. Our model is aimed at intermediate bath sizes in which non-Markovian processes and energy transfer between the bath and the main system are important. The method is applied to a model system of a Morse oscillator coupled to 40 harmonic modes. The results are found to be in excellent agreement with the direct quantum dynamics simulations presented in the work of Bouakline et al. [J. Phys. Chem. A 116, 11118-11127 (2012)], but at a much lower computational cost. Extension to larger baths is discussed in comparison to the time-convolutionless method. We also extend this study to the case of a microcanonical bath with finite initial internal energies. The computational efficiency and convergence properties of the effective bath states model with respect to relevant parameters are also discussed.
Collapse
Affiliation(s)
- Loïse Attal
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Cyril Falvo
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France
- Université Grenoble-Alpes, CNRS, LiPhy, 38000 Grenoble, France
| | - Florent Calvo
- Université Grenoble-Alpes, CNRS, LiPhy, 38000 Grenoble, France
| | - Pascal Parneix
- Institut des Sciences Moléculaires d'Orsay, CNRS, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
19
|
Gelin MF, Borrelli R. Thermo-Field Dynamics Approach to Photo-induced Electronic Transitions Driven by Incoherent Thermal Radiation. J Chem Theory Comput 2023; 19:6402-6413. [PMID: 37656914 DOI: 10.1021/acs.jctc.3c00590] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
The effects of thermal light-matter interaction on the dynamics of photo-induced electronic transitions in molecules are investigated using a novel first principles approach based on the thermo-field dynamics description of both the molecular vibrational modes and of the radiation field. The developed approach permits numerically accurate simulations of quantum dynamics of electronic/excitonic systems coupled to nuclear and photonic baths kept at different temperatures. The baths can be described by arbitrary spectral densities and can have any system-bath coupling strengths. In agreement with the results obtained previously by less rigorous methods, we show that the excitation process obtained by the continuous interaction with the suddenly turned-on thermal radiation field creates a mixed ensemble having a nonnegligible component consisting of a superposition of vibronic eigenstates which can sustain coherent oscillations for relatively long times. The results become especially relevant for the dynamics of electronic transitions upon sunlight excitation. Analytical results based on time-dependent perturbation theory support the numerical simulations and provide a simple interpretation of the time evolution of quantum observables.
Collapse
Affiliation(s)
- Maxim F Gelin
- School of Sciences, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Raffaele Borrelli
- DISAFA, University of Torino, Largo Paolo Braccini 2, Grugliasco I-10095, Italy
| |
Collapse
|
20
|
Gera T, Chen L, Eisfeld A, Reimers JR, Taffet EJ, Raccah DIGB. Simulating optical linear absorption for mesoscale molecular aggregates: An adaptive hierarchy of pure states approach. J Chem Phys 2023; 158:2887556. [PMID: 37125709 DOI: 10.1063/5.0141882] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/07/2023] [Indexed: 05/02/2023] Open
Abstract
In this paper, we present dyadic adaptive HOPS (DadHOPS), a new method for calculating linear absorption spectra for large molecular aggregates. This method combines the adaptive HOPS (adHOPS) framework, which uses locality to improve computational scaling, with the dyadic HOPS method previously developed to calculate linear and nonlinear spectroscopic signals. To construct a local representation of dyadic HOPS, we introduce an initial state decomposition that reconstructs the linear absorption spectra from a sum over locally excited initial conditions. We demonstrate the sum over initial conditions can be efficiently Monte Carlo sampled and that the corresponding calculations achieve size-invariant [i.e., O(1)] scaling for sufficiently large aggregates while trivially incorporating static disorder in the Hamiltonian. We present calculations on the photosystem I core complex to explore the behavior of the initial state decomposition in complex molecular aggregates as well as proof-of-concept DadHOPS calculations on an artificial molecular aggregate inspired by perylene bis-imide to demonstrate the size-invariance of the method.
Collapse
Affiliation(s)
- Tarun Gera
- Department of Chemistry, Southern Methodist University, P.O. Box, Dallas, Texas 750314, USA
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| | - Alexander Eisfeld
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, Dresden, Germany
| | - Jeffrey R Reimers
- International Centre for Quantum and Molecular Structures and the School of Physics, Shanghai University, 200444 Shanghai, China
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney NSW 2007, Australia
| | - Elliot J Taffet
- Department of Chemistry, Southern Methodist University, P.O. Box, Dallas, Texas 750314, USA
| | - Doran I G B Raccah
- Department of Chemistry, Southern Methodist University, P.O. Box, Dallas, Texas 750314, USA
| |
Collapse
|
21
|
Varvelo L, Lynd JK, Citty B, Kühn O, Raccah DIGB. Formally Exact Simulations of Mesoscale Exciton Diffusion in a Light-Harvesting 2 Antenna Nanoarray. J Phys Chem Lett 2023; 14:3077-3083. [PMID: 36947483 PMCID: PMC10069740 DOI: 10.1021/acs.jpclett.3c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The photosynthetic apparatus of plants and bacteria combine atomically precise pigment-protein complexes with dynamic membrane architectures to control energy transfer on the 10-100 nm length scales. Recently, synthetic materials have integrated photosynthetic antenna proteins to enhance exciton transport, though the influence of artificial packing on the excited-state dynamics in these biohybrid materials is not fully understood. Here, we use the adaptive hierarchy of pure states (adHOPS) to perform a formally exact simulation of excitation energy transfer within artificial aggregates of light-harvesting complex 2 (LH2) with a range of packing densities. We find that LH2 aggregates support a remarkable exciton diffusion length ranging from 100 nm at a biological packing density to 300 nm at the densest packing previously suggested in an artificial aggregate. The unprecedented scale of these formally exact calculations also underscores the efficiency with which adHOPS simulates excited-state processes in molecular materials.
