1
|
Horwath JP, Lin XM, He H, Zhang Q, Dufresne EM, Chu M, Sankaranarayanan SKRS, Chen W, Narayanan S, Cherukara MJ. AI-NERD: Elucidation of relaxation dynamics beyond equilibrium through AI-informed X-ray photon correlation spectroscopy. Nat Commun 2024; 15:5945. [PMID: 39009571 PMCID: PMC11251071 DOI: 10.1038/s41467-024-49381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 06/04/2024] [Indexed: 07/17/2024] Open
Abstract
Understanding and interpreting dynamics of functional materials in situ is a grand challenge in physics and materials science due to the difficulty of experimentally probing materials at varied length and time scales. X-ray photon correlation spectroscopy (XPCS) is uniquely well-suited for characterizing materials dynamics over wide-ranging time scales. However, spatial and temporal heterogeneity in material behavior can make interpretation of experimental XPCS data difficult. In this work, we have developed an unsupervised deep learning (DL) framework for automated classification of relaxation dynamics from experimental data without requiring any prior physical knowledge of the system. We demonstrate how this method can be used to accelerate exploration of large datasets to identify samples of interest, and we apply this approach to directly correlate microscopic dynamics with macroscopic properties of a model system. Importantly, this DL framework is material and process agnostic, marking a concrete step towards autonomous materials discovery.
Collapse
Affiliation(s)
- James P Horwath
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| | - Xiao-Min Lin
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Hongrui He
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Qingteng Zhang
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Eric M Dufresne
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Miaoqi Chu
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Subramanian K R S Sankaranarayanan
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL, USA
| | - Wei Chen
- Materials Science Division and Center for Molecular Engineering, Argonne National Laboratory, Lemont, IL, USA
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA
| | - Suresh Narayanan
- Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA.
| | | |
Collapse
|
2
|
Chu M, Li J, Zhang Q, Jiang Z, Dufresne EM, Sandy A, Narayanan S, Schwarz N. pyXPCSviewer: an open-source interactive tool for X-ray photon correlation spectroscopy visualization and analysis. JOURNAL OF SYNCHROTRON RADIATION 2022; 29:1122-1129. [PMID: 35787580 PMCID: PMC9255579 DOI: 10.1107/s1600577522004830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
pyXPCSviewer, a Python-based graphical user interface that is deployed at beamline 8-ID-I of the Advanced Photon Source for interactive visualization of XPCS results, is introduced. pyXPCSviewer parses rich X-ray photon correlation spectroscopy (XPCS) results into independent PyQt widgets that are both interactive and easy to maintain. pyXPCSviewer is open-source and is open to customization by the XPCS community for ingestion of diversified data structures and inclusion of novel XPCS techniques, both of which are growing demands particularly with the dawn of near-diffraction-limited synchrotron sources and their dedicated XPCS beamlines.
Collapse
Affiliation(s)
- Miaoqi Chu
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Jeffrey Li
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Zhang Jiang
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Eric M. Dufresne
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Alec Sandy
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Suresh Narayanan
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| | - Nicholas Schwarz
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439, USA
| |
Collapse
|
3
|
Gommes CJ, Zorn R, Jaksch S, Frielinghaus H, Holderer O. Inelastic neutron scattering analysis with time-dependent Gaussian-field models. J Chem Phys 2021; 155:024121. [PMID: 34266279 DOI: 10.1063/5.0053446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Converting neutron scattering data to real-space time-dependent structures can only be achieved through suitable models, which is particularly challenging for geometrically disordered structures. We address this problem by introducing time-dependent clipped Gaussian field models. General expressions are derived for all space- and time-correlation functions relevant to coherent inelastic neutron scattering for multiphase systems and arbitrary scattering contrasts. Various dynamic models are introduced that enable one to add time-dependence to any given spatial statistics, as captured, e.g., by small-angle scattering. In a first approach, the Gaussian field is decomposed into localized waves that are allowed to fluctuate in time or to move either ballistically or diffusively. In a second approach, a dispersion relation is used to make the spectral components of the field time-dependent. The various models lead to qualitatively different dynamics, which can be discriminated by neutron scattering. The methods of this paper are illustrated with oil/water microemulsion studied by small-angle scattering and neutron spin-echo. All available data-in both film and bulk contrasts, over the entire range of q and τ-are analyzed jointly with a single model. The analysis points to the static large-scale structure of the oil and water domains while the interfaces are subject to thermal fluctuations. The fluctuations have an amplitude of around 60 Å and contribute to 30% of the total interface area.
Collapse
Affiliation(s)
- Cedric J Gommes
- Forschungszentrum Jülich GmbH, Jülich Center for Neutron Science, 52425 Jülich, Germany
| | - Reiner Zorn
- Forschungszentrum Jülich GmbH, Jülich Center for Neutron Science, 52425 Jülich, Germany
| | - Sebastian Jaksch
- Forschungszentrum Jülich GmbH, Jülich Center for Neutron Science at the Heinz Maier Leibnitz Zentrum, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Henrich Frielinghaus
- Forschungszentrum Jülich GmbH, Jülich Center for Neutron Science at the Heinz Maier Leibnitz Zentrum, Lichtenbergstrasse 1, 85747 Garching, Germany
| | - Olaf Holderer
- Forschungszentrum Jülich GmbH, Jülich Center for Neutron Science at the Heinz Maier Leibnitz Zentrum, Lichtenbergstrasse 1, 85747 Garching, Germany
| |
Collapse
|