1
|
Kumar AM, Yagodkin D, Rosati R, Bock DJ, Schattauer C, Tobisch S, Hagel J, Höfer B, Kirchhof JN, Hernández López P, Burfeindt K, Heeg S, Gahl C, Libisch F, Malic E, Bolotin KI. Strain fingerprinting of exciton valley character in 2D semiconductors. Nat Commun 2024; 15:7546. [PMID: 39214968 PMCID: PMC11364664 DOI: 10.1038/s41467-024-51195-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Intervalley excitons with electron and hole wavefunctions residing in different valleys determine the long-range transport and dynamics observed in many semiconductors. However, these excitons with vanishing oscillator strength do not directly couple to light and, hence, remain largely unstudied. Here, we develop a simple nanomechanical technique to control the energy hierarchy of valleys via their contrasting response to mechanical strain. We use our technique to discover previously inaccessible intervalley excitons associated with K, Γ, or Q valleys in prototypical 2D semiconductors WSe2 and WS2. We also demonstrate a new brightening mechanism, rendering an otherwise "dark" intervalley exciton visible via strain-controlled hybridization with an intravalley exciton. Moreover, we classify various localized excitons from their distinct strain response and achieve large tuning of their energy. Overall, our valley engineering approach establishes a new way to identify intervalley excitons and control their interactions in a diverse class of 2D systems.
Collapse
Affiliation(s)
- Abhijeet M Kumar
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, Germany
| | - Denis Yagodkin
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, Germany
| | - Roberto Rosati
- Philipps-Universität Marburg, Mainzer Gasse 33, Marburg, Germany
| | - Douglas J Bock
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, Germany
| | - Christoph Schattauer
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, Vienna, Austria
| | - Sarah Tobisch
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, Vienna, Austria
| | - Joakim Hagel
- Department of Physics, Chalmers University of Technology, 412 96 Gothenburg, Gothenburg, Sweden
| | - Bianca Höfer
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, Germany
| | - Jan N Kirchhof
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, Germany
- Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, Delft, The Netherlands
| | - Pablo Hernández López
- Institute for Physics and IRIS Adlershof, Humboldt-Universität Berlin, Newtonstraße 15, Berlin, Germany
| | - Kenneth Burfeindt
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, Germany
| | - Sebastian Heeg
- Institute for Physics and IRIS Adlershof, Humboldt-Universität Berlin, Newtonstraße 15, Berlin, Germany
| | - Cornelius Gahl
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, Germany
| | - Florian Libisch
- Institute for Theoretical Physics, TU Wien, Wiedner Hauptstraße 8-10, Vienna, Austria
| | - Ermin Malic
- Philipps-Universität Marburg, Mainzer Gasse 33, Marburg, Germany
| | - Kirill I Bolotin
- Department of Physics, Freie Universität Berlin, Arnimallee 14, Berlin, Germany.
| |
Collapse
|
2
|
Cui H, Hu Q, Zhao X, Ma L, Jin F, Zhang Q, Watanabe K, Taniguchi T, Shan J, Mak KF, Li Y, Xu Y. Interlayer Fermi Polarons of Excited Exciton States in Quantizing Magnetic Fields. NANO LETTERS 2024; 24:7077-7083. [PMID: 38828922 DOI: 10.1021/acs.nanolett.4c01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The study of exciton polarons has offered profound insights into the many-body interactions between bosonic excitations and their immersed Fermi sea within layered heterostructures. However, little is known about the properties of exciton polarons with interlayer interactions. Here, through magneto-optical reflectance contrast measurements, we experimentally investigate interlayer Fermi polarons for 2s excitons in WSe2/graphene heterostructures, where the excited exciton states (2s) in the WSe2 layer are dressed by free charge carriers of the adjacent graphene layer in the Landau quantization regime. First, such a system enables an optical detection of integer and fractional quantum Hall states (e.g., ν = ±1/3, ±2/3) of monolayer graphene. Furthermore, we observe that the 2s state evolves into two distinct branches, denoted as attractive and repulsive polarons, when graphene is doped out of the incompressible quantum Hall gaps. Our work paves the way for the understanding of the excited composite quasiparticles and Bose-Fermi mixtures.