Collapse
Affiliation(s)
- Leonel Varvelo
- Department
of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, Texas 75275, United States
| | - Jacob K. Lynd
- Department
of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, Texas 75275, United States
| | - Brian Citty
- Department
of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, Texas 75275, United States
| | - Oliver Kühn
- Institute
of Physics, University of Rostock, Albert-Einstein-Strasse 23-24, 18059 Rostock, Germany
| | - Doran I. G. B. Raccah
- Department
of Chemistry, Southern Methodist University, P.O. Box 750314, Dallas, Texas 75275, United States
| |
Collapse
|
22
|
Cerezo J, García-Iriepa C, Santoro F, Navizet I, Prampolini G. Unraveling the contributions to the spectral shape of flexible dyes in solution: insights on the absorption spectrum of an oxyluciferin analogue. Phys Chem Chem Phys 2023; 25:5007-5020. [PMID: 36722876 DOI: 10.1039/d2cp05701h] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We present a computational investigation of the absorption spectrum in water of 5,5-spirocyclopropyl-oxyluciferin (5,5-CprOxyLH), an analogue of the emitter compound responsible for the bioluminescence in fireflies. Several factors participate in determining the 5,5-CprOxyLH's spectral shape: (i) the contribution of the four close-energy excited states, which show significant non-adiabatic couplings, (ii) the flexible molecular structure and (iii) the specific interactions established with the surrounding environment, which strongly couple the protic solvent dynamics with the dye's spectral response. To tackle the challenge to capture and dissect the role of all these effects we preliminarily investigate the role of non-adiabatic couplings with quantum dynamics simulations and a linear vibronic coupling model in the gas phase. Then, we account for both the molecular flexibility and solvent interactions by resorting to a mixed quantum classical protocol, named Adiabatic Molecular Dynamics generalized Vertical Gradient (Ad-MD|gVG), which is built on a method recently proposed by some of us. It is rooted in the partition between stiff degrees of freedom of the dye, accounted for at the vibronic level within the harmonic approximation, and flexible degrees of freedom of the solute (and of the solvent), described classically through a sampling based on Molecular Dynamics (MD). Ad-MD|gVG avoids spurious effects arising in the excited state Hessians due to non-adiabatic couplings, and can therefore be applied to account for the contributions of the first four excited states to the 5,5-CprOxyLH absorption spectrum. The final simulated spectrum is in very good agreement with the experiment, especially when the MD is driven by a refined quantum-mechanically derived force-field. More importantly, the origin of each separate contribution to the spectral shape is appropriately accounted for, paving the way to future applications of the method to more complex systems or alternative spectroscopies, as emission or circular dichroism.
Collapse
Affiliation(s)
- Javier Cerezo
- Departamento de Química and Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - Cristina García-Iriepa
- Universidad de Alcalá, Departamento de Química Analítica, Química Física e Ingeniería Química, Grupo de Reactividad y Estructura Molecular (RESMOL), 28806 Alcalá de Henares (Madrid), Spain. .,Universidad de Alcalá, Instituto de Investigación Química "Andrés M. del Río" (IQAR), 28806 Alcalá de Henares (Madrid), Spain
| | - Fabrizio Santoro
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| | - Isabelle Navizet
- Univ Gustave Eiffel, Univ Paris Est Creteil, CNRS, UMR 8208, MSME, F-77454 Marne-la-Vallée, France
| | - Giacomo Prampolini
- CNR - Consiglio Nazionale delle Ricerche, Istituto di Chimica dei Composti Organo Metallici (ICCOM-CNR), SS di Pisa, Area della Ricerca, via G. Moruzzi 1, I-56124 Pisa, Italy.
