1
|
Leveillee JA, White AJ. Mixed Resolution-of-the-Identity Compressed Exchange for Hybrid Mixed Deterministic-Stochastic Density Functional Theory from Low to Extreme Temperatures. J Chem Theory Comput 2025; 21:629-642. [PMID: 39757802 DOI: 10.1021/acs.jctc.4c00971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Exact exchange contributions included in density functional theory calculations have rendered excellent electronic structure results on both cold and extremely hot matter. In this work, we develop a mixed deterministic-stochastic resolution-of-the-identity compressed exchange (mRICE) method for efficient calculation of exact and hybrid electron exchange, suitable for applications alongside mixed stochastic-deterministic density functional theory. mRICE offers accurate calculations of the electronic structure at a largely reduced computation time compared to other compression algorithms, such as Lin's adaptive compressed exchange, for the warm dense matter. mRICE grants flexibility in the number of exchange compression vectors used to resolve the approximated exchange operator kernel, reducing the computation time of the application of the exchange operator to the vectors by up to 40% while maintaining accuracy in electronic structure predictions. We demonstrate mRICE by computing the density of states of warm dense carbon and neon between temperatures of 10 and 50 eV (116,045 and 580,226 K) and comparing timing and accuracy at varying levels of compression. Finally, we carry out mRICE on the difference between the Fock exchange operator and the semilocal exchange potential kernels and show an enhanced convergence of electronic structure calculations at reduced stochastic sampling.
Collapse
Affiliation(s)
- Joshua A Leveillee
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alexander J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
2
|
Blanchet A, Soubiran F, Torrent M, Clérouin J. First-principles molecular-dynamics equation of state of liquid to dense plasma iron. Phys Rev E 2025; 111:015206. [PMID: 39972868 DOI: 10.1103/physreve.111.015206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/17/2024] [Indexed: 02/21/2025]
Abstract
We computed the equation of state of iron using extended first-principles molecular dynamics simulations, ranging from 7.874g/cm^{3} and 5500 K up to 47.2g/cm^{3} and 10^{9}K. We compared the principal Hugoniot curve with semiempirical models, average atom-based model predictions, and shock experiment results. We derived the Helmholtz free energy and the entropy via thermodynamic integration along isochores. We explore the ionization processes at play along the Hugoniot curve by analyzing the evolution of the electronic densities of states in the gigabar regime.
Collapse
Affiliation(s)
- Augustin Blanchet
- Université Paris-Saclay, CEA-DAM-DIF, F-91297 Arpajon, France and , CEA, Laboratoire Matière en conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - François Soubiran
- Université Paris-Saclay, CEA-DAM-DIF, F-91297 Arpajon, France and , CEA, Laboratoire Matière en conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - Marc Torrent
- Université Paris-Saclay, CEA-DAM-DIF, F-91297 Arpajon, France and , CEA, Laboratoire Matière en conditions extrêmes, 91680 Bruyères-le-Châtel, France
| | - Jean Clérouin
- Université Paris-Saclay, CEA-DAM-DIF, F-91297 Arpajon, France and , CEA, Laboratoire Matière en conditions extrêmes, 91680 Bruyères-le-Châtel, France
| |
Collapse
|
3
|
Vu JP, Chen M. Noise reduction of stochastic density functional theory for metals. J Chem Phys 2024; 160:214125. [PMID: 38842491 DOI: 10.1063/5.0207244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/16/2024] [Indexed: 06/07/2024] Open
Abstract
Density Functional Theory (DFT) has become a cornerstone in the modeling of metals. However, accurately simulating metals, particularly under extreme conditions, presents two significant challenges. First, simulating complex metallic systems at low electron temperatures is difficult due to their highly delocalized density matrix. Second, modeling metallic warm-dense materials at very high electron temperatures is challenging because it requires the computation of a large number of partially occupied orbitals. This study demonstrates that both challenges can be effectively addressed using the latest advances in linear-scaling stochastic DFT methodologies. Despite the inherent introduction of noise into all computed properties by stochastic DFT, this research evaluates the efficacy of various noise reduction techniques under different thermal conditions. Our observations indicate that the effectiveness of noise reduction strategies varies significantly with the electron temperature. Furthermore, we provide evidence that the computational cost of stochastic DFT methods scales linearly with system size for metal systems, regardless of the electron temperature regime.