Collapse
Affiliation(s)
- Huiying Cui
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianying Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuan Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liguo Ma
- School of Applied and Engineering Physics & Department of Physics, Cornell University, Ithaca, New York 14850, United States
| | - Feng Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Qingming Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jie Shan
- School of Applied and Engineering Physics & Department of Physics, Cornell University, Ithaca, New York 14850, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14850, United States
| | - Kin Fai Mak
- School of Applied and Engineering Physics & Department of Physics, Cornell University, Ithaca, New York 14850, United States
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14850, United States
| | - Yongqing Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
He M, Cai J, Zheng H, Seewald E, Taniguchi T, Watanabe K, Yan J, Yankowitz M, Pasupathy A, Yao W, Xu X. Dynamically tunable moiré exciton Rydberg states in a monolayer semiconductor on twisted bilayer graphene. NATURE MATERIALS 2024; 23:224-229. [PMID: 38177379 DOI: 10.1038/s41563-023-01713-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/02/2023] [Indexed: 01/06/2024]
Abstract
Moiré excitons are emergent optical excitations in two-dimensional semiconductors with moiré superlattice potentials. Although these excitations have been observed on several platforms, a system with dynamically tunable moiré potential to tailor their properties is yet to be realized. Here we present a continuously tunable moiré potential in monolayer WSe2, enabled by its proximity to twisted bilayer graphene (TBG) near the magic angle. By tuning local charge density via gating, TBG provides a spatially varying and dynamically tunable dielectric superlattice for modulation of monolayer WSe2 exciton wave functions. We observed emergent moiré exciton Rydberg branches with increased energy splitting following doping of TBG due to exciton wave function hybridization between bright and dark Rydberg states. In addition, emergent Rydberg states can probe strongly correlated states in TBG at the magic angle. Our study provides a new platform for engineering moiré excitons and optical accessibility to electronic states with small correlation gaps in TBG.
Collapse
Affiliation(s)
- Minhao He
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Jiaqi Cai
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Huiyuan Zheng
- Department of Physics, University of Hong Kong, Hong Kong, China
| | - Eric Seewald
- Department of Physics, Columbia University, New York, NY, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Jiaqiang Yan
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, TN, USA
| | - Matthew Yankowitz
- Department of Physics, University of Washington, Seattle, WA, USA
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Abhay Pasupathy
- Department of Physics, Columbia University, New York, NY, USA
| | - Wang Yao
- Department of Physics, University of Hong Kong, Hong Kong, China.
- HKU-UCAS Joint Institute of Theoretical and Computational Physics at Hong Kong, Hong Kong, China.
| | - Xiaodong Xu
- Department of Physics, University of Washington, Seattle, WA, USA.
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Wietek E, Florian M, Göser J, Taniguchi T, Watanabe K, Högele A, Glazov MM, Steinhoff A, Chernikov A. Nonlinear and Negative Effective Diffusivity of Interlayer Excitons in Moiré-Free Heterobilayers. PHYSICAL REVIEW LETTERS 2024; 132:016202. [PMID: 38242648 DOI: 10.1103/physrevlett.132.016202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/10/2023] [Indexed: 01/21/2024]
Abstract
Interlayer exciton diffusion is studied in atomically reconstructed MoSe_{2}/WSe_{2} heterobilayers with suppressed disorder. Local atomic registry is confirmed by characteristic optical absorption, circularly polarized photoluminescence, and g-factor measurements. Using transient microscopy we observe propagation properties of interlayer excitons that are independent from trapping at moiré- or disorder-induced local potentials. Confirmed by characteristic temperature dependence for free particles, linear diffusion coefficients of interlayer excitons at liquid helium temperature and low excitation densities are almost 1000 times higher than in previous observations. We further show that exciton-exciton repulsion and annihilation contribute nearly equally to nonlinear propagation by disentangling the two processes in the experiment and simulations. Finally, we demonstrate effective shrinking of the light emission area over time across several hundreds of picoseconds at the transition from exciton- to the plasma-dominated regimes. Supported by microscopic calculations for band gap renormalization to identify the Mott threshold, this indicates transient crossing between rapidly expanding, short-lived electron-hole plasma and slower, long-lived exciton populations.
