1
|
Chen X, Choi J, Jiang Z, Mei J, Jiang K, Li J, Agrestini S, Garcia-Fernandez M, Sun H, Huang X, Shen D, Wang M, Hu J, Lu Y, Zhou KJ, Feng D. Electronic and magnetic excitations in La 3Ni 2O 7. Nat Commun 2024; 15:9597. [PMID: 39505866 PMCID: PMC11541582 DOI: 10.1038/s41467-024-53863-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
High-temperature superconductivity was discovered in the pressurized nickelate La3Ni2O7 which has a unique bilayer structure and mixed valence state of nickel. The properties at ambient pressure contain crucial information of the fundamental interactions and bosons mediating superconducting pairing. Here, using X-ray absorption spectroscopy and resonant inelastic X-ray scattering, we identified that Ni 3d x 2 - y 2 , Ni 3d z 2 , and ligand oxygen 2p orbitals dominate the low-energy physics with a small charge-transfer energy. Well-defined optical-like magnetic excitations soften into quasi-static spin-density-wave ordering, evidencing the strong electronic correlation and rich magnetic properties. Based on an effective Heisenberg spin model, we extract a much stronger inter-layer effective magnetic superexchange than the intra-layer ones and propose two viable magnetic structures. Our findings emphasize that the Ni 3d z 2 orbital bonding within the bilayer induces novel electronic and magnetic excitations, setting the stage for further exploration of La3Ni2O7 superconductor.
Collapse
Affiliation(s)
- Xiaoyang Chen
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai, China
| | | | - Zhicheng Jiang
- National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Jiong Mei
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kun Jiang
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China
| | | | | | - Hualei Sun
- School of Science, Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Xing Huang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dawei Shen
- National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China
| | - Meng Wang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiangping Hu
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, China
- New Cornerstone Science Laboratory, Beijing, China
| | - Yi Lu
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, China.
| | | | - Donglai Feng
- National Synchrotron Radiation Laboratory and School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, China.
- New Cornerstone Science Laboratory, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Rice DB, Wong D, Weyhermüller T, Neese F, DeBeer S. The spin-forbidden transition in iron(IV)-oxo catalysts relevant to two-state reactivity. SCIENCE ADVANCES 2024; 10:eado1603. [PMID: 38941457 PMCID: PMC11212722 DOI: 10.1126/sciadv.ado1603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 05/23/2024] [Indexed: 06/30/2024]
Abstract
Quintet oxoiron(IV) intermediates are often invoked in nonheme iron enzymes capable of performing selective oxidation, while most well-characterized synthetic model oxoiron(IV) complexes have a triplet ground state. These differing spin states lead to the proposal of a two-state reactivity model, where the complexes cross from the triplet to an excited quintet state. However, the energy of this quintet state has never been measured experimentally. Here, magnetic circular dichroism is used to assign the singlet and triplet excited states in a series of triplet oxoiron(IV) complexes. These transition energies are used to determine the energies of the quintet state via constrained fitting of 2p3d resonant inelastic x-ray scattering. This allowed for a direct correlation between the quintet energies and substrate C─H oxidation rates.
Collapse
Affiliation(s)
- Derek B. Rice
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Deniz Wong
- Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, D-14109 Berlin, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, D-45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
3
|
He W, Shen Y, Wohlfeld K, Sears J, Li J, Pelliciari J, Walicki M, Johnston S, Baldini E, Bisogni V, Mitrano M, Dean MPM. Magnetically propagating Hund's exciton in van der Waals antiferromagnet NiPS 3. Nat Commun 2024; 15:3496. [PMID: 38664432 PMCID: PMC11045826 DOI: 10.1038/s41467-024-47852-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Magnetic van der Waals (vdW) materials have opened new frontiers for realizing novel many-body phenomena. Recently NiPS3 has received intense interest since it hosts an excitonic quasiparticle whose properties appear to be intimately linked to the magnetic state of the lattice. Despite extensive studies, the electronic character, mobility, and magnetic interactions of the exciton remain unresolved. Here we address these issues by measuring NiPS3 with ultra-high energy resolution resonant inelastic x-ray scattering (RIXS). We find that Hund's exchange interactions are primarily responsible for the energy of formation of the exciton. Measuring the dispersion of the Hund's exciton reveals that it propagates in a way that is analogous to a double-magnon. We trace this unique behavior to fundamental similarities between the NiPS3 exciton hopping and spin exchange processes, underlining the unique magnetic characteristics of this novel quasiparticle.