Collapse
Affiliation(s)
- Jake P Vu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| | - Ming Chen
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
4
|
Hadad RE, Roy A, Rabani E, Redmer R, Baer R. Stochastic density functional theory combined with Langevin dynamics for warm dense matter. Phys Rev E 2024; 109:065304. [PMID: 39020867 DOI: 10.1103/physreve.109.065304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/17/2024] [Indexed: 07/19/2024]
Abstract
This study overviews and extends a recently developed stochastic finite-temperature Kohn-Sham density functional theory to study warm dense matter using Langevin dynamics, specifically under periodic boundary conditions. The method's algorithmic complexity exhibits nearly linear scaling with system size and is inversely proportional to the temperature. Additionally, a linear-scaling stochastic approach is introduced to assess the Kubo-Greenwood conductivity, demonstrating exceptional stability for dc conductivity. Utilizing the developed tools, we investigate the equation of state, radial distribution, and electronic conductivity of hydrogen at a temperature of 30 000 K. As for the radial distribution functions, we reveal a transition of hydrogen from gaslike to liquidlike behavior as its density exceeds 4g/cm^{3}. As for the electronic conductivity as a function of the density, we identified a remarkable isosbestic point at frequencies around 7 eV, which may be an additional signature of a gas-liquid transition in hydrogen at 30 000 K.
Collapse
Affiliation(s)
| | | | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California 94720, USA; Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA; and The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
5
|
Sadigh B, Åberg D, Pask J. Spectral-partitioned Kohn-Sham density functional theory. Phys Rev E 2023; 108:045204. [PMID: 37978681 DOI: 10.1103/physreve.108.045204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 09/13/2023] [Indexed: 11/19/2023]
Abstract
We introduce a general, variational scheme for systematic approximation of a given Kohn-Sham free-energy functional by partitioning the density matrix into distinct spectral domains, each of which may be spanned by an independent diagonal representation without requirement of mutual orthogonality. It is shown that by generalizing the entropic contribution to the free energy to allow for independent representations in each spectral domain, the free energy becomes an upper bound to the exact (unpartitioned) Kohn-Sham free energy, attaining this limit as the representations approach Kohn-Sham eigenfunctions. A numerical procedure is devised for calculation of the generalized entropy associated with spectral partitioning of the density matrix. The result is a powerful framework for Kohn-Sham calculations of systems whose occupied subspaces span multiple energy regimes. As a case in point, we apply the proposed framework to warm- and hot-dense matter described by finite-temperature density functional theory, where at high energies the density matrix is represented by that of the free-electron gas, while at low energies it is variationally optimized. We derive expressions for the spectral-partitioned Kohn-Sham Hamiltonian, atomic forces, and macroscopic stresses within the projector-augmented wave (PAW) and the norm-conserving pseudopotential methods. It is demonstrated that at high temperatures, spectral partitioning facilitates accurate calculations at dramatically reduced computational cost. Moreover, as temperature is increased, fewer exact Kohn-Sham states are required for a given accuracy, leading to further reductions in computational cost. Finally, it is shown that standard multiprojector expansions of electronic orbitals within atomic spheres in the PAW method lack sufficient completeness at high temperatures. Spectral partitioning provides a systematic solution for this fundamental problem.