Collapse
Affiliation(s)
- Edith Wietek
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Matthias Florian
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Jonas Göser
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexander Högele
- Fakultät für Physik, Munich Quantum Center, and Center for NanoScience (CeNS), Ludwig-Maximilians-Universität München, 80539 München, Germany
- Munich Center for Quantum Science and Technology (MCQST), 80799 München, Germany
| | | | - Alexander Steinhoff
- Institut für Theoretische Physik, Universität Bremen, 28334 Bremen, Germany
- Bremen Center for Computational Materials Science, Universität Bremen, 28334 Bremen, Germany
| | - Alexey Chernikov
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
5
|
Cong X, Mohammadi PA, Zheng M, Watanabe K, Taniguchi T, Rhodes D, Zhang XX. Interplay of valley polarized dark trion and dark exciton-polaron in monolayer WSe 2. Nat Commun 2023; 14:5657. [PMID: 37704654 PMCID: PMC10500002 DOI: 10.1038/s41467-023-41475-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
The interactions between charges and excitons involve complex many-body interactions at high densities. The exciton-polaron model has been adopted to understand the Fermi sea screening of charged excitons in monolayer transition metal dichalcogenides. The results provide good agreement with absorption measurements, which are dominated by dilute bright exciton responses. Here we investigate the Fermi sea dressing of spin-forbidden dark excitons in monolayer WSe2. With a Zeeman field, the valley-polarized dark excitons show distinct p-doping dependence in photoluminescence when the carriers reach a critical density. This density can be interpreted as the onset of strongly modified Fermi sea interactions and shifts with increasing exciton density. Through valley-selective excitation and dynamics measurements, we also infer an intervalley coupling between the dark trions and exciton-polarons mediated by the many-body interactions. Our results reveal the evolution of Fermi sea screening with increasing exciton density and the impacts of polaron-polaron interactions, which lay the foundation for understanding electronic correlations and many-body interactions in 2D systems.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physics, University of Florida, Gainesville, FL, USA
| | | | - Mingyang Zheng
- Department of Physics, University of Florida, Gainesville, FL, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Japan
| | - Daniel Rhodes
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Xiao-Xiao Zhang
- Department of Physics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
6
|
Hu Q, Zhan Z, Cui H, Zhang Y, Jin F, Zhao X, Zhang M, Wang Z, Zhang Q, Watanabe K, Taniguchi T, Cao X, Liu WM, Wu F, Yuan S, Xu Y. Observation of Rydberg moiré excitons. Science 2023; 380:1367-1372. [PMID: 37384701 DOI: 10.1126/science.adh1506] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/24/2023] [Indexed: 07/01/2023]
Abstract
Rydberg excitons, the solid-state counterparts of Rydberg atoms, have sparked considerable interest with regard to the harnessing of their quantum application potentials, but realizing their spatial confinement and manipulation poses a major challenge. Lately, the rise of two-dimensional moiré superlattices with highly tunable periodic potentials provides a possible pathway. Here, we experimentally demonstrate this capability through the spectroscopic evidence of Rydberg moiré excitons (XRM), which are moiré-trapped Rydberg excitons in monolayer semiconductor tungsten diselenide adjacent to twisted bilayer graphene. In the strong coupling regime, the XRM manifest as multiple energy splittings, pronounced red shift, and narrowed linewidth in the reflectance spectra, highlighting their charge-transfer character wherein electron-hole separation is enforced by strongly asymmetric interlayer Coulomb interactions. Our findings establish the excitonic Rydberg states as candidates for exploitation in quantum technologies.
Collapse
Affiliation(s)
- Qianying Hu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- School of Physics, Nankai University, Tianjin 300071, China
| | - Zhen Zhan
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Imdea Nanoscience, 28015 Madrid, Spain
| | - Huiying Cui
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yalei Zhang
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Feng Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjie Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichuan Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingming Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba 305-0044, Japan
| | - Xuewei Cao
- School of Physics, Nankai University, Tianjin 300071, China
| | - Wu-Ming Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengcheng Wu
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Shengjun Yuan
- School of Physics and Technology, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Yang Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Sayer T, Farah YR, Austin R, Sambur J, Krummel AT, Montoya-Castillo A. Trion Formation Resolves Observed Peak Shifts in the Optical Spectra of Transition-Metal Dichalcogenides. NANO LETTERS 2023. [PMID: 37311112 DOI: 10.1021/acs.nanolett.3c01342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Monolayer transition-metal dichalcogenides (ML-TMDs) have the potential to unlock novel photonic and chemical technologies if their optoelectronic properties can be understood and controlled. Yet, recent work has offered contradictory explanations for how TMD absorption spectra change with carrier concentration, fluence, and time. Here, we test our hypothesis that the large broadening and shifting of the strong band-edge features observed in optical spectra arise from the formation of negative trions. We do this by fitting an ab initio based, many-body model to our experimental electrochemical data. Our approach provides an excellent, global description of the potential-dependent linear absorption data. We further leverage our model to demonstrate that trion formation explains the nonmonotonic potential dependence of the transient absorption spectra, including through photoinduced derivative line shapes for the trion peak. Our results motivate the continued development of theoretical methods to describe cutting-edge experiments in a physically transparent way.
