1
|
De Corato M, Martínez-Lera P. Enhanced rotational diffusion and spontaneous rotation of an active Janus disk in a complex fluid. SOFT MATTER 2025; 21:186-197. [PMID: 39636056 DOI: 10.1039/d4sm01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Active colloids and self-propelled particles moving through microstructured fluids can display different behavior compared to what is observed in simple fluids. As they are driven out of equilibrium in complex fluids they can experience enhanced translational and rotational diffusion as well as instabilities. In this work, we study the deterministic and the Brownian rotational dynamics of an active Janus disk propelling at a constant speed through a complex fluid. The interactions between the Janus disk and the complex fluid are modeled using a fluctuating advection-diffusion equation, which we solve using the finite element method. Motivated by experiments, we focus on the case of a complex fluid comprising molecules that are much smaller than the size of the active disk but much bigger than the solvent. Using numerical simulations, we elucidate the interplay between active motion and fluid microstructure that leads to enhanced rotational diffusion and spontaneous rotation observed in experiments employing Janus colloids in polymer solutions. By increasing the propulsion speed of the Janus disk, the simulations predict the onset of a spontaneous rotation and an increase of the rotational diffusion coefficient by orders of magnitude compared to its equilibrium value. These phenomena depend strongly on the number density of the constituents of the complex fluid and their interactions with the two sides of the Janus disk. Given the simplicity of our model, we expect that our findings will apply to a wide range of active systems propelling through complex media.
Collapse
Affiliation(s)
- Marco De Corato
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| | - Paula Martínez-Lera
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
2
|
Debets VE, Löwen H, Janssen LMC. Glassy Dynamics in Chiral Fluids. PHYSICAL REVIEW LETTERS 2023; 130:058201. [PMID: 36800471 DOI: 10.1103/physrevlett.130.058201] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
Chiral active matter is enjoying a rapid increase of interest, spurred by the rich variety of asymmetries that can be attained in, e.g., the shape or self-propulsion mechanism of active particles. Though this has already led to the observance of so-called chiral crystals, active chiral glasses remain largely unexplored. A possible reason for this could be the naive expectation that interactions dominate the glassy dynamics and the details of the active motion become increasingly less relevant. Here, we show that quite the opposite is true by studying the glassy dynamics of interacting chiral active Brownian particles. We demonstrate that when our chiral fluid is pushed to glassy conditions, it exhibits highly nontrivial dynamics, especially compared to a standard linear active fluid such as common active Brownian particles. Despite the added complexity, we are still able to present a full rationalization for all identified dynamical regimes. Most notably, we introduce a new "hammering" mechanism, unique to rapidly spinning particles in high-density conditions, that can fluidize a chiral active solid.
Collapse
Affiliation(s)
- Vincent E Debets
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany
| | - Liesbeth M C Janssen
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
3
|
Kumar P, Chakrabarti R. Dynamics of self-propelled tracer particles inside a polymer network. Phys Chem Chem Phys 2023; 25:1937-1946. [PMID: 36541408 DOI: 10.1039/d2cp04253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The transport of tracer particles through mesh-like environments such as biological hydrogels and polymer matrices is ubiquitous in nature. These tracers can be passive, such as colloids, or active (self-propelled), for example, synthetic nanomotors or bacteria. Computer simulations in principle could be extremely useful in exploring the mechanism of the active transport of tracer particles through mesh-like environments. Therefore, we construct a polymer network on a diamond lattice and use computer simulations to investigate the dynamics of spherical self-propelled particles inside the network. Our main objective is to elucidate the effect of the self-propulsion on the tracer particle dynamics as a function of the tracer size and the stiffness of the polymer network. We compute the time-averaged mean-squared displacement (MSD) and the van-Hove correlations of the tracer. On the one hand, in the case of a bigger sticky particle, the caging caused by the network particles wins over the escape assisted by the self-propulsion. This results an intermediate-time subdiffusion. On the other hand, smaller tracers or tracers with high self-propulsion velocities can easily escape from the cages and show intermediate-time superdiffusion. The stiffer the network, the slower the dynamics of the tracer, and bigger tracers exhibit longer lived intermediate time superdiffusion, since the persistence time scales as ∼σ3, where σ is the diameter of the tracer. At the intermediate time, non-Gaussianity is more pronounced for active tracers. At the long time, the dynamics of the tracer, if passive or weakly active, becomes Gaussian and diffusive, but remains flat for tracers with high self-propulsion, accounting for their seemingly unrestricted motion inside the network.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
4
|
Narinder N, Bos MF, Abaurrea-Velasco C, de Graaf J, Bechinger C. Understanding enhanced rotational dynamics of active probes in rod suspensions. SOFT MATTER 2022; 18:6246-6253. [PMID: 35946318 PMCID: PMC9400583 DOI: 10.1039/d2sm00583b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/20/2022] [Indexed: 06/01/2023]
Abstract
Active Brownian particles (APs) have recently been shown to exhibit enhanced rotational diffusion (ERD) in complex fluids. Here, we experimentally observe ERD and numerically corroborate its microscopic origin for a quasi-two-dimensional suspension of colloidal rods. At high density, the rods form small rafts, wherein they perform small-amplitude, high-frequency longitudinal displacements. Activity couples AP-rod contacts to reorientation, with the variance therein leading to ERD. This is captured by a local, rather than a global relaxation time, as used in previous phenomenological modeling. Our result should prove relevant to the microrheological characterization of complex fluids and furthering our understanding of the dynamics of microorganisms in such media.