Collapse
Affiliation(s)
- Babak Sadigh
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Daniel Åberg
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - John Pask
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
6
|
Finkelstein J, Negre CFA, Fattebert JL. A fast, dense Chebyshev solver for electronic structure on GPUs. J Chem Phys 2023; 159:101101. [PMID: 37694745 DOI: 10.1063/5.0164255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Abstract
Matrix diagonalization is almost always involved in computing the density matrix needed in quantum chemistry calculations. In the case of modest matrix sizes (≲4000), performance of traditional dense diagonalization algorithms on modern GPUs is underwhelming compared to the peak performance of these devices. This motivates the exploration of alternative algorithms better suited to these types of architectures. We newly derive, and present in detail, an existing Chebyshev expansion algorithm [Liang et al., J. Chem. Phys. 119, 4117-4125 (2003)] whose number of required matrix multiplications scales with the square root of the number of terms in the expansion. Focusing on dense matrices of modest size, our implementation on GPUs results in large speed ups when compared to diagonalization. Additionally, we improve upon this existing method by capitalizing on the inherent task parallelism and concurrency in the algorithm. This improvement is implemented on GPUs by using CUDA and HIP streams via the MAGMA library and leads to a significant speed up over the serial-only approach for smaller (≲1000) matrix sizes. Finally, we apply our technique to a model system with a high density of states around the Fermi level, which typically presents significant challenges.
Collapse
Affiliation(s)
- Joshua Finkelstein
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Christian F A Negre
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Jean-Luc Fattebert
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| |
Collapse
|
7
|
Nichols KA, Hu SX, White AJ, Goncharov VN, Mihaylov DI, Collins LA, Shaffer NR, Karasiev VV. Time-dependent density-functional-theory calculations of the nonlocal electron stopping range for inertial confinement fusion applications. Phys Rev E 2023; 108:035206. [PMID: 37849196 DOI: 10.1103/physreve.108.035206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/18/2023] [Indexed: 10/19/2023]
Abstract
Nonlocal electron transport is important for understanding laser-target coupling for laser-direct-drive (LDD) inertial confinement fusion (ICF) simulations. Current models for the nonlocal electron mean free path in radiation-hydrodynamic codes are based on plasma-physics models developed decades ago; improvements are needed to accurately predict the electron conduction in LDD simulations of ICF target implosions. We utilized time-dependent density functional theory (TD-DFT) to calculate the electron stopping power (SP) in the so-called conduction-zone plasmas of polystyrene in a wide range of densities and temperatures relevant to LDD. Compared with the modified Lee-More model, the TD-DFT calculations indicated a lower SP and a higher stopping range for nonlocal electrons. We fit these electron SP calculations to obtain a global analytical model for the electron stopping range as a function of plasma conditions and the nonlocal electron kinetic energy. This model was implemented in the one-dimensional radiation-hydrodynamic code lilac to perform simulations of LDD ICF implosions, which are further compared with simulations by the standard modified Lee-More model. Results from these integrated simulations are discussed in terms of the implications of this TD-DFT-based mean-free-path model to ICF simulations.
Collapse
Affiliation(s)
- K A Nichols
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14623-1299, USA
| | - S X Hu
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, New York 14623-1299, USA
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14623-1299, USA
| | - A J White
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - V N Goncharov
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
- Department of Mechanical Engineering, University of Rochester, Rochester, New York 14623-1299, USA
| | - D I Mihaylov
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
| | - L A Collins
- Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - N R Shaffer
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
| | - V V Karasiev
- Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623-1299, USA
| |
Collapse
|
8
|
White TG, Dai J, Riley D. Dynamic and transient processes in warm dense matter. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2023; 381:20220223. [PMID: 37393937 PMCID: PMC10315215 DOI: 10.1098/rsta.2022.0223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 07/04/2023]
Abstract
In this paper, we discuss some of the key challenges in the study of time-dependent processes and non-equilibrium behaviour in warm dense matter. We outline some of the basic physics concepts that have underpinned the definition of warm dense matter as a subject area in its own right and then cover, in a selective, non-comprehensive manner, some of the current challenges, pointing along the way to topics covered by the papers presented in this volume. This article is part of the theme issue 'Dynamic and transient processes in warm dense matter'.