Collapse
Affiliation(s)
- Thomas Sayer
- Department of Chemistry, University of Colorado Boulder, Boulder 80309, Colorado, United States
| | - Yusef R Farah
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Rachelle Austin
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Justin Sambur
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
- School of Advanced Materials Discovery, Colorado State University, Fort Collins 80524, Colorado, United States
| | - Amber T Krummel
- Department of Chemistry, Colorado State University, Fort Collins 80523, Colorado, United States
| | - Andrés Montoya-Castillo
- Department of Chemistry, University of Colorado Boulder, Boulder 80309, Colorado, United States
| |
Collapse
|
8
|
Wagner K, Iakovlev ZA, Ziegler JD, Cuccu M, Taniguchi T, Watanabe K, Glazov MM, Chernikov A. Diffusion of Excitons in a Two-Dimensional Fermi Sea of Free Charges. NANO LETTERS 2023. [PMID: 37220259 DOI: 10.1021/acs.nanolett.2c03796] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Propagation of light-emitting quasiparticles is of central importance across the fields of condensed matter physics and nanomaterials science. We experimentally demonstrate diffusion of excitons in the presence of a continuously tunable Fermi sea of free charge carriers in a monolayer semiconductor. Light emission from tightly bound exciton states in electrically gated WSe2 monolayer is detected using spatially and temporally resolved microscopy. The measurements reveal a nonmonotonic dependence of the exciton diffusion coefficient on the charge carrier density in both electron and hole doped regimes. Supported by analytical theory describing exciton-carrier interactions in a dissipative system, we identify distinct regimes of elastic scattering and quasiparticle formation determining exciton diffusion. The crossover region exhibits a highly unusual behavior of an increasing diffusion coefficient with increasing carrier densities. Temperature-dependent diffusion measurements further reveal characteristic signatures of freely propagating excitonic complexes dressed by free charges with effective mobilities up to 3 × 103 cm2/(V s).
Collapse
Affiliation(s)
- Koloman Wagner
- Institute of Applied Physics and Wüzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Physics, University of Regensburg, 93053 Regensburg, Germany
| | | | - Jonas D Ziegler
- Institute of Applied Physics and Wüzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Physics, University of Regensburg, 93053 Regensburg, Germany
| | - Marzia Cuccu
- Institute of Applied Physics and Wüzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | | | - Alexey Chernikov
- Institute of Applied Physics and Wüzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
- Department of Physics, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
9
|
Ziegler JD, Cho Y, Terres S, Menahem M, Taniguchi T, Watanabe K, Yaffe O, Berkelbach TC, Chernikov A. Mobile Trions in Electrically Tunable 2D Hybrid Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210221. [PMID: 36811916 DOI: 10.1002/adma.202210221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/27/2023] [Indexed: 05/05/2023]
Abstract
2D hybrid perovskites are currently in the spotlight of material research for light-harvesting and -emitting applications. It remains extremely challenging, however, to externally control their optical response due to the difficulties of introducing electrical doping. Here, an approach of interfacing ultrathin sheets of perovskites with few-layer graphene and hexagonal boron nitride into gate-tunable, hybrid heterostructures, is demonstrated. It allows for bipolar, continuous tuning of light emission and absorption in 2D perovskites by electrically injecting carriers to densities as high as 1012 cm-2 . This reveals the emergence of both negatively and positively charged excitons, or trions, with binding energies up to 46 meV, among the highest measured for 2D systems. Trions are shown to dominate light emission and propagate with mobilities reaching 200 cm2 V-1 s-1 at elevated temperatures. The findings introduce the physics of interacting mixtures of optical and electrical excitations to the broad family of 2D inorganic-organic nanostructures. The presented strategy to electrically control the optical response of 2D perovskites highlights it as a promising material platform toward electrically modulated light-emitters, externally guided charged exciton currents, and exciton transistors based on layered, hybrid semiconductors.
