1
|
Ospina C, Ibáñez-Ibáñez PF, Tagliaro I, Stendardo L, Tosatti S, Antonini C. Low ice adhesion on soft surfaces: Elasticity or lubrication effects? J Colloid Interface Sci 2025; 677:494-503. [PMID: 39154442 DOI: 10.1016/j.jcis.2024.08.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
HYPOTHESIS Soft materials are promising candidates for designing passive de-icing systems. It is unclear whether low adhesion on soft surfaces is due to elasticity or lubrication, and how these properties affect the ice detachment mechanism. This study presents a systematic analysis of ice adhesion on soft materials with different lubricant content to better understand the underpinning interaction. EXPERIMENTS The wetting and mechanical properties of soft polydimethylsiloxane with different lubricant content were thoroughly characterized by contact angle, AFM indentation, and rheology measurements. The collected information was used to understand the relationship with the ice adhesion results, obtained by using different ice block sizes. FINDINGS Three different de-icing mechanisms were identified: (i) single detachment occurs when small ice blocks are considered, and the ice completely detaches in a single event. In the case of larger ice blocks, the reattachment of the ice block is promoted by either: (ii) stick-slip or, (iii) interfacial slippage, depending on the lubricant content. It was confirmed that the ice adhesion strength not only depends on material properties but also on experimental conditions, such as the ice dimensions. Moreover, differently than on hard surfaces, where wetting primarily determines the icephobic performance, also elasticity and lubrication should be considered on soft surfaces.
Collapse
Affiliation(s)
- Catalina Ospina
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | - Pablo F Ibáñez-Ibáñez
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy; Department of Applied Physics, University of Granada, Av. de Fuente Nueva, s/n, 18071 Granada, Spain
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy.
| | - Luca Stendardo
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy
| | | | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milan, Italy.
| |
Collapse
|
2
|
Ospina C, Ibáñez-Ibáñez PF, Tagliaro I, Stendardo L, Tosatti S, Antonini C. Withdrawn: Low ice adhesion on soft surfaces: Elasticity or lubrication effects? J Colloid Interface Sci 2024; 676:1118. [PMID: 39111122 DOI: 10.1016/j.jcis.2024.07.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 09/19/2024]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- Catalina Ospina
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | - Pablo F Ibáñez-Ibáñez
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy; Department of Applied Physics, University of Granada, Av. de Fuente Nueva, s/n, 18071, Granada, Spain
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy.
| | - Luca Stendardo
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy
| | | | - Carlo Antonini
- Department of Materials Science, University of Milano-Bicocca, Via R. Cozzi 55, 20125, Milan, Italy.
| |
Collapse
|
3
|
Cai Z, Badr RGM, Hauer L, Chaudhuri K, Skabeev A, Schmid F, Pham JT. Phase separation dynamics in wetting ridges of polymer surfaces swollen with oils of different viscosities. SOFT MATTER 2024; 20:7300-7312. [PMID: 39248033 DOI: 10.1039/d4sm00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
When drops are placed on a sufficiently soft surface, the drop surface tension drives an out of plane deformation around the contact line (i.e., a wetting ridge). For soft elastomeric surfaces that are swollen with a liquid, capillarity from a drop can induce a phase separation in the wetting ridge. Using confocal microscopy, we study the dynamics of phase separation at the wetting ridge of glycerol drops on silicone elastomers, which are swollen with silicone oils of varying viscosity (i.e., molecular weight). We show that the viscosity of the swelling oil plays a large role in the oil separation size and separation rate. For networks swollen to near their maximum swelling (i.e., saturated), lower viscosity oil separates more and separates faster at early times compared to larger viscosity oil. During late-stage wetting, the growth rate of the separation is a function of viscosity and swelling ratio, which can be described by a simple diffusive model and a defined wetting ridge geometry. In this late-stage wetting, the higher viscosity oil evidently grows faster, likely because it is further from reaching equilibrium. Interestingly, the separated oil phase region grows with a nearly constant, geometrically similar shape. Understanding how phase separation occurs on swollen substrates should provide information on how to control drop spreading, sliding, adhesion, or friction on such surfaces.