Collapse
Affiliation(s)
- Thomas G. White
- Department of Physics, University of Nevada, Reno, NV 89557, USA
| | - Jiayu Dai
- College of Science, National University of Defense Technology, Changsha 410073, People’s Republic of China
| | - David Riley
- School of Mathematics and Physics, Queen’s University Belfast, Belfast BT7 1NN, UK
| |
Collapse
|
9
|
Sharma V, Collins LA, White AJ. Stochastic and mixed density functional theory within the projector augmented wave formalism for simulation of warm dense matter. Phys Rev E 2023; 108:L023201. [PMID: 37723794 DOI: 10.1103/physreve.108.l023201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/08/2023] [Indexed: 09/20/2023]
Abstract
Stochastic density functional theory (DFT) and mixed stochastic-deterministic DFT are burgeoning approaches for the calculation of the equation of state and transport properties in materials under extreme conditions. In the intermediate warm dense matter regime, a state between correlated condensed matter and kinetic plasma, electrons can range from being highly localized around nuclei to delocalized over the whole simulation cell. The plane-wave basis pseudopotential approach is thus the typical tool of choice for modeling such systems at the DFT level. Unfortunately, stochastic DFT methods scale as the square of the maximum plane-wave energy in this basis. To reduce the effect of this scaling and improve the overall description of the electrons within the pseudopotential approximation, we present stochastic and mixed DFT approaches developed and implemented within the projector augmented wave formalism. We compare results between the different DFT approaches for both single-point and molecular dynamics trajectories and present calculations of self-diffusion coefficients of solid density carbon from 1 to 50 eV.
Collapse
Affiliation(s)
- Vidushi Sharma
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Lee A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Alexander J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
10
|
Bethkenhagen M, Sharma A, Suryanarayana P, Pask JE, Sadigh B, Hamel S. Properties of carbon up to 10 million kelvin from Kohn-Sham density functional theory molecular dynamics. Phys Rev E 2023; 107:015306. [PMID: 36797894 DOI: 10.1103/physreve.107.015306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Accurately modeling dense plasmas over wide-ranging conditions of pressure and temperature is a grand challenge critically important to our understanding of stellar and planetary physics as well as inertial confinement fusion. In this work, we employ Kohn-Sham density functional theory (DFT) molecular dynamics (MD) to compute the properties of carbon at warm and hot dense matter conditions in the vicinity of the principal Hugoniot. In particular, we calculate the equation of state (EOS), Hugoniot, pair distribution functions, and diffusion coefficients for carbon at densities spanning 8 g/cm^{3} to 16 g/cm^{3} and temperatures ranging from 100 kK to 10 MK using the Spectral Quadrature method. We find that the computed EOS and Hugoniot are in good agreement with path integral Monte Carlo results and the sesame database. Additionally, we calculate the ion-ion structure factor and viscosity for selected points. All results presented are at the level of full Kohn-Sham DFT-MD, free of empirical parameters, average-atom, and orbital-free approximations employed previously at such conditions.