| |
Collapse
|
23
|
Sayer T, Montoya-Castillo A. Compact and complete description of non-Markovian dynamics. J Chem Phys 2023; 158:014105. [PMID: 36610963 DOI: 10.1063/5.0132614] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Generalized master equations provide a theoretically rigorous framework to capture the dynamics of processes ranging from energy harvesting in plants and photovoltaic devices to qubit decoherence in quantum technologies and even protein folding. At their center is the concept of memory. The explicit time-nonlocal description of memory is both protracted and elaborate. When physical intuition is at a premium, one would desire a more compact, yet complete, description. Here, we demonstrate how and when the time-convolutionless formalism constitutes such a description. In particular, by focusing on the dissipative dynamics of the spin-boson and Frenkel exciton models, we show how to: easily construct the time-local generator from reference reduced dynamics, elucidate the dependence of its existence on the system parameters and the choice of reduced observables, identify the physical origin of its apparent divergences, and offer analysis tools to diagnose their severity and circumvent their deleterious effects. We demonstrate that, when applicable, the time-local approach requires as little information as the more commonly used time-nonlocal scheme, with the important advantages of providing a more compact description, greater algorithmic simplicity, and physical interpretability. We conclude by introducing the discrete-time analog and a straightforward protocol to employ it in cases where the reference dynamics have limited resolution. The insights we present here offer the potential for extending the reach of dynamical methods, reducing both their cost and conceptual complexity.
Collapse
Affiliation(s)
- Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, USA
| | | |
Collapse
|
24
|
Nüßeler A, Tamascelli D, Smirne A, Lim J, Huelga SF, Plenio MB. Fingerprint and Universal Markovian Closure of Structured Bosonic Environments. PHYSICAL REVIEW LETTERS 2022; 129:140604. [PMID: 36240420 DOI: 10.1103/physrevlett.129.140604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
We exploit the properties of chain mapping transformations of bosonic environments to identify a finite collection of modes able to capture the characteristic features, or fingerprint, of the environment. Moreover we show that the countable infinity of residual bath modes can be replaced by a universal Markovian closure, namely, a small collection of damped modes undergoing a Lindblad-type dynamics whose parametrization is independent of the spectral density under consideration. We show that the Markovian closure provides a quadratic speedup with respect to standard chain mapping techniques and makes the memory requirement independent of the simulation time, while preserving all the information on the fingerprint modes. We illustrate the application of the Markovian closure to the computation of linear spectra but also to nonlinear spectral response, a relevant experimentally accessible many body coherence witness for which efficient numerically exact calculations in realistic environments are currently lacking.
Collapse
Affiliation(s)
- Alexander Nüßeler
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| | - Dario Tamascelli
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
| | - Andrea Smirne
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, Via Celoria 16, 20133 Milano, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milano, Italy
| | - James Lim
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| | - Susana F Huelga
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik and IQST, Albert-Einstein-Allee 11, Universität Ulm, 89069 Ulm, Germany
| |
Collapse
|
25
|
Sánchez-Barquilla M, García-Vidal FJ, Fernández-Domínguez AI, Feist J. Few-mode field quantization for multiple emitters. NANOPHOTONICS 2022; 11:4363-4374. [PMID: 36147197 PMCID: PMC9455278 DOI: 10.1515/nanoph-2021-0795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
The control of the interaction between quantum emitters using nanophotonic structures holds great promise for quantum technology applications, while its theoretical description for complex nanostructures is a highly demanding task as the electromagnetic (EM) modes form a high-dimensional continuum. We here introduce an approach that permits a quantized description of the full EM field through a small number of discrete modes. This extends the previous work in ref. (I. Medina, F. J. García-Vidal, A. I. Fernández-Domínguez, and J. Feist, "Few-mode field quantization of arbitrary electromagnetic spectral densities," Phys. Rev. Lett., vol. 126, p. 093601, 2021) to the case of an arbitrary number of emitters, without any restrictions on the emitter level structure or dipole operators. The low computational demand of this method makes it suitable for studying dynamics for a wide range of parameters. We illustrate the power of our approach for a system of three emitters placed within a hybrid metallodielectric photonic structure and show that excitation transfer is highly sensitive to the properties of the hybrid photonic-plasmonic modes.
Collapse
Affiliation(s)
- Mónica Sánchez-Barquilla
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Francisco J. García-Vidal
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
- Institute of High Performance Computing, Agency for Science, Technology, and Research (A*STAR), Connexis, 138632Singapore, Singapore
| | - Antonio I. Fernández-Domínguez
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| | - Johannes Feist
- Departamento de Física Teórica de la Materia Condensada and Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, E-28049Madrid, Spain
| |
Collapse
|
26
|
Benavides-Riveros CL, Chen L, Schilling C, Mantilla S, Pittalis S. Excitations of Quantum Many-Body Systems via Purified Ensembles: A Unitary-Coupled-Cluster-Based Approach. PHYSICAL REVIEW LETTERS 2022; 129:066401. [PMID: 36018631 DOI: 10.1103/physrevlett.129.066401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
State-average calculations based on a mixture of states are increasingly being exploited across chemistry and physics as versatile procedures for addressing excitations of quantum many-body systems. If not too many states should need to be addressed, calculations performed on individual states are also a common option. Here we show how the two approaches can be merged into one method, dealing with a generalized yet single pure state. Implications in electronic structure calculations are discussed and for quantum computations are pointed out.