Collapse
Affiliation(s)
- Zhuoyun Cai
- Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Rodrique G M Badr
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudingerweg 7, 55099, Germany.
| | - Lukas Hauer
- Institute for Biology, Humboldt-Universität zu Berlin, Berlin, 10115, Germany
| | - Krishnaroop Chaudhuri
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| | - Artem Skabeev
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Friederike Schmid
- Institut für Physik, Johannes Gutenberg Universität Mainz, Staudingerweg 7, 55099, Germany.
| | - Jonathan T Pham
- Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA.
| |
Collapse
|
4
|
Hauer L, Naga A, Badr RGM, Pham JT, Wong WSY, Vollmer D. Wetting on silicone surfaces. SOFT MATTER 2024; 20:5273-5295. [PMID: 38952198 DOI: 10.1039/d4sm00346b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Silicone is frequently used as a model system to investigate and tune wetting on soft materials. Silicone is biocompatible and shows excellent thermal, chemical, and UV stability. Moreover, the mechanical properties of the surface can be easily varied by several orders of magnitude in a controlled manner. Polydimethylsiloxane (PDMS) is a popular choice for coating applications such as lubrication, self-cleaning, and drag reduction, facilitated by low surface energy. Aiming to understand the underlying interactions and forces, motivated numerous and detailed investigations of the static and dynamic wetting behavior of drops on PDMS-based surfaces. Here, we recognize the three most prevalent PDMS surface variants, namely liquid-infused (SLIPS/LIS), elastomeric, and liquid-like (SOCAL) surfaces. To understand, optimize, and tune the wetting properties of these PDMS surfaces, we review and compare their similarities and differences by discussing (i) the chemical and molecular structure, and (ii) the static and dynamic wetting behavior. We also provide (iii) an overview of methods and techniques to characterize PDMS-based surfaces and their wetting behavior. The static and dynamic wetting ridge is given particular attention, as it dominates energy dissipation, adhesion, and friction of sliding drops and influences the durability of the surfaces. We also discuss special features such as cloaking and wetting-induced phase separation. Key challenges and opportunities of these three surface variants are outlined.
Collapse
Affiliation(s)
- Lukas Hauer
- Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
- Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| | - Abhinav Naga
- Department of Physics, Durham University, DH1 3LE, UK
- Institute for Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FD, UK
| | - Rodrique G M Badr
- Institut für Physik, Johannes Gutenberg-Universität Mainz, Staudingerweg 7-9, 55099 Mainz, Germany
| | - Jonathan T Pham
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, 45221 OH, USA
| | - William S Y Wong
- Department of Applied Physics, School of Science, Aalto University, 02150 Espoo, Finland
| | - Doris Vollmer
- Physics at Interfaces, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
| |
Collapse
|
5
|
Badr RGM, Hauer L, Vollmer D, Schmid F. Dynamics of Droplets Moving on Lubricated Polymer Brushes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12368-12380. [PMID: 38834186 PMCID: PMC11192036 DOI: 10.1021/acs.langmuir.4c00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/06/2024]
Abstract
Understanding the dynamics of drops on polymer-coated surfaces is crucial for optimizing applications such as self-cleaning materials or microfluidic devices. While the static and dynamic properties of deposited drops have been well characterized, a microscopic understanding of the underlying dynamics is missing. In particular, it is unclear how drop dynamics depends on the amount of uncross-linked chains in the brush, because experimental techniques fail to quantify those. Here we use coarse-grained simulations to study droplets moving on a lubricated polymer brush substrate under the influence of an external body force. The simulation model is based on the many body dissipative particle dynamics (MDPD) method and designed to mimic a system of water droplets on poly(dimethylsiloxane) (PDMS) brushes with chemically identical PDMS lubricant. In agreement with experiments, we find a sublinear power law dependence between the external force F and the droplet velocity v, F ∝ vα with α < 1; however, the exponents differ (α ∼ 0.6-0.7 in simulations versus α ∼ 0.25 in experiments). With increasing velocity, the droplets elongate and the receding contact angle decreases, whereas the advancing contact angle remains roughly constant. Analyzing the flow profiles inside the droplet reveals that the droplets do not slide but roll, with vanishing slip at the substrate surface. Surprisingly, adding lubricant has very little effect on the effective friction force between the droplet and the substrate, even though it has a pronounced effect on the size and structure of the wetting ridge, especially above the cloaking transition.