Collapse
Affiliation(s)
- Mandy Bethkenhagen
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
- École Normale Supérieure de Lyon, Université Lyon 1, Laboratoire de Géologie de Lyon, CNRS UMR 5276, 69364 Lyon, Cedex 07, France
| | - Abhiraj Sharma
- College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Phanish Suryanarayana
- College of Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - John E Pask
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Babak Sadigh
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Sebastien Hamel
- Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
11
|
Malko S, Cayzac W, Ospina-Bohórquez V, Bhutwala K, Bailly-Grandvaux M, McGuffey C, Fedosejevs R, Vaisseau X, Tauschwitz A, Apiñaniz JI, De Luis Blanco D, Gatti G, Huault M, Hernandez JAP, Hu SX, White AJ, Collins LA, Nichols K, Neumayer P, Faussurier G, Vorberger J, Prestopino G, Verona C, Santos JJ, Batani D, Beg FN, Roso L, Volpe L. Proton stopping measurements at low velocity in warm dense carbon. Nat Commun 2022; 13:2893. [PMID: 35610200 PMCID: PMC9130286 DOI: 10.1038/s41467-022-30472-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 04/29/2022] [Indexed: 11/25/2022] Open
Abstract
Ion stopping in warm dense matter is a process of fundamental importance for the understanding of the properties of dense plasmas, the realization and the interpretation of experiments involving ion-beam-heated warm dense matter samples, and for inertial confinement fusion research. The theoretical description of the ion stopping power in warm dense matter is difficult notably due to electron coupling and degeneracy, and measurements are still largely missing. In particular, the low-velocity stopping range, that features the largest modelling uncertainties, remains virtually unexplored. Here, we report proton energy-loss measurements in warm dense plasma at unprecedented low projectile velocities. Our energy-loss data, combined with a precise target characterization based on plasma-emission measurements using two independent spectroscopy diagnostics, demonstrate a significant deviation of the stopping power from classical models in this regime. In particular, we show that our results are in closest agreement with recent first-principles simulations based on time-dependent density functional theory. Charged particle interaction and energy dissipation in plasma is fundamentally interesting. Here the authors study proton stopping in laser-produced plasma for the moderate to strong coupling with electrons.
Collapse
Affiliation(s)
- S Malko
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, E-37185, Villamayor, Salamanca, Spain. .,Princeton Plasma Physics Laboratory, 100 Stellarator Road, Princeton, NJ, 08536, USA.
| | - W Cayzac
- CEA, DAM, DIF, F-91297, Arpajon, France
| | - V Ospina-Bohórquez
- CEA, DAM, DIF, F-91297, Arpajon, France.,University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405, Talence, France.,University of Salamanca, Salamanca, Spain
| | - K Bhutwala
- Center for Energy Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - M Bailly-Grandvaux
- Center for Energy Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - C McGuffey
- Center for Energy Research, University of California San Diego, La Jolla, CA, 92093, USA.,General Atomics, San Diego, CA, 92121, USA
| | - R Fedosejevs
- University of Alberta, Department of Electrical and Computing Engineering. Edmonton, Alberta, T6G 2V4, Canada
| | | | - An Tauschwitz
- Goethe-Universität Frankfurt am Main, Max-von-Laue-Strasse 1, 60438, Frankfurt am Main, Germany
| | - J I Apiñaniz
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, E-37185, Villamayor, Salamanca, Spain
| | - D De Luis Blanco
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, E-37185, Villamayor, Salamanca, Spain
| | - G Gatti
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, E-37185, Villamayor, Salamanca, Spain
| | - M Huault
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, E-37185, Villamayor, Salamanca, Spain
| | - J A Perez Hernandez
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, E-37185, Villamayor, Salamanca, Spain
| | - S X Hu
- Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, NY, 14623, USA
| | - A J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - L A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - K Nichols
- Laboratory for Laser Energetics, University of Rochester, 250 E. River Road, Rochester, NY, 14623, USA.,Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - P Neumayer
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstrasse 1, 64291, Darmstadt, Germany
| | - G Faussurier
- CEA, DAM, DIF, F-91297, Arpajon, France.,Université Paris-Saclay, CEA, LMCE, F-91680, Bruyères-le-Châtel, France
| | - J Vorberger
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - G Prestopino
- Dipartimento di Ingegneria Industriale, Universitá di Roma "Tor Vergata", Via del Politecnico 1, 00133, Roma, Italy
| | - C Verona
- Dipartimento di Ingegneria Industriale, Universitá di Roma "Tor Vergata", Via del Politecnico 1, 00133, Roma, Italy
| | - J J Santos
- University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405, Talence, France
| | - D Batani
- University of Bordeaux, CNRS, CEA, CELIA (Centre Lasers Intenses et Applications), UMR 5107, F-33405, Talence, France
| | - F N Beg
- Center for Energy Research, University of California San Diego, La Jolla, CA, 92093, USA
| | - L Roso
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, E-37185, Villamayor, Salamanca, Spain
| | - L Volpe
- Centro de Laseres Pulsados (CLPU), Parque Cientifico, E-37185, Villamayor, Salamanca, Spain.,Laser-Plasma Chair at the University of Salamanca, Salamanca, Spain.,Instituto Universitario de Física Fundamental y Matemáticas, 37008, Salamanca, Spain