Collapse
Affiliation(s)
- Carlos L Benavides-Riveros
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
- INO-CNR BEC Center, I-38123 Trento, Italy
| | - Lipeng Chen
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Christian Schilling
- Faculty of Physics, Arnold Sommerfeld Centre for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, Theresienstrasse 37, 80333 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstrasse 4, 80799 München, Germany
| | - Sebastián Mantilla
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | | |
Collapse
|
27
|
Wang Y, Chen ZH, Xu RX, Zheng X, Yan Y. A statistical quasi-particles thermofield theory with Gaussian environments: System-bath entanglement theorem for nonequilibrium correlation functions. J Chem Phys 2022; 157:044102. [DOI: 10.1063/5.0094875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
For open quantum systems, environmental dissipative effect can be represented by statistical quasi-particles, namely dissipatons. We exploit this fact to establish the dissipaton thermofield theory. The resulting generalized Langevin dynamics of absorptive and emissive thermofield operators are effectively noise-resolved. The system-bath entanglement theorem is then readily followed between a important class of nonequilibrium steady-state correlation functions. All these relations are validated numerically. A simple corollary is the transport current expression, which exactly recovers the result obtained from the nonequilibrium Green's function formalism.
Collapse
Affiliation(s)
- Yao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - Zi-Hao Chen
- University of Science and Technology of China, China
| | - Rui-Xue Xu
- University of Science and Technology of China, China
| | - Xiao Zheng
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, China
| | - YiJing Yan
- Department of Chemical Physics, USTC, China
| |
Collapse
|
28
|
Exact simulation of pigment-protein complexes unveils vibronic renormalization of electronic parameters in ultrafast spectroscopy. Nat Commun 2022; 13:2912. [PMID: 35614049 PMCID: PMC9133012 DOI: 10.1038/s41467-022-30565-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/04/2022] [Indexed: 12/04/2022] Open
Abstract
The primary steps of photosynthesis rely on the generation, transport, and trapping of excitons in pigment-protein complexes (PPCs). Generically, PPCs possess highly structured vibrational spectra, combining many discrete intra-pigment modes and a quasi-continuous of protein modes, with vibrational and electronic couplings of comparable strength. The intricacy of the resulting vibronic dynamics poses significant challenges in establishing a quantitative connection between spectroscopic data and underlying microscopic models. Here we show how to address this challenge using numerically exact simulation methods by considering two model systems, namely the water-soluble chlorophyll-binding protein of cauliflower and the special pair of bacterial reaction centers. We demonstrate that the inclusion of the full multi-mode vibronic dynamics in numerical calculations of linear spectra leads to systematic and quantitatively significant corrections to electronic parameter estimation. These multi-mode vibronic effects are shown to be relevant in the longstanding discussion regarding the origin of long-lived oscillations in multidimensional nonlinear spectra. Multimode vibronic mixing in model photosynthetic systems revealed by numerically exact simulations is shown to strongly modify linear and non-linear optical responses and facilitate the persistence of coherent dynamics.
Collapse
|
29
|
Ren J, Li W, Jiang T, Wang Y, Shuai Z. Time‐dependent density matrix renormalization group method for quantum dynamics in complex systems. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Jiajun Ren
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Weitang Li
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Tong Jiang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Yuanheng Wang
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| | - Zhigang Shuai
- MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry Tsinghua University Beijing People's Republic of China
| |
Collapse
|
30
|
Megier N, Smirne A, Campbell S, Vacchini B. Correlations, Information Backflow, and Objectivity in a Class of Pure Dephasing Models. ENTROPY (BASEL, SWITZERLAND) 2022; 24:304. [PMID: 35205599 PMCID: PMC8871357 DOI: 10.3390/e24020304] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023]
Abstract
We critically examine the role that correlations established between a system and fragments of its environment play in characterising the ensuing dynamics. We employ a dephasing model with different initial conditions, where the state of the initial environment represents a tunable degree of freedom that qualitatively and quantitatively affects the correlation profiles, but nevertheless results in the same reduced dynamics for the system. We apply recently developed tools for the characterisation of non-Markovianity to carefully assess the role that correlations, as quantified by the (quantum) Jensen-Shannon divergence and relative entropy, as well as changes in the environmental state, play in whether the conditions for classical objectivity within the quantum Darwinism paradigm are met. We demonstrate that for precisely the same non-Markovian reduced dynamics of the system arising from different microscopic models, some exhibit quantum Darwinistic features, while others show that no meaningful notion of classical objectivity is present. Furthermore, our results highlight that the non-Markovian nature of an environment does not a priori prevent a system from redundantly proliferating relevant information, but rather it is the system's ability to establish the requisite correlations that is the crucial factor in the manifestation of classical objectivity.
Collapse
Affiliation(s)
- Nina Megier
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (A.S.); (B.V.)