Collapse
Affiliation(s)
- Rodrique G. M. Badr
- Institut
für Physik, Johannes Gutenberg-Universität
Mainz, Staudingerweg 7-9, D-55099 Mainz, Germany
| | - Lukas Hauer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Doris Vollmer
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Friederike Schmid
- Institut
für Physik, Johannes Gutenberg-Universität
Mainz, Staudingerweg 7-9, D-55099 Mainz, Germany
| |
Collapse
|
6
|
Lee M, Kwak H, Eom Y, Park SA, Sakai T, Jeon H, Koo JM, Kim D, Cha C, Hwang SY, Park J, Oh DX. Network of cyano-p-aramid nanofibres creates ultrastiff and water-rich hydrospongels. NATURE MATERIALS 2024; 23:414-423. [PMID: 38182810 DOI: 10.1038/s41563-023-01760-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/14/2023] [Indexed: 01/07/2024]
Abstract
The structure-property paradox of biological tissues, in which water-rich porous structures efficiently transfer mass while remaining highly mechanically stiff, remains unsolved. Although hydrogel/sponge hybridization is the key to understanding this phenomenon, material incompatibility makes this a challenging task. Here we describe hydrogel/sponge hybrids (hydrospongels) that behave as both ultrastiff water-rich gels and reversibly squeezable sponges. The self-organizing network of cyano-p-aramid nanofibres holds approximately 5,000 times more water than its solid content. Hydrospongels, even at a water concentration exceeding 90 wt%, are hard as cartilage with an elastic modulus of 50-80 MPa, and are 10-1,000 times stiffer than typical hydrogels. They endure a compressive strain above 85% through poroelastic relaxation and hydrothermal pressure at 120 °C. This performance is produced by amphiphilic surfaces, high rigidity and an interfibrillar, interaction-driven percolating network of nanofibres. These features can inspire the development of future biofunctional materials.
Collapse
Affiliation(s)
- Minkyung Lee
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Hojung Kwak
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Youngho Eom
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
- Department of Polymer Engineering, Pukyong National University, Busan, Republic of Korea
| | - Seul-A Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Takamasa Sakai
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, Tokyo, Japan
| | - Hyeonyeol Jeon
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Jun Mo Koo
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Dowan Kim
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea
| | - Chaenyung Cha
- Center for Multidimensional Programmable Matter, Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Sung Yeon Hwang
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Plant & Environmental New Resources and Graduate School of Biotechnology, Kyung Hee University, Gyeonggi-Do, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-Based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, Republic of Korea.
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
7
|
Zhao Y, Hu H, Huang Y, Liu H, Yan C, Xu C, Zhang R, Wang Y, Xu Q. Elasticity-controlled jamming criticality in soft composite solids. Nat Commun 2024; 15:1691. [PMID: 38402229 PMCID: PMC10894283 DOI: 10.1038/s41467-024-45964-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/08/2024] [Indexed: 02/26/2024] Open
Abstract
Soft composite solids are made of inclusions dispersed within soft matrices. They are ubiquitous in nature and form the basis of many biological tissues. In the field of materials science, synthetic soft composites are promising candidates for building various engineering devices due to their highly programmable features. However, when the volume fraction of the inclusions increases, predicting the mechanical properties of these materials poses a significant challenge for the classical theories of composite mechanics. The difficulty arises from the inherently disordered, multi-scale interactions between the inclusions and the matrix. To address this challenge, we systematically investigated the mechanics of densely filled soft elastomers containing stiff microspheres. We experimentally demonstrate how the strain-stiffening response of the soft composites is governed by the critical scalings in the vicinity of a shear-jamming transition of the included particles. The proposed criticality framework quantitatively connects the overall mechanics of a soft composite with the elasticity of the matrix and the particles, and captures the diverse mechanical responses observed across a wide range of material parameters. The findings uncover a novel design paradigm of composite mechanics that relies on engineering the jamming properties of the embedded inclusions.
Collapse
Grants
- Early Career Scheme (No. 26309620) Research Grants Council, University Grants Committee (RGC, UGC)
- General Research Fund (No. 16307422) Research Grants Council, University Grants Committee (RGC, UGC)
- Collaborative Research Fund No. C6008-20E Research Grants Council, University Grants Committee (RGC, UGC)
- PDFS2324-6S02 Research Grants Council, University Grants Committee (RGC, UGC)
- No. 16300221 Research Grants Council, University Grants Committee (RGC, UGC)
- Asian Science and Technology Pioneering Institutes of Research and Educational League (No. ASPIRE2021#1).