Collapse
Affiliation(s)
- N Narinder
- Fachbereich Physik, Universität Konstanz, 78464, Konstanz, Germany.
| | - M F Bos
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands
| | - C Abaurrea-Velasco
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands
| | - J de Graaf
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands
| | - C Bechinger
- Fachbereich Physik, Universität Konstanz, 78464, Konstanz, Germany.
| |
Collapse
|
5
|
Tian J, Kob W, Barrat JL. Are strongly confined colloids good models for two dimensional liquids? J Chem Phys 2022; 156:164903. [PMID: 35490014 DOI: 10.1063/5.0086749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Quasi-two-dimensional (quasi-2D) colloidal hard-sphere suspensions confined in a slit geometry are widely used as two-dimensional (2D) model systems in experiments that probe the glassy relaxation dynamics of 2D systems. However, the question to what extent these quasi-2D systems indeed represent 2D systems is rarely brought up. Here, we use computer simulations that take into account hydrodynamic interactions to show that dense quasi-2D colloidal bi-disperse hard-sphere suspensions exhibit much more rapid diffusion and relaxation than their 2D counterparts at the same area fraction. This difference is induced by the additional vertical space in the quasi-2D samples in which the small colloids can move out of the 2D plane, therefore allowing overlap between particles in the projected trajectories. Surprisingly, this difference in the dynamics can be accounted for if, instead of using the surface density, one characterizes the systems by means of a suitable structural quantity related to the radial distribution function. This implies that in the two geometries, the relevant physics for glass formation is essentially identical. Our results provide not only practical implications on 2D colloidal experiments but also interesting insights into the 3D-to-2D crossover in glass-forming systems.
Collapse
Affiliation(s)
- Jiting Tian
- Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, 621999 Mianyang, China
| | - Walter Kob
- Laboratoire Charles Coulomb (L2C), University of Montpellier and CNRS, F-34095 Montpellier, France
| | | |
Collapse
|
6
|
Sahoo R, Theeyancheri L, Chakrabarti R. Transport of a self-propelled tracer through a hairy cylindrical channel: interplay of stickiness and activity. SOFT MATTER 2022; 18:1310-1318. [PMID: 35060583 DOI: 10.1039/d1sm01693h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Active transport of biomolecules assisted by motor proteins is imperative for the proper functioning of cellular activities. Inspired by the diffusion of active agents in crowded cellular channels, we computationally investigate the transport of an active tracer through a polymer grafted cylindrical channel by varying the activity of the tracer and stickiness of the tracer to the polymers. Our results reveal that the passive tracer exhibits profound subdiffusion with increasing stickiness by exploring deep into the grafted polymeric zone, while purely repulsive one prefers to diffuse through the pore-like space created along the cylindrical axis of the channel. In contrast, the active tracer shows faster dynamics and intermediate superdiffusion even though the tracer preferentially stays close to the dense polymeric region. This observation is further supported by the sharp peaks in the density profile of the probability of radial displacement of the tracer. We discover that the activity plays an important role in deciding the pathway that the tracer takes through the narrow channel. Interestingly, increasing the activity washes out the effect of stickiness. Adding to this, van-Hove functions manifest that the active tracer dynamics deviates from Gaussianity, and the degree of deviation grows with the activity. Our work has direct implications on how effective transportation and delivery of cargo can be achieved through a confined medium where activity, interactions, and crowding are interplaying. Looking ahead, these factors will be crucial for understanding the mechanism of artificial self-powered machines navigating through the cellular channels and performing in vivo challenging tasks.