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy
- International Centre for Theory of Quantum Technologies (ICTQT), University of Gdansk, 80-308 Gdansk, Poland
| | - Andrea Smirne
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (A.S.); (B.V.)
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy
| | - Steve Campbell
- School of Physics, University College Dublin, Belfield, D04 Dublin, Ireland
- Centre for Quantum Engineering, Science, and Technology, University College Dublin, Belfield, D04 Dublin, Ireland
| | - Bassano Vacchini
- Dipartimento di Fisica “Aldo Pontremoli”, Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy; (A.S.); (B.V.)
- Istituto Nazionale di Fisica Nucleare, Sezione di Milano, Via Celoria 16, 20133 Milan, Italy
| |
Collapse
|
31
|
Dunnett AJ, Gowland D, Isborn CM, Chin AW, Zuehlsdorff TJ. Influence of non-adiabatic effects on linear absorption spectra in the condensed phase: Methylene blue. J Chem Phys 2021; 155:144112. [PMID: 34654312 DOI: 10.1063/5.0062950] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Modeling linear absorption spectra of solvated chromophores is highly challenging as contributions are present both from coupling of the electronic states to nuclear vibrations and from solute-solvent interactions. In systems where excited states intersect in the Condon region, significant non-adiabatic contributions to absorption line shapes can also be observed. Here, we introduce a robust approach to model linear absorption spectra accounting for both environmental and non-adiabatic effects from first principles. This model parameterizes a linear vibronic coupling (LVC) Hamiltonian directly from energy gap fluctuations calculated along molecular dynamics (MD) trajectories of the chromophore in solution, accounting for both anharmonicity in the potential and direct solute-solvent interactions. The resulting system dynamics described by the LVC Hamiltonian are solved exactly using the thermalized time-evolving density operator with orthogonal polynomials algorithm (T-TEDOPA). The approach is applied to the linear absorption spectrum of methylene blue in water. We show that the strong shoulder in the experimental spectrum is caused by vibrationally driven population transfer between the bright S1 and the dark S2 states. The treatment of the solvent environment is one of many factors that strongly influence the population transfer and line shape; accurate modeling can only be achieved through the use of explicit quantum mechanical solvation. The efficiency of T-TEDOPA, combined with LVC Hamiltonian parameterizations from MD, leads to an attractive method for describing a large variety of systems in complex environments from first principles.
Collapse
Affiliation(s)
- Angus J Dunnett
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Duncan Gowland
- Department of Physics, King's College London, London WC2R 2LS, United Kingdom
| | - Christine M Isborn
- Chemistry and Chemical Biology, University of California Merced, Merced, California 95343, USA
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, 4 place Jussieu, 75005 Paris, France
| | - Tim J Zuehlsdorff
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, USA
| |
Collapse
|
32
|
Accurate Truncations of Chain Mapping Models for Open Quantum Systems. NANOMATERIALS 2021; 11:nano11082104. [PMID: 34443934 PMCID: PMC8398816 DOI: 10.3390/nano11082104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/25/2023]
Abstract
The dynamics of open quantum systems are of great interest in many research fields, such as for the interaction of a quantum emitter with the electromagnetic modes of a nanophotonic structure. A powerful approach for treating such setups in the non-Markovian limit is given by the chain mapping where an arbitrary environment can be transformed to a chain of modes with only nearest-neighbor coupling. However, when long propagation times are desired, the required long chain lengths limit the utility of this approach. We study various approaches for truncating the chains at manageable lengths while still preserving an accurate description of the dynamics. We achieve this by introducing losses to the chain modes in such a way that the effective environment acting on the system remains unchanged, using a number of different strategies. Furthermore, we demonstrate that extending the chain mapping to allow next-nearest neighbor coupling permits the reproduction of an arbitrary environment, and adding longer-range interactions does not further increase the effective number of degrees of freedom in the environment.