Collapse
Affiliation(s)
- Yiqiu Zhao
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| | - Haitao Hu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yulu Huang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Hanqing Liu
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Caishan Yan
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Chang Xu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yifan Wang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qin Xu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong SAR, China.
| |
Collapse
|
8
|
Roché M, Talini L, Verneuil E. Complexity in Wetting Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38294343 DOI: 10.1021/acs.langmuir.3c03292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The spreading dynamics of a droplet of pure liquid deposited on a rigid, nonsoluble substrate has been extensively investigated. In a purely hydrodynamic description, the dynamics of the contact line is determined by a balance between the energy associated with the capillary driving force and the energy dissipated by the viscous shear in the liquid. This balance is expressed by the Cox-Voinov law, which relates the spreading velocity to the contact angle. More recently, complex situations have been examined in which dissipation and/or the driving force may be strongly modified, leading to sometimes spectacular changes in wetting dynamics. We review recent examples of effects at the origin of deviations from the hydrodynamic model, which may involve physical or chemical modifications of the substrate or of the wetting liquid, occurring at scales ranging from the molecular to the mesoscopic.
Collapse
Affiliation(s)
- Matthieu Roché
- Matière et Systèmes Complexes, Université Paris Cité, CNRS UMR 7057, 75013 Paris, France
- Department of Materials Physics, Research School of Physics, The Australian National University, Canberra ACT 2601, Australia
| | - Laurence Talini
- CNRS, Surface du Verre et Interfaces, Saint-Gobain, 93300 Aubervilliers, France
| | - Emilie Verneuil
- CNRS Sciences et Ingénierie de la Matière Molle, ESPCI Paris, PSL Research University, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
9
|
Wang X, Li Y, Nie J, Wen G, Li W. Modular co-assembly of peptides and polyoxometalates into underwater adhesives with photoluminescence and adjustable adhesion. SOFT MATTER 2023; 19:8659-8667. [PMID: 37927210 DOI: 10.1039/d3sm01151h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Supramolecular polymerization between cationic peptides and anionic polyoxometalates has emerged as a promising strategy for the creation of peptide-based biomimetic underwater adhesives. However, the extremely rigorous requirements for peptide design are an important obstacle to the fabrication of available peptide adhesives with controlled adhesion and versatile functionality. Inspired by marine sessile organisms in nature, here we reported a modular co-assembly method to easily produce peptide/polyoxometalate underwater adhesive materials through mixing two complementary cationic peptides (Pep1 and Pep2) with a single anionic polyoxometalate K6H[SiW9V3O40] in aqueous solution, which are not possible to be obtained from an individual peptide module. We demonstrated that the relatively hydrophobic Pep1 contributes to the bulk cohesion of the resulting adhesive, while the relatively hydrophilic Pep2 not only enables the interfacial adhesion but also regulates the bulk cohesion of the Pep1/Pep2/SiW9V3 adhesive. Rheological and shear adhesion tests showed that the macroscopic adhesion performance of the resulting adhesive materials could be conveniently adjusted by simply changing the molar ratio of the complementary peptide modules without any complicated peptide design. Interestingly, the luminescence properties of K11[Eu(PW11O39)2] (labelled as EuPW11) could be maintained within the Pep1/Pep2/EuPW11 adhesive even in a water environment. The lifetime of the Pep1/Pep2/EuPW11 adhesive was 2.19 ms. The fluorescence quantum yield of the Pep1/Pep2/EuPW11 adhesive was measured to be 27.46%. This study unveils that the modular co-assembly method can effectively simplify the material design of peptide/polyoxometalate underwater adhesives, which will significantly broaden the horizon of material pools and extend their availability space.