Collapse
Affiliation(s)
- Jonas D Ziegler
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, TU Dresden, 01062, Dresden, Germany
| | - Yeongsu Cho
- Department of Chemistry, Columbia University, New York, New York, 10027, USA
| | - Sophia Terres
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, TU Dresden, 01062, Dresden, Germany
| | - Matan Menahem
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, 305-0047, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, 305-0047, Japan
| | - Omer Yaffe
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Timothy C Berkelbach
- Center for Computational Quantum Physics, Flatiron Institute, New York, 10010, USA
- Department of Chemistry, Columbia University, New York, 10027, USA
| | - Alexey Chernikov
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, TU Dresden, 01062, Dresden, Germany
| |
Collapse
|
10
|
Biswas S, Champagne A, Haber JB, Pokawanvit S, Wong J, Akbari H, Krylyuk S, Watanabe K, Taniguchi T, Davydov AV, Al Balushi ZY, Qiu DY, da Jornada FH, Neaton JB, Atwater HA. Rydberg Excitons and Trions in Monolayer MoTe 2. ACS NANO 2023; 17:7685-7694. [PMID: 37043483 DOI: 10.1021/acsnano.3c00145] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Monolayer transition metal dichalcogenide (TMDC) semiconductors exhibit strong excitonic optical resonances, which serve as a microscopic, noninvasive probe into their fundamental properties. Like the hydrogen atom, such excitons can exhibit an entire Rydberg series of resonances. Excitons have been extensively studied in most TMDCs (MoS2, MoSe2, WS2, and WSe2), but detailed exploration of excitonic phenomena has been lacking in the important TMDC material molybdenum ditelluride (MoTe2). Here, we report an experimental investigation of excitonic luminescence properties of monolayer MoTe2 to understand the excitonic Rydberg series, up to 3s. We report a significant modification of emission energies with temperature (4 to 300 K), thereby quantifying the exciton-phonon coupling. Furthermore, we observe a strongly gate-tunable exciton-trion interplay for all the Rydberg states governed mainly by free-carrier screening, Pauli blocking, and band gap renormalization in agreement with the results of first-principles GW plus Bethe-Salpeter equation approach calculations. Our results help bring monolayer MoTe2 closer to its potential applications in near-infrared optoelectronics and photonic devices.
Collapse
Affiliation(s)
- Souvik Biswas
- Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States
- Kavli Nanoscience Institute, Pasadena, California 91125, United States
| | - Aurélie Champagne
- Materials and Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - Jonah B Haber
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
| | - Supavit Pokawanvit
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Joeson Wong
- Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States
- Kavli Nanoscience Institute, Pasadena, California 91125, United States
| | - Hamidreza Akbari
- Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Sergiy Krylyuk
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials, Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Albert V Davydov
- Materials Science and Engineering Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Zakaria Y Al Balushi
- Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States
| | - Diana Y Qiu
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520, United States
| | - Felipe H da Jornada
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Jeffrey B Neaton
- Materials and Chemical Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Physics, University of California Berkeley, Berkeley, California 94720, United States
- Kavli Energy Nanosciences Institute at Berkeley, Berkeley, California 94720, United States
| | - Harry A Atwater
- Thomas J. Watson Laboratory of Applied Physics, California Institute of Technology, Pasadena, California 91125, United States
- Kavli Nanoscience Institute, Pasadena, California 91125, United States
| |
Collapse
|
11
|
High-lying valley-polarized trions in 2D semiconductors. Nat Commun 2022; 13:6980. [PMID: 36379952 PMCID: PMC9666447 DOI: 10.1038/s41467-022-33939-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Optoelectronic functionalities of monolayer transition-metal dichalcogenide (TMDC) semiconductors are characterized by the emergence of externally tunable, correlated many-body complexes arising from strong Coulomb interactions. However, the vast majority of such states susceptible to manipulation has been limited to the region in energy around the fundamental bandgap. We report the observation of tightly bound, valley-polarized, UV-emissive trions in monolayer TMDC transistors: quasiparticles composed of an electron from a high-lying conduction band with negative effective mass, a hole from the first valence band, and an additional charge from a band-edge state. These high-lying trions have markedly different optical selection rules compared to band-edge trions and show helicity opposite to that of the excitation. An electrical gate controls both the oscillator strength and the detuning of the excitonic transitions, and therefore the Rabi frequency of the strongly driven three-level system, enabling excitonic quantum interference to be switched on and off in a deterministic fashion. Here, the authors observe tightly bound, valley-polarized, UV-emissive trions in monolayer transition metal dichalcogenide transistors. These are quasiparticles composed of an electron from a high-lying conduction band with negative effective mass, a hole from the first valence band, and an additional charge from a band-edge state.