Collapse
|
33
|
Varvelo L, Lynd JK, Bennett DIG. Formally exact simulations of mesoscale exciton dynamics in molecular materials. Chem Sci 2021; 12:9704-9711. [PMID: 34349941 PMCID: PMC8293828 DOI: 10.1039/d1sc01448j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/31/2021] [Indexed: 02/04/2023] Open
Abstract
Excited state carriers, such as excitons, can diffuse on the 100 nm to micron length scale in molecular materials but only delocalize over short length scales due to coupling between electronic and vibrational degrees-of-freedom. Here, we leverage the locality of excitons to adaptively solve the hierarchy of pure states equations (HOPS). We demonstrate that our adaptive HOPS (adHOPS) methodology provides a formally exact and size-invariant (i.e., ) scaling algorithm for simulating mesoscale quantum dynamics. Finally, we provide proof-of-principle calculations for exciton diffusion on linear chains containing up to 1000 molecules. The adaptive hierarchy of pure states (adHOPS) algorithm leverages the locality of excitons in molecular materials to perform formally-exact simulations with size-invariant (i.e., ) scaling, enabling efficient simulations of mesoscale exciton dynamics.![]()
Collapse
Affiliation(s)
- Leonel Varvelo
- Department of Chemistry, Southern Methodist University PO Box 750314 Dallas TX USA
| | - Jacob K Lynd
- Department of Chemistry, Southern Methodist University PO Box 750314 Dallas TX USA
| | - Doran I G Bennett
- Department of Chemistry, Southern Methodist University PO Box 750314 Dallas TX USA
| |
Collapse
|
34
|
Fux GE, Butler EP, Eastham PR, Lovett BW, Keeling J. Efficient Exploration of Hamiltonian Parameter Space for Optimal Control of Non-Markovian Open Quantum Systems. PHYSICAL REVIEW LETTERS 2021; 126:200401. [PMID: 34110219 DOI: 10.1103/physrevlett.126.200401] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
We present a general method to efficiently design optimal control sequences for non-Markovian open quantum systems, and illustrate it by optimizing the shape of a laser pulse to prepare a quantum dot in a specific state. The optimization of control procedures for quantum systems with strong coupling to structured environments-where time-local descriptions fail-is a computationally challenging task. We modify the numerically exact time evolving matrix product operator (TEMPO) method, such that it allows the repeated computation of the time evolution of the reduced system density matrix for various sets of control parameters at very low computational cost. This method is potentially useful for studying numerous optimal control problems, in particular in solid state quantum devices where the coupling to vibrational modes is typically strong.
Collapse
Affiliation(s)
- Gerald E Fux
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Eoin P Butler
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Paul R Eastham
- School of Physics, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Brendon W Lovett
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| | - Jonathan Keeling
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, United Kingdom
| |
Collapse
|
35
|
Ishizaki A, Fleming GR. Insights into Photosynthetic Energy Transfer Gained from Free-Energy Structure: Coherent Transport, Incoherent Hopping, and Vibrational Assistance Revisited. J Phys Chem B 2021; 125:3286-3295. [PMID: 33724833 DOI: 10.1021/acs.jpcb.0c09847] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Giant strides in ultrashort laser pulse technology have enabled real-time observation of dynamical processes in complex molecular systems. Specifically, the discovery of oscillatory transients in the two-dimensional electronic spectra of photosynthetic systems stimulated a number of theoretical investigations exploring the possible physical mechanisms of the remarkable quantum efficiency of light harvesting processes. In this work, we revisit the elementary aspects of environment-induced fluctuations in the involved electronic energies and present a simple way to understand energy flow with the intuitive picture of relaxation in a funnel-type free-energy landscape. The presented free-energy description of energy transfer reveals that typical photosynthetic systems operate in an almost barrierless regime. The approach also provides insights into the distinction between coherent and incoherent energy transfer and the criteria by which the necessity of the vibrational assistance is considered.
Collapse
Affiliation(s)
- Akihito Ishizaki
- Institute for Molecular Science, National Institutes of Natural Sciences, Okazaki 444-8585, Japan.,School of Physical Sciences, Graduate University for Advanced Studies, Okazaki 444-8585, Japan
| | - Graham R Fleming
- Department of Chemistry, University of California, Berkeley, California 94720, United States.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.,Kavli Energy NanoSciences Institute at Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Dunnett AJ, Chin AW. Simulating Quantum Vibronic Dynamics at Finite Temperatures With Many Body Wave Functions at 0 K. Front Chem 2021; 8:600731. [PMID: 33505954 PMCID: PMC7831969 DOI: 10.3389/fchem.2020.600731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/24/2020] [Indexed: 11/16/2022] Open
Abstract
For complex molecules, nuclear degrees of freedom can act as an environment for the electronic “system” variables, allowing the theory and concepts of open quantum systems to be applied. However, when molecular system-environment interactions are non-perturbative and non-Markovian, numerical simulations of the complete system-environment wave function become necessary. These many body dynamics can be very expensive to simulate, and extracting finite-temperature results—which require running and averaging over many such simulations—becomes especially challenging. Here, we present numerical simulations that exploit a recent theoretical result that allows dissipative environmental effects at finite temperature to be extracted efficiently from a single, zero-temperature wave function simulation. Using numerically exact time-dependent variational matrix product states, we verify that this approach can be applied to vibronic tunneling systems and provide insight into the practical problems lurking behind the elegance of the theory, such as the rapidly growing numerical demands that can appear for high temperatures over the length of computations.