Collapse
Affiliation(s)
- Xinyan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Yiwen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Junlian Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Guang Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| |
Collapse
|
10
|
Jeon H, Chao Y, Karpitschka S. Moving wetting ridges on ultrasoft gels. Phys Rev E 2023; 108:024611. [PMID: 37723757 DOI: 10.1103/physreve.108.024611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 06/28/2023] [Indexed: 09/20/2023]
Abstract
The surface mechanics of soft solids are important in many natural and technological applications. In this context, static and dynamic wetting of soft polymer gels has emerged as a versatile model system. Recent experimental observations have sparked controversial discussions of the underlying theoretical description, ranging from concentrated elastic forces over strain-dependent solid surface tensions to poroelastic deformations or the capillary extraction of liquid components in the gel. Here we present measurements of the shapes of moving wetting ridges with high spatiotemporal resolution, combining distinct wetting phases (water, FC-70, air) on different ultrasoft PDMS gels (∼100Pa). Comparing our experimental results to the asymptotic behavior of linear viscoelastocapillary theory in the vicinity of the ridge, we separate reliable measurements from potential resolution artifacts. Remarkably, we find that the commonly used elastocapillary scaling fails to collapse the ridge shapes, but, for small normal forces, yields a viable prediction of the dynamic ridge angles. We demonstrate that neither of the debated theoretical models delivers a quantitative description, while the capillary extraction of an oil skirt appears to be the most promising.
Collapse
Affiliation(s)
- Hansol Jeon
- Max Planck Insitute for Dynamics and Self-Orgnization, 37077 Göttingen, Germany
| | - Youchuang Chao
- Max Planck Insitute for Dynamics and Self-Orgnization, 37077 Göttingen, Germany
| | - Stefan Karpitschka
- Max Planck Insitute for Dynamics and Self-Orgnization, 37077 Göttingen, Germany
| |
Collapse
|
11
|
Kopecz-Muller C, Bertin V, Raphaël E, McGraw JD, Salez T. Mechanical response of a thick poroelastic gel in contactless colloidal-probe rheology. Proc Math Phys Eng Sci 2023. [DOI: 10.1098/rspa.2022.0832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Abstract
When a rigid object approaches a soft material in a viscous fluid, hydrodynamic stresses arise in the lubricated contact region and deform the soft material. The elastic deformation modifies in turn the flow, hence generating a soft-lubrication coupling. Moreover, soft elastomers and gels are often porous. These materials may be filled with solvent or uncrosslinked polymer chains, and might be permeable to the surrounding fluid, which further complexifies the description. Here, we derive the point-force response of a semi-infinite and permeable poroelastic substrate. Then, we use this fundamental solution in order to address the specific poroelastic lubrication coupling associated with contactless colloidal-probe methods. In particular, we derive the conservative and dissipative components of the force associated with the oscillating vertical motion of a sphere close to the poroelastic substrate. Our results may be relevant for dynamic surface force apparatus and contactless colloidal-probe atomic force microscopy experiments on soft, living and/or fragile materials, such as swollen hydrogels and biological membranes.
Collapse
Affiliation(s)
- Caroline Kopecz-Muller
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33400 Talence, France
- Gulliver, CNRS UMR 7083, ESPCI Paris, Université PSL, 75005 Paris, France
- Institut Pierre-Gilles de Gennes, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Vincent Bertin
- Physics of Fluids, Faculty of Sciences and Technology, University of Twente, 7500AE Enschede, The Netherlands
| | - Elie Raphaël
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33400 Talence, France
| | - Joshua D. McGraw
- Univ. Bordeaux, CNRS, LOMA, UMR 5798, 33400 Talence, France
- Gulliver, CNRS UMR 7083, ESPCI Paris, Université PSL, 75005 Paris, France
| | - Thomas Salez
- Institut Pierre-Gilles de Gennes, ESPCI Paris, Université PSL, 75005 Paris, France
| |
Collapse
|
12
|
Hauer L, Cai Z, Skabeev A, Vollmer D, Pham JT. Phase Separation in Wetting Ridges of Sliding Drops on Soft and Swollen Surfaces. PHYSICAL REVIEW LETTERS 2023; 130:058205. [PMID: 36800444 DOI: 10.1103/physrevlett.130.058205] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Drops in contact with swollen, elastomeric substrates can induce a capillary mediated phase separation in wetting ridges. Using confocal microscopy, we visualize phase separation of oligomeric silicone oil from a cross-linked silicone network during steady-state sliding of water drops. We find an inverse relationship between the oil tip height and the drop sliding speed, which is rationalized by competing transport timescales of the oil molecules: separation rate versus drop-advection speed. Separation rates in highly swollen networks are as fast as diffusion in pure melts.
