1
|
Ibabe Á, Steffensen GO, Casal I, Gómez M, Kanne T, Nygård J, Levy Yeyati A, Lee EJH. Heat Dissipation Mechanisms in Hybrid Superconductor-Semiconductor Devices Revealed by Joule Spectroscopy. NANO LETTERS 2024; 24:6488-6495. [PMID: 38771151 PMCID: PMC11157656 DOI: 10.1021/acs.nanolett.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Understanding heating and cooling mechanisms in mesoscopic superconductor-semiconductor devices is crucial for their application in quantum technologies. Owing to their poor thermal conductivity, heating effects can drive superconducting-to-normal transitions even at low bias, observed as sharp conductance dips through the loss of Andreev excess currents. Tracking such dips across magnetic field, cryostat temperature, and applied microwave power allows us to uncover cooling bottlenecks in different parts of a device. By applying this "Joule spectroscopy" technique, we analyze heat dissipation in devices based on InAs-Al nanowires and reveal that cooling of superconducting islands is limited by the rather inefficient electron-phonon coupling, as opposed to grounded superconductors that primarily cool by quasiparticle diffusion. We show that powers as low as 50-150 pW are able to suppress superconductivity on the islands. Applied microwaves lead to similar heating effects but are affected by the interplay of the microwave frequency and the effective electron-phonon relaxation time.
Collapse
Affiliation(s)
- Ángel Ibabe
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| | - Gorm O. Steffensen
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | - Ignacio Casal
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| | - Mario Gómez
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| | - Thomas Kanne
- Center
for Quantum Devices, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jesper Nygård
- Center
for Quantum Devices, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Alfredo Levy Yeyati
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
- Departamento
de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, E-28049 Madrid, Spain
| | - Eduardo J. H. Lee
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
2
|
Geier M, Krøjer S, von Oppen F, Marcus CM, Flensberg K, Brouwer PW. Non-Abelian Holonomy of Majorana Zero Modes Coupled to a Chaotic Quantum Dot. PHYSICAL REVIEW LETTERS 2024; 132:036604. [PMID: 38307057 DOI: 10.1103/physrevlett.132.036604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/24/2023] [Accepted: 12/16/2023] [Indexed: 02/04/2024]
Abstract
If a quantum dot is coupled to a topological superconductor via tunneling contacts, each contact hosts a Majorana zero mode in the limit of zero transmission. Close to a resonance and at a finite contact transparency, the resonant level in the quantum dot couples the Majorana modes, but a ground-state degeneracy per fermion parity subspace remains if the number of Majorana modes coupled to the dot is five or larger. Upon varying shape-defining gate voltages while remaining close to resonance, a nontrivial evolution within the degenerate ground-state manifold is achieved. We characterize the corresponding non-Abelian holonomy for a quantum dot with chaotic classical dynamics using random matrix theory and discuss measurable signatures of the non-Abelian time evolution.
Collapse
Affiliation(s)
- Max Geier
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Svend Krøjer
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Felix von Oppen
- Dahlem Center for Complex Quantum Systems and Physics Department, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Charles M Marcus
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Karsten Flensberg
- Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Piet W Brouwer
- Dahlem Center for Complex Quantum Systems and Physics Department, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| |
Collapse
|
3
|
Lahiri A, Choi SJ, Trauzettel B. Nonequilibrium Fractional Josephson Effect. PHYSICAL REVIEW LETTERS 2023; 131:126301. [PMID: 37802950 DOI: 10.1103/physrevlett.131.126301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/17/2023] [Indexed: 10/08/2023]
Abstract
Josephson tunnel junctions exhibit a supercurrent typically proportional to the sine of the superconducting phase difference ϕ. In general, a term proportional to cos(ϕ) is also present, alongside microscopic electronic retardation effects. We show that voltage pulses sharply varying in time prompt a significant impact of the cos(ϕ) term. Its interplay with the sin(ϕ) term results in a nonequilibrium fractional Josephson effect (NFJE) ∼sin(ϕ/2) in the presence of bound states close to zero frequency. Our microscopic analysis reveals that the interference of nonequilibrium virtual quasiparticle excitations is responsible for this phenomenon. We also analyze this phenomenon for topological Josephson junctions with Majorana bound states. Remarkably, the NFJE is independent of the ground state fermion parity unlike its equilibrium counterpart.
Collapse
Affiliation(s)
- Aritra Lahiri
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, D-97074 Würzburg, Germany
| | - Sang-Jun Choi
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, D-97074 Würzburg, Germany
| | - Björn Trauzettel
- Institute for Theoretical Physics and Astrophysics, University of Würzburg, D-97074 Würzburg, Germany
- Würzburg-Dresden Cluster of Excellence ct.qmat, Germany
| |
Collapse
|
4
|
McLauchlan CK, Béri B. Fermion-Parity-Based Computation and Its Majorana-Zero-Mode Implementation. PHYSICAL REVIEW LETTERS 2022; 128:180504. [PMID: 35594115 DOI: 10.1103/physrevlett.128.180504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/29/2022] [Indexed: 06/15/2023]
Abstract
Majorana zero modes (MZMs) promise a platform for topologically protected fermionic quantum computation. However, creating multiple MZMs and generating (directly or via measurements) the requisite transformations (e.g., braids) pose significant challenges. We introduce fermion-parity-based computation (FPBC): a measurement-based scheme, modeled on Pauli-based computation, that uses efficient classical processing to virtually increase the number of available MZMs and which, given magic state inputs, operates without transformations. FPBC requires all MZM parities to be measurable, but this conflicts with constraints in proposed MZM hardware. We thus introduce a design in which all parities are directly measurable and which is hence well suited for FPBC. While developing FPBC, we identify the "logical braid group" as the fermionic analog of the Clifford group.
Collapse
Affiliation(s)
| | - Benjamin Béri
- DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
- T.C.M. Group, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
5
|
Stefański P. Sub-gap Fano resonances in a topological superconducting wire with on-site Coulomb interactions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:465602. [PMID: 34388745 DOI: 10.1088/1361-648x/ac1d6d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
We consider theoretically a 1D-semiconducting wire with strong Rashba interaction in proximity withs-wave superconductor, driven into topological phase by external magnetic field. Additionally, we take into account on-site Coulomb interactions inside the wire. The system is modelled by a tight binding Hamiltonian with Rashba hopping term and induceds-wave superconductivity. Calculations are performed utilizing recursive Green's function method, and Coulomb interactions are treated selfconsistently within Hubbard I approximation. For the Hubbard levels residing withinp-wave superconducting gap, particle-hole symmetric four-resonance structure develops in the density of states, apart from Majorana resonance. One pair of particle-hole symmetric resonances is created by the discrete II-Hubbard levels of the particular site, and the second pair of Hubbard sub-bands originates from recursive summation over the sites of the wire. Quantum interference between both types of pairs of states creates in-gap charge-conjugated Fano resonances with opposite asymmetry factors. We demonstrate that when quantum interference is dominated by two-particle tunneling, the Majorana resonance is strongly diminished, while it is not altered when single-particle tunneling dominates in interference process. We also discuss some consequences for experimental distinction of true Majorana states, and show that on-site Coulomb interactions support the appearance of topological phase.
Collapse
Affiliation(s)
- Piotr Stefański
- Institute of Molecular Physics of the Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań, Poland
| |
Collapse
|