Collapse
Affiliation(s)
- Angus J Dunnett
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, Paris, France
| | - Alex W Chin
- Sorbonne Université, CNRS, Institut des NanoSciences de Paris, Paris, France
| |
Collapse
|
37
|
Dunnett AJ, Chin AW. Matrix Product State Simulations of Non-Equilibrium Steady States and Transient Heat Flows in the Two-Bath Spin-Boson Model at Finite Temperatures. ENTROPY (BASEL, SWITZERLAND) 2021; 23:E77. [PMID: 33419175 PMCID: PMC7825558 DOI: 10.3390/e23010077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 01/01/2023]
Abstract
Simulating the non-perturbative and non-Markovian dynamics of open quantum systems is a very challenging many body problem, due to the need to evolve both the system and its environments on an equal footing. Tensor network and matrix product states (MPS) have emerged as powerful tools for open system models, but the numerical resources required to treat finite-temperature environments grow extremely rapidly and limit their applications. In this study we use time-dependent variational evolution of MPS to explore the striking theory of Tamascelli et al. (Phys. Rev. Lett. 2019, 123, 090402.) that shows how finite-temperature open dynamics can be obtained from zero temperature, i.e., pure wave function, simulations. Using this approach, we produce a benchmark dataset for the dynamics of the Ohmic spin-boson model across a wide range of coupling strengths and temperatures, and also present a detailed analysis of the numerical costs of simulating non-equilibrium steady states, such as those emerging from the non-perturbative coupling of a qubit to baths at different temperatures. Despite ever-growing resource requirements, we find that converged non-perturbative results can be obtained, and we discuss a number of recent ideas and numerical techniques that should allow wide application of MPS to complex open quantum systems.
Collapse
Affiliation(s)
- Angus J. Dunnett
- Institut des NanoSciences de Paris, CNRS, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France;
| | | |
Collapse
|
38
|
Zwolak M. Analytic expressions for the steady-state current with finite extended reservoirs. J Chem Phys 2020; 153:224107. [PMID: 33317280 PMCID: PMC8356363 DOI: 10.1063/5.0029223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Open-system simulations of quantum transport provide a platform for the study of true steady states, Floquet states, and the role of temperature, time dynamics, and fluctuations, among other physical processes. They are rapidly gaining traction, especially techniques that revolve around "extended reservoirs," a collection of a finite number of degrees of freedom with relaxation that maintains a bias or temperature gradient, and have appeared under various guises (e.g., the extended or mesoscopic reservoir, auxiliary master equation, and driven Liouville-von Neumann approaches). Yet, there are still a number of open questions regarding the behavior and convergence of these techniques. Here, we derive general analytical solutions, and associated asymptotic analyses, for the steady-state current driven by finite reservoirs with proportional coupling to the system/junction. In doing so, we present a simplified and unified derivation of the non-interacting and many-body steady-state currents through arbitrary junctions, including outside of proportional coupling. We conjecture that the analytic solution for proportional coupling is the most general of its form for isomodal relaxation (i.e., relaxing proportional coupling will remove the ability to find compact, general analytical expressions for finite reservoirs). These results should be of broad utility in diagnosing the behavior and implementation of extended reservoir and related approaches, including the convergence to the Landauer limit (for non-interacting systems) and the Meir-Wingreen formula (for many-body systems).
Collapse
Affiliation(s)
- Michael Zwolak
- Biophysical and Biomedical Measurement Group, Microsystems and Nanotechnology Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
39
|
Excitation Dynamics in Chain-Mapped Environments. ENTROPY 2020; 22:e22111320. [PMID: 33287085 PMCID: PMC7712952 DOI: 10.3390/e22111320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 11/17/2022]
Abstract
The chain mapping of structured environments is a most powerful tool for the simulation of open quantum system dynamics. Once the environmental bosonic or fermionic degrees of freedom are unitarily rearranged into a one dimensional structure, the full power of Density Matrix Renormalization Group (DMRG) can be exploited. Beside resulting in efficient and numerically exact simulations of open quantum systems dynamics, chain mapping provides an unique perspective on the environment: the interaction between the system and the environment creates perturbations that travel along the one dimensional environment at a finite speed, thus providing a natural notion of light-, or causal-, cone. In this work we investigate the transport of excitations in a chain-mapped bosonic environment. In particular, we explore the relation between the environmental spectral density shape, parameters and temperature, and the dynamics of excitations along the corresponding linear chains of quantum harmonic oscillators. Our analysis unveils fundamental features of the environment evolution, such as localization, percolation and the onset of stationary currents.
Collapse
|
40
|
Evolution Equations for Quantum Semi-Markov Dynamics. ENTROPY 2020; 22:e22070796. [PMID: 33286567 PMCID: PMC7517368 DOI: 10.3390/e22070796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 11/23/2022]
Abstract
Using a newly introduced connection between the local and non-local description of open quantum system dynamics, we investigate the relationship between these two characterisations in the case of quantum semi-Markov processes. This class of quantum evolutions, which is a direct generalisation of the corresponding classical concept, guarantees mathematically well-defined master equations, while accounting for a wide range of phenomena, possibly in the non-Markovian regime. In particular, we analyse the emergence of a dephasing term when moving from one type of master equation to the other, by means of several examples. We also investigate the corresponding Redfield-like approximated dynamics, which are obtained after a coarse graining in time. Relying on general properties of the associated classical random process, we conclude that such an approximation always leads to a Markovian evolution for the considered class of dynamics.