Collapse
Affiliation(s)
- Lukas Hauer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, 40506 Kentucky, USA
| | - Zhuoyun Cai
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, 40506 Kentucky, USA
| | - Artem Skabeev
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Lessingstrasse 8, 07743 Jena, Germany
| | - Doris Vollmer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jonathan T Pham
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, 40506 Kentucky, USA
| |
Collapse
|
13
|
Jha A, Karnal P, Frechette J. Adhesion of fluid infused silicone elastomer to glass. SOFT MATTER 2022; 18:7579-7592. [PMID: 36165082 DOI: 10.1039/d2sm00875k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Elastomers swollen with non-polar fluids show potential as anti-adhesive materials. We study the effect of oil fraction and contact time on the adhesion between swollen spherical probes of PDMS (polydimethylsiloxane) and flat glass surfaces. The PDMS probes are swollen with pre-determined amount of 10 cSt silicone oil to span the range where the PDMS is fluid free (via solvent extraction) up to the limit where it is oil saturated. Probe tack measurements show that adhesion decreases rapidly with an increase in oil fraction. The decrease in adhesion is attributed to excess oil present at the PDMS-air interface. Contact angle measurements and optical microscopy images support this observation. Adhesion also increases with contact time for a given oil fraction. The increase in adhesion with contact time can be interpreted through different competing mechanisms that depend on the oil fraction where the dominant mechanism changes from extracted to fully swollen PDMS. For partially swollen PDMS, we observe that adhesion initially increases because of viscoelastic relaxation and at long times increases because of contact aging. In contrast, adhesion between fully swollen PDMS and glass barely increases over time and is mainly due to capillary forces. While the relaxation of PDMS in contact is well-described by a visco-poroelastic model, we do not see evidence that poroelastic relaxation of the PDMS contributes to an increase of adhesion with glass whether it is partially or fully swollen.
Collapse
Affiliation(s)
- Anushka Jha
- Chemical and Biomolecular Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Preetika Karnal
- Chemical and Biomolecular Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemical and Biomolecular Engineering, Lehigh University, 124 E Morton St, Building 205, Bethlehem, Pennsylvania 18015, USA
| | - Joelle Frechette
- Chemical and Biomolecular Engineering Department, Johns Hopkins University, Baltimore, MD 21218, USA
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94760, USA.
| |
Collapse
|
14
|
Kim AR, Mitra SK, Zhao B. Capillary pressure mediated long-term dynamics of thin soft films. J Colloid Interface Sci 2022; 628:788-797. [PMID: 36029593 DOI: 10.1016/j.jcis.2022.08.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/24/2022] [Accepted: 08/11/2022] [Indexed: 10/15/2022]
Abstract
HYPOTHESIS The conventional solid-solid contact is well studied in the literature. However, a number of practical applications, such as adhesive patches and biomimetic surfaces, require a much deeper understanding of soft contact where there is a distinct time-dependent adhesion behavior due to the dual-phase structure (solids and liquids). To understand this, currently existing solid-solid contact behavior is extrapolated to soft contact, wherein the size-effect of the gel film and the preload are typically neglected. When introducing the finite-size effect and preload, gels could experience distinctive long-term contact dynamics in contact with another material. EXPERIMENTS We reconstruct the evolving surface profile of the gel films intercalated between a glass sphere and glass slide using dual wavelength-reflection interference contrast microscopy. The macro-sized glass sphere compresses the gel. The indentation depth is comparable to the gel film thickness, wherein the conventional contact theories are inapplicable. FINDINGS The gel surface experiences two deformation stages. The natural preload and elastic force develop the contact area in the early state. In the later state, the viscous free molecules of the gel develop the ridge. We discover that the residual surface stress relaxes over 85 hr. Our findings on the long-term gel deformation provide a new perspective on soft adhesion, from developing soft adhesives to understanding biological tissues.