Collapse
|
12
|
Dirnberger F, Ziegler JD, Faria Junior PE, Bushati R, Taniguchi T, Watanabe K, Fabian J, Bougeard D, Chernikov A, Menon VM. Quasi-1D exciton channels in strain-engineered 2D materials. SCIENCE ADVANCES 2021; 7:eabj3066. [PMID: 34714670 PMCID: PMC8555901 DOI: 10.1126/sciadv.abj3066] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Strain engineering is a powerful tool in designing artificial platforms for high-temperature excitonic quantum devices. Combining strong light-matter interaction with robust and mobile exciton quasiparticles, two-dimensional transition metal dichalcogenides (2D TMDCs) hold great promise in this endeavor. However, realizing complex excitonic architectures based on strain-induced electronic potentials alone has proven to be exceptionally difficult so far. Here, we demonstrate deterministic strain engineering of both single-particle electronic bandstructure and excitonic many-particle interactions. We create quasi-1D transport channels to confine excitons and simultaneously enhance their mobility through locally suppressed exciton-phonon scattering. Using ultrafast, all-optical injection and time-resolved readout, we realize highly directional exciton flow with up to 100% anisotropy both at cryogenic and room temperatures. The demonstrated fundamental modification of the exciton transport properties in a deterministically strained 2D material with effectively tunable dimensionality has broad implications for both basic solid-state science and emerging technologies.
Collapse
Affiliation(s)
- Florian Dirnberger
- Department of Physics, City College of New York, New York, NY 10031, USA
| | - Jonas D. Ziegler
- Department of Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Paulo E. Faria Junior
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Rezlind Bushati
- Department of Physics, City College of New York, New York, NY 10031, USA
- Department of Physics, The Graduate Center, City University of New York, New York, NY 10016, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Ibaraki 305-004, Japan
| | - Jaroslav Fabian
- Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Dominique Bougeard
- Department of Physics, University of Regensburg, 93040 Regensburg, Germany
| | - Alexey Chernikov
- Department of Physics, University of Regensburg, 93040 Regensburg, Germany
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Würzburg-Dresden Cluster of Excellence ct.qmat, Dresden University of Technology, Dresden 01187, Germany
| | - Vinod M. Menon
- Department of Physics, City College of New York, New York, NY 10031, USA
- Department of Physics, The Graduate Center, City University of New York, New York, NY 10016, USA
| |
Collapse
|
13
|
Liu E, van Baren J, Lu Z, Taniguchi T, Watanabe K, Smirnov D, Chang YC, Lui CH. Exciton-polaron Rydberg states in monolayer MoSe 2 and WSe 2. Nat Commun 2021; 12:6131. [PMID: 34675213 PMCID: PMC8531338 DOI: 10.1038/s41467-021-26304-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
Exciton polaron is a hypothetical many-body quasiparticle that involves an exciton dressed with a polarized electron-hole cloud in the Fermi sea. It has been evoked to explain the excitonic spectra of charged monolayer transition metal dichalcogenides, but the studies were limited to the ground state. Here we measure the reflection and photoluminescence of monolayer MoSe2 and WSe2 gating devices encapsulated by boron nitride. We observe gate-tunable exciton polarons associated with the 1 s–3 s exciton Rydberg states. The ground and excited exciton polarons exhibit comparable energy redshift (15~30 meV) from their respective bare excitons. The robust excited states contradict the trion picture because the trions are expected to dissociate in the excited states. When the Fermi sea expands, we observe increasingly severe suppression and steep energy shift from low to high exciton-polaron Rydberg states. Their gate-dependent energy shifts go beyond the trion description but match our exciton-polaron theory. Our experiment and theory demonstrate the exciton-polaron nature of both the ground and excited excitonic states in charged monolayer MoSe2 and WSe2. An exciton polaron is a quasiparticle composed of an exciton dressed with an electron-hole cloud, and this concept has been used to explain the ground excitonic states in charged monolayer transition metal dichalcogenides. Here the authors present experimental and theoretical evidence of exciton-polaron Rydberg states in monolayer MoSe2 and WSe2.
Collapse
Affiliation(s)
- Erfu Liu
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
| | - Jeremiah van Baren
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA
| | - Zhengguang Lu
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA.,Department of Physics, Florida State University, Tallahassee, FL, 32310, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki Tsukuba, Ibaraki, 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Namiki Tsukuba, Ibaraki, 305-0044, Japan
| | - Dmitry Smirnov
- National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Yia-Chung Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei, 11529, Taiwan.
| | - Chun Hung Lui
- Department of Physics and Astronomy, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|