Collapse
|
41
|
Chen T, Balachandran V, Guo C, Poletti D. Steady-state quantum transport through an anharmonic oscillator strongly coupled to two heat reservoirs. Phys Rev E 2020; 102:012155. [PMID: 32794992 DOI: 10.1103/physreve.102.012155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/02/2020] [Indexed: 11/07/2022]
Abstract
We investigate the transport properties of an anharmonic oscillator, modeled by a single-site Bose-Hubbard model, coupled to two different thermal baths using the numerically exact thermofield based chain-mapping matrix product states (TCMPS) approach. We compare the effectiveness of TCMPS to probe the nonequilibrium dynamics of strongly interacting system irrespective of the system-bath coupling against the global master equation approach in Gorini-Kossakowski-Sudarshan-Lindblad form. We discuss the effect of on-site interactions, temperature bias as well as the system-bath couplings on the steady-state transport properties. Last, we also show evidence of non-Markovian dynamics by studying the nonmonotonicity of the time evolution of the trace distance between two different initial states.
Collapse
Affiliation(s)
- Tianqi Chen
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Vinitha Balachandran
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | - Chu Guo
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics and Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha 410081, China
| | - Dario Poletti
- Science, Mathematics and Technology Cluster, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| |
Collapse
|
42
|
Smirne A, Caiaffa M, Piilo J. Rate Operator Unraveling for Open Quantum System Dynamics. PHYSICAL REVIEW LETTERS 2020; 124:190402. [PMID: 32469534 DOI: 10.1103/physrevlett.124.190402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Stochastic methods with quantum jumps are often used to solve open quantum system dynamics. Moreover, they provide insight into fundamental topics, such as the role of measurements in quantum mechanics and the description of non-Markovian memory effects. However, there is no unified framework to use quantum jumps to describe open-system dynamics in any regime. We solve this issue by developing the rate operator quantum jump (ROQJ) approach. The method not only applies to both Markovian and non-Markovian evolutions, but also allows us to unravel master equations for which previous methods do not work. In addition, ROQJ yields a rigorous measurement-scheme interpretation for a wide class of dynamics, including a set of master equations with negative decay rates, and sheds light on different types of memory effects which arise when using stochastic quantum jump methods.
Collapse
Affiliation(s)
- Andrea Smirne
- Dipartimento di Fisica "Aldo Pontremoli," Università degli Studi di Milano, and Istituto Nazionale di Fisica Nucleare, Sezione di Milano, via Celoria 16, I-20133 Milan, Italy
- Institute of Theoretical Physics, Universität Ulm, Albert-Einstein-Allee 11D-89069 Ulm, Germany
| | - Matteo Caiaffa
- SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, United Kingdom
| | - Jyrki Piilo
- QTF Centre of Excellence, Turku Centre for Quantum Physics, Department of Physics and Astronomy, University of Turku, FI-20014, Turun Yliopisto, Finland
- Laboratory of Quantum Optics, Department of Physics and Astronomy, University of Turku, FI-20014, Turun yliopisto, Finland
| |
Collapse
|
43
|
Lambert N, Ahmed S, Cirio M, Nori F. Modelling the ultra-strongly coupled spin-boson model with unphysical modes. Nat Commun 2019; 10:3721. [PMID: 31427583 PMCID: PMC6700178 DOI: 10.1038/s41467-019-11656-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 07/29/2019] [Indexed: 11/23/2022] Open
Abstract
A quantum system weakly coupled to a zero-temperature environment will relax, via spontaneous emission, to its ground-state. However, when the coupling to the environment is ultra-strong the ground-state is expected to become dressed with virtual excitations. This regime is difficult to capture with some traditional methods because of the explosion in the number of Matsubara frequencies, i.e., exponential terms in the free-bath correlation function. To access this regime we generalize both the hierarchical equations of motion and pseudomode methods, taking into account this explosion using only a biexponential fitting function. We compare these methods to the reaction coordinate mapping, which helps show how these sometimes neglected Matsubara terms are important to regulate detailed balance and prevent the unphysical emission of virtual excitations. For the pseudomode method, we present a general proof of validity for the use of superficially unphysical Matsubara-modes, which mirror the mathematical essence of the Matsubara frequencies.
Collapse
Affiliation(s)
- Neill Lambert
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan.
| | - Shahnawaz Ahmed
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan
- Wallenberg Centre for Quantum Technology, Department of Microtechnology and Nanoscience, Chalmers University of Technology, 412 96, Gothenburg, Sweden
| | - Mauro Cirio
- Graduate School of China Academy of Engineering Physics, Haidian District, Beijing, 100193, China.
| | - Franco Nori
- Theoretical Quantum Physics Laboratory, RIKEN Cluster for Pioneering Research, Wako-shi, Saitama, 351-0198, Japan
- Department of Physics, University of Michigan, Ann Arbor, MI, 48109-1040, USA
| |
Collapse
|