Collapse
Affiliation(s)
- A-Reum Kim
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Sushanta K Mitra
- Department of Mechanical & Mechatronics Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | - Boxin Zhao
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
15
|
Chaudhuri K, Pham JT. Temperature-dependent soft wetting on amorphous, uncrosslinked polymer surfaces. SOFT MATTER 2022; 18:3698-3704. [PMID: 35485790 DOI: 10.1039/d2sm00301e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The wetting of polymer melts at high temperatures is studied by placing a glycerol drop on a poly(n-butyl methacrylate) film and measuring the wetting ridge. The height of the wetting ridge grows continuously over time. These wetting ridge growth rates can be explained by polymer chain dynamics occurring at the molecular level, determined using oscillatory shear rheology of the polymer melt. The shape of wetting ridge profile can be modeled using an equation previously used for elastomers, with a simple modification that incorporates the time-dependent storage modulus of the uncrosslinked melts.
Collapse
Affiliation(s)
- Krishnaroop Chaudhuri
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| | - Jonathan T Pham
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
16
|
Mohanan VV, Mak HYL, Gurung N, Xu Q. Multiscale Soft Surface Instabilities for Adhesion Enhancement. MATERIALS 2022; 15:ma15030852. [PMID: 35160799 PMCID: PMC8836914 DOI: 10.3390/ma15030852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Soft polymeric gels are susceptible to buckling-induced instabilities due to their great compliance to surface deformations. The instability patterns at soft interfaces have great potential in engineering functional materials with unique surface properties. In this work, we systematically investigated how swelling-induced instability patterns effectively improved the adhesive properties of soft polydimethylsiloxane (PDMS) gels. We directly imaged the formations of the surface instability features during the relaxation process of a swollen gel substrate. The features were found to greatly increase the adhesion energy of soft gels across multiple length scales, and the adhesion enhancement was associated with the variations of contact lines both inside the contact region and along the contact periphery. We expect that these studies of instability patterns due to swelling will further benefit the design of functional interfaces in various engineering applications.
Collapse
Affiliation(s)
- Vaisakh Vilavinalthundil Mohanan
- Department of Physics, Faculty of Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China; (V.V.M.); (H.Y.L.M.)
| | - Ho Yi Lydia Mak
- Department of Physics, Faculty of Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China; (V.V.M.); (H.Y.L.M.)
- Department of Geoscience and Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands
| | - Nishan Gurung
- Department of Mathematics, Faculty of Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China;
| | - Qin Xu
- Department of Physics, Faculty of Sciences, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China; (V.V.M.); (H.Y.L.M.)
- Correspondence:
| |
Collapse
|
17
|
Zhao W, Zhou J, Hu H, Xu C, Xu Q. The role of crosslinking density in surface stress and surface energy of soft solids. SOFT MATTER 2022; 18:507-513. [PMID: 34919111 DOI: 10.1039/d1sm01600h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Surface stress and surface energy are two fundamental parameters that determine the surface properties of any material. While it is commonly believed that the surface stress and surface energy of liquids are identical, the relationship between the two parameters in soft polymeric gels remains debatable. In this work, we measured the surface stress and surface energy of soft silicone gels with varying weight ratios of crosslinkers in soft wetting experiments. Above a critical density, k0, the surface stress was found to increase significantly with crosslinking density while the surface energy remained unchanged. In this regime, we can estimate a non-zero surface elastic modulus that also increases with the ratio of crosslinkers. By comparing the surface mechanics of the soft gels with their bulk rheology, the surface properties near the critical density k0 were found to be closely related to the underlying percolation transition of the polymer networks.
Collapse
Affiliation(s)
- Weiwei Zhao
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Jianhui Zhou
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Haitao Hu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Chang Xu
- School of Physical Science, University of Science and Technology of China, Hefei, China
| | - Qin Xu
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China.
- HKUST Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
18
|
Liu Z, Hui CY, Jagota A, Gong JP, Kiyama R. A surface flattening method for characterizing the surface stress, drained Poisson's ratio and diffusivity of poroelastic gels. SOFT MATTER 2021; 17:7332-7340. [PMID: 34286785 DOI: 10.1039/d1sm00513h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
When a poroelastic gel is released from a patterned mold, surface stress drives deformation and solvent migration in the gel and flattens its surface profile in a time-dependent manner. Specifically, the gel behaves like an incompressible solid immediately after removal from the mold, and becomes compressible as the solvent is able to squeeze out of the polymer network. In this work, we use the finite element method (FEM) to simulate this transient surface flattening process. We assume that the surface stress is isotropic and constant, the polymer network is linearly elastic and isotropic, and that solvent flow obeys Darcy's law. The short-time and long-time surface profiles can be used to determine the surface stress and drained Poisson's ratio of the gel. Our analysis shows that the drained Poisson's ratio and the diffusivity of the gel can be obtained using interferometry and high-speed video microscopy, without mechanical measurement.