Collapse
Affiliation(s)
- Rajiblochan Sahoo
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Ligesh Theeyancheri
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Rajarshi Chakrabarti
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
7
|
Debets VE, de Wit XM, Janssen LMC. Cage Length Controls the Nonmonotonic Dynamics of Active Glassy Matter. PHYSICAL REVIEW LETTERS 2021; 127:278002. [PMID: 35061437 DOI: 10.1103/physrevlett.127.278002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/18/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Dense active matter is gaining widespread interest due to its remarkable similarity with conventional glass-forming materials. However, active matter is inherently out of equilibrium and even simple models such as active Brownian particles (ABPs) and active Ornstein-Uhlenbeck particles (AOUPs) behave markedly differently from their passive counterparts. Controversially, this difference has been shown to manifest itself via either a speedup, slowdown, or nonmonotonic change of the glassy relaxation dynamics. Here we rationalize these seemingly contrasting views on the departure from equilibrium by identifying the ratio of the short-time length scale to the cage length, i.e., the length scale of local particle caging, as a vital and unifying control parameter for active glassy matter. In particular, we explore the glassy dynamics of both thermal and athermal ABPs and AOUPs upon increasing the persistence time. We find that for all studied systems there is an optimum of the dynamics; this optimum occurs when the cage length coincides with the corresponding short-time length scale of the system, which is either the persistence length for athermal systems or a combination of the persistence length and a diffusive length scale for thermal systems. This new insight, for which we also provide a simple physical argument, allows us to reconcile and explain the manifestly disparate departures from equilibrium reported in many previous studies of dense active materials.
Collapse
Affiliation(s)
- Vincent E Debets
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Xander M de Wit
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| | - Liesbeth M C Janssen
- Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
8
|
De Corato M, Pagonabarraga I, Natale G. Spontaneous chiralization of polar active particles. Phys Rev E 2021; 104:044607. [PMID: 34781499 DOI: 10.1103/physreve.104.044607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 09/26/2021] [Indexed: 11/07/2022]
Abstract
Polar active particles constitute a wide class of active matter that is able to propel along a preferential direction, given by their polar axis. Here, we demonstrate a generic active mechanism that leads to their spontaneous chiralization through a symmetry-breaking instability. We find that the transition of an active particle from a polar to a chiral symmetry is characterized by the emergence of active rotation and of circular trajectories. The instability is driven by the advection of a solute that interacts differently with the two portions of the particle surface and it occurs through a supercritical pitchfork bifurcation.
Collapse
Affiliation(s)
- Marco De Corato
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, 50009 Zaragoza, Spain
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, C. Martí Franquès 1, 08028 Barcelona, Spain University of Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain and CECAM, Centre Européen de Calcul Atomique et Moléculaire, École Polytechnique Fédérale de Lausanne (EPFL), Batochime, Avenue Forel 2, 1015 Lausanne, Switzerland
| | - Giovanniantonio Natale
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Canada
| |
Collapse
|
9
|
Narinder N, Paul S, Bechinger C. Work fluctuation relation of an active Brownian particle in a viscoelastic fluid. Phys Rev E 2021; 104:034605. [PMID: 34654101 DOI: 10.1103/physreve.104.034605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/04/2021] [Indexed: 11/07/2022]
Abstract
We experimentally investigate the work fluctuations of an active Brownian particle (ABP) during its self-propelled motion in a viscoelastic medium. Under such conditions, ABPs display a persistent circular motion which allows the determination of the orientational work fluctuations along its trajectory. Due to the nonlinear coupling to the non-Markovian bath, we find strong deviations from the work fluctuation theorem (WFT) due to observed increased rotational ABP dynamics. Taking this enhanced rotational diffusion into account, the orientational work distributions can be recasted to be in accordance with the WFT by considering an effective temperature of about two orders of magnitude larger than k_{B}T. This approach is confirmed by the good agreement of the torque exerted by the viscoelastic bath on the ABP obtained from the WFT with the value obtained from the mean angular velocity and the friction coefficient of the ABP.
Collapse
Affiliation(s)
- N Narinder
- Fachbereich Physik, Universität Konstanz, 78464 Konstanz, Germany
| | - Shuvojit Paul
- Fachbereich Physik, Universität Konstanz, 78464 Konstanz, Germany
| | | |
Collapse
|