| |
Collapse
|
12
|
White AJ, Collins LA, Nichols K, Hu SX. Mixed stochastic-deterministic time-dependent density functional theory: application to stopping power of warm dense carbon. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:174001. [PMID: 35081511 DOI: 10.1088/1361-648x/ac4f1a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Warm dense matter (WDM) describes an intermediate phase, between condensed matter and classical plasmas, found in natural and man-made systems. In a laboratory setting, WDM is often created dynamically. It is typically laser or pulse-power generated and can be difficult to characterize experimentally. Measuring the energy loss of high energy ions, caused by a WDM target, is both a promising diagnostic and of fundamental importance to inertial confinement fusion research. However, electron coupling, degeneracy, and quantum effects limit the accuracy of easily calculable kinetic models for stopping power, while high temperatures make the traditional tools of condensed matter, e.g. time-dependent density functional theory (TD-DFT), often intractable. We have developed a mixed stochastic-deterministic approach to TD-DFT which provides more efficient computation while maintaining the required precision for model discrimination. Recently, this approach showed significant improvement compared to models when compared to experimental energy loss measurements in WDM carbon. Here, we describe this approach and demonstrate its application to warm dense carbon stopping across a range of projectile velocities. We compare direct stopping-power calculation to approaches based on combining homogeneous electron gas response with bound electrons, with parameters extracted from our TD-DFT calculations.
Collapse
Affiliation(s)
- Alexander J White
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 NM, United States of America
| | - Lee A Collins
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 NM, United States of America
| | - Katarina Nichols
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, 87545 NM, United States of America
- Laboratory of Laser Energetics, University of Rochester, Rochester 14623 NY, United States of America
| | - S X Hu
- Laboratory of Laser Energetics, University of Rochester, Rochester 14623 NY, United States of America
| |
Collapse
|
13
|
Xu Q, Jing X, Zhang B, Pask J, Suryanarayana P. Real-space density kernel method for Kohn-Sham density functional theory calculations at high temperature. J Chem Phys 2022; 156:094105. [DOI: 10.1063/5.0082523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Qimen Xu
- Georgia Institute of Technology, United States of America
| | - Xin Jing
- School of Computational Science and Engineering, Georgia Institute of Technology, United States of America
| | - Boqin Zhang
- Georgia Institute of Technology, United States of America
| | - John Pask
- Physics, LLNL, United States of America
| | | |
Collapse
|
14
|
Baer R, Neuhauser D, Rabani E. Stochastic Vector Techniques in Ground-State Electronic Structure. Annu Rev Phys Chem 2022; 73:255-272. [PMID: 35081326 DOI: 10.1146/annurev-physchem-090519-045916] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We review a suite of stochastic vector computational approaches for studying the electronic structure of extended condensed matter systems. These techniques help reduce algorithmic complexity, facilitate efficient parallelization, simplify computational tasks, accelerate calculations, and diminish memory requirements. While their scope is vast, we limit our study to ground-state and finite temperature density functional theory (DFT) and second-order perturbation theory. More advanced topics, such as quasiparticle (charge) and optical (neutral) excitations and higher-order processes, are covered elsewhere. We start by explaining how to use stochastic vectors in computations, characterizing the associated statistical errors. Next, we show how to estimate the electron density in DFT and discuss highly effective techniques to reduce statistical errors. Finally, we review the use of stochastic vector techniques for calculating correlation energies within the second-order Møller-Plesset perturbation theory and its finite temperature variational form. Example calculation results are presented and used to demonstrate the efficacy of the methods. Expected final online publication date for the Annual Review of Physical Chemistry, Volume 73 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Roi Baer
- Fritz Haber Center of Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel;
| | - Daniel Neuhauser
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA;
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, California, USA; .,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Ottoway CF, Rehn DA, Saumon D, Starrett CE. Effect of ionic disorder on the principal shock Hugoniot. Phys Rev E 2021; 104:055208. [PMID: 34942703 DOI: 10.1103/physreve.104.055208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/11/2021] [Indexed: 11/07/2022]
Abstract
The effect of ionic disorder on the principal Hugoniot is investigated using multiple scattering theory to very high pressure (Gbar). Calculations using molecular dynamics to simulate ionic disorder are compared to those with a fixed crystal lattice, for both carbon and aluminum. For the range of conditions considered here we find that ionic disorder has a relatively minor influence. It is most important at the onset of shell ionization and we find that, at higher pressures, the subtle effect of the ionic environment is overwhelmed by the larger number of ionized electrons with higher thermal energies.