Collapse
Affiliation(s)
- Zezhou Liu
- Field of Theoretical and Applied Mechanics, Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
19
|
Danielsen SPO, Beech HK, Wang S, El-Zaatari BM, Wang X, Sapir L, Ouchi T, Wang Z, Johnson PN, Hu Y, Lundberg DJ, Stoychev G, Craig SL, Johnson JA, Kalow JA, Olsen BD, Rubinstein M. Molecular Characterization of Polymer Networks. Chem Rev 2021; 121:5042-5092. [PMID: 33792299 DOI: 10.1021/acs.chemrev.0c01304] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.
Collapse
Affiliation(s)
- Scott P O Danielsen
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Haley K Beech
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bassil M El-Zaatari
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xiaodi Wang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | | | | - Zi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Patricia N Johnson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David J Lundberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Georgi Stoychev
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Bradley D Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- Marsico Lung Institute, University of North Carolina, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States.,Departments of Biomedical Engineering and Physics, Duke University, Durham, North Carolina 27708, United States.,World Primer Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| |
Collapse
|
20
|
Smith-Mannschott K, Xu Q, Heyden S, Bain N, Snoeijer JH, Dufresne ER, Style RW. Droplets Sit and Slide Anisotropically on Soft, Stretched Substrates. PHYSICAL REVIEW LETTERS 2021; 126:158004. [PMID: 33929254 DOI: 10.1103/physrevlett.126.158004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/21/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Anisotropically wetting substrates enable useful control of droplet behavior across a range of applications. Usually, these involve chemically or physically patterning the substrate surface, or applying gradients in properties like temperature or electrical field. Here, we show that a flat, stretched, uniform soft substrate also exhibits asymmetric wetting, both in terms of how droplets slide and in their static shape. Droplet dynamics are strongly affected by stretch: glycerol droplets on silicone substrates with a 23% stretch slide 67% faster in the direction parallel to the applied stretch than in the perpendicular direction. Contrary to classical wetting theory, static droplets in equilibrium appear elongated, oriented parallel to the stretch direction. Both effects arise from droplet-induced deformations of the substrate near the contact line.
Collapse
Affiliation(s)
| | - Qin Xu
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
- Department of Physics, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Stefanie Heyden
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Nicolas Bain
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Jacco H Snoeijer
- Physics of Fluids Group, Faculty of Science and Technology, Mesa+Institute, University of Twente, 7500 AE Enschede, Netherlands
| | - Eric R Dufresne
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| | - Robert W Style
- Department of Materials, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
21
|
Abstract
Hydrogels are commonly used in research and energy, manufacturing, agriculture, and biomedical applications. These uses typically require hydrogel mechanics and internal water transport, described by the poroelastic diffusion coefficient, to be characterized. Sophisticated indentation-based approaches are typically used for this purpose, but they require expensive instrumentation and are often limited to planar samples. Here, we present Shape Relaxation (SHARE), an alternative way to assess the poroelastic diffusion coefficient of hydrogel particles that is cost-effective, straightforward, and versatile. This approach relies on first indenting a hydrogel particle via swelling within a granular packing, and then monitoring how the indented shape of the hydrogel relaxes after it is removed from the packing. We validate this approach using experiments in packings with varying grain sizes and confining stresses; these yield measurements of the poroelastic diffusion coefficient of polyacrylamide hydrogels that are in good agreement with those previously obtained using indentation approaches. We therefore anticipate that the SHARE approach will find broad use in a range of applications of hydrogels and other swellable soft materials.
Collapse
Affiliation(s)
- Jean-François Louf
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | | |
Collapse
|
22
|
Etha SA, Desai PR, Sachar HS, Das S. Wetting Dynamics on Solvophilic, Soft, Porous, and Responsive Surfaces. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sai Ankit Etha
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Parth Rakesh Desai
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Harnoor Singh Sachar
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Siddhartha Das
- Department of Mechanical Engineering, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|