Collapse
Affiliation(s)
- W He
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| | - Y Shen
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - K Wohlfeld
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, PL-02093, Poland
| | - J Sears
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - J Li
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - J Pelliciari
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - M Walicki
- Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Warsaw, PL-02093, Poland
| | - S Johnston
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
- Institute of Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, TN, 37996, USA
| | - E Baldini
- Department of Physics, The University of Texas at Austin, Austin, TX, 78712, USA
| | - V Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - M Mitrano
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - M P M Dean
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
4
|
Elnaggar H, Nag A, Haverkort MW, Garcia-Fernandez M, Walters A, Wang RP, Zhou KJ, de Groot F. Magnetic excitations beyond the single- and double-magnons. Nat Commun 2023; 14:2749. [PMID: 37173301 PMCID: PMC10182046 DOI: 10.1038/s41467-023-38341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
A photon carrying one unit of angular momentum can change the spin angular momentum of a magnetic system with one unit (ΔMs = ±1) at most. This implies that a two-photon scattering process can manipulate the spin angular momentum of the magnetic system with a maximum of two units. Herein we describe a triple-magnon excitation in α-Fe2O3, which contradicts this conventional wisdom that only 1- and 2-magnon excitations are possible in a resonant inelastic X-ray scattering experiment. We observe an excitation at exactly three times the magnon energy, along with additional excitations at four and five times the magnon energy, suggesting quadruple and quintuple-magnons as well. Guided by theoretical calculations, we reveal how a two-photon scattering process can create exotic higher-rank magnons and the relevance of these quasiparticles for magnon-based applications.
Collapse
Affiliation(s)
- Hebatalla Elnaggar
- Debye Institute for Nanomaterials Science, Utrecht University, 3584 CA, Utrecht, The Netherlands.
- Institute of Mineralogy, Physics of Materials and Cosmochemistry, CNRS, Sorbonne University, 4 Place Jussieu, 75005, Paris, France.
| | - Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | | | | | - Andrew Walters
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom
| | - Ru-Pan Wang
- Debye Institute for Nanomaterials Science, Utrecht University, 3584 CA, Utrecht, The Netherlands
- Department of Physics, University of Hamburg, Luruper Chaussee 149, G610, 22761, Hamburg, Germany
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, OX11 0DE, United Kingdom.
| | - Frank de Groot
- Debye Institute for Nanomaterials Science, Utrecht University, 3584 CA, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Quadrupolar magnetic excitations in an isotropic spin-1 antiferromagnet. Nat Commun 2022; 13:2327. [PMID: 35484168 PMCID: PMC9051120 DOI: 10.1038/s41467-022-30065-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/14/2022] [Indexed: 11/08/2022] Open
Abstract
The microscopic origins of emergent behaviours in condensed matter systems are encoded in their excitations. In ordinary magnetic materials, single spin-flips give rise to collective dipolar magnetic excitations called magnons. Likewise, multiple spin-flips can give rise to multipolar magnetic excitations in magnetic materials with spin S ≥ 1. Unfortunately, since most experimental probes are governed by dipolar selection rules, collective multipolar excitations have generally remained elusive. For instance, only dipolar magnetic excitations have been observed in isotropic S = 1 Haldane spin systems. Here, we unveil a hidden quadrupolar constituent of the spin dynamics in antiferromagnetic S = 1 Haldane chain material Y2BaNiO5 using Ni L3-edge resonant inelastic x-ray scattering. Our results demonstrate that pure quadrupolar magnetic excitations can be probed without direct interactions with dipolar excitations or anisotropic perturbations. Originating from on-site double spin-flip processes, the quadrupolar magnetic excitations in Y2BaNiO5 show a remarkable dual nature of collective dispersion. While one component propagates as non-interacting entities, the other behaves as a bound quadrupolar magnetic wave. This result highlights the rich and largely unexplored physics of higher-order magnetic excitations.
Collapse
|
6
|
Lin JQ, Villar Arribi P, Fabbris G, Botana AS, Meyers D, Miao H, Shen Y, Mazzone DG, Feng J, Chiuzbăian SG, Nag A, Walters AC, García-Fernández M, Zhou KJ, Pelliciari J, Jarrige I, Freeland JW, Zhang J, Mitchell JF, Bisogni V, Liu X, Norman MR, Dean MPM. Strong Superexchange in a d^{9-δ} Nickelate Revealed by Resonant Inelastic X-Ray Scattering. PHYSICAL REVIEW LETTERS 2021; 126:087001. [PMID: 33709756 DOI: 10.1103/physrevlett.126.087001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 06/12/2023]
Abstract
The discovery of superconductivity in a d^{9-δ} nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of the reduced d^{9-1/3} trilayer nickelates R_{4}Ni_{3}O_{8} (where R=La, Pr) and associated theoretical modeling. A magnon energy scale of ∼80 meV resulting from a nearest-neighbor magnetic exchange of J=69(4) meV is observed, proving that d^{9-δ} nickelates can host a large superexchange. This value, along with that of the Ni-O hybridization estimated from our O K-edge data, implies that trilayer nickelates represent an intermediate case between the infinite-layer nickelates and the cuprates. Layered nickelates thus provide a route to testing the relevance of superexchange to nickelate superconductivity.
Collapse
Affiliation(s)
- J Q Lin
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - P Villar Arribi
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - G Fabbris
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - A S Botana
- Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
| | - D Meyers
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - H Miao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Y Shen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D G Mazzone
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland
| | - J Feng
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 4 place Jussieu, 75252 Paris Cedex 05, France
| | - S G Chiuzbăian
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, UMR 7614, 4 place Jussieu, 75252 Paris Cedex 05, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette, France
| | - A Nag
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - A C Walters
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - M García-Fernández
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - J Pelliciari
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - I Jarrige
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - J W Freeland
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Junjie Zhang
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
- Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
| | - J F Mitchell
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - V Bisogni
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - M R Norman
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - M P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|