Collapse
Affiliation(s)
- Crystal F Ottoway
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Daniel A Rehn
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - Didier Saumon
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| | - C E Starrett
- Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, New Mexico 87545, USA
| |
Collapse
|
16
|
Rightley S, Baalrud SD. Kinetic model for electron-ion transport in warm dense matter. Phys Rev E 2021; 103:063206. [PMID: 34271617 DOI: 10.1103/physreve.103.063206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
We present a model for electron-ion transport in warm dense matter that incorporates Coulomb coupling effects into the quantum Boltzmann equation of Uehling and Uhlenbeck through the use of a statistical potential of mean force. Although the model presented here can be derived rigorously in the classical limit [S. D. Baalrud and J. Daligault, Phys. Plasmas 26, 082106 (2019)PHPAEN1070-664X10.1063/1.5095655], its quantum generalization is complicated by the uncertainty principle. Here we apply an existing model for the potential of mean force based on the quantum Ornstein-Zernike equation coupled with an average-atom model [C. E. Starrett, High Energy Density Phys. 25, 8 (2017)1574-181810.1016/j.hedp.2017.09.003]. This potential contains correlations due to both Coulomb coupling and exchange, and the collision kernel of the kinetic theory enforces Pauli blocking while allowing for electron diffraction and large-angle collisions. We use the Uehling-Uhlenbeck equation to predict the momentum and temperature relaxation times and electrical conductivity of solid density aluminum plasma based on electron-ion collisions. We present results for density and temperature conditions that span the transition from classical weakly-coupled plasma to degenerate moderately-coupled plasma. Our findings agree well with recent quantum molecular dynamics simulations.
Collapse
Affiliation(s)
- Shane Rightley
- Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
| | - Scott D Baalrud
- Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
17
|
McCarty RJ, Perchak D, Pederson R, Evans R, Qiu Y, White SR, Burke K. Bypassing the Energy Functional in Density Functional Theory: Direct Calculation of Electronic Energies from Conditional Probability Densities. PHYSICAL REVIEW LETTERS 2020; 125:266401. [PMID: 33449722 DOI: 10.1103/physrevlett.125.266401] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Density functional calculations can fail for want of an accurate exchange-correlation approximation. The energy can instead be extracted from a sequence of density functional calculations of conditional probabilities (CP DFT). Simple CP approximations yield usefully accurate results for two-electron ions, the hydrogen dimer, and the uniform gas at all temperatures. CP DFT has no self-interaction error for one electron, and correctly dissociates H_{2}, both major challenges. For warm dense matter, classical CP DFT calculations can overcome the convergence problems of Kohn-Sham DFT.
Collapse
Affiliation(s)
- Ryan J McCarty
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Dennis Perchak
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Ryan Pederson
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Robert Evans
- H H Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom
| | - Yiheng Qiu
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Steven R White
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| | - Kieron Burke
- Department of Chemistry, University of California, Irvine, California 92697, USA
- Department of Physics and Astronomy, University of California, Irvine, California 92697, USA
| |
Collapse
|