1
|
Man H, Iguchi Y, Bao JK, Chung DY, Kanatzidis MG. In Situ Local Imaging of Ferromagnetism and Superconductivity in RbEuFe 4As 4. NANO LETTERS 2024; 24:9082-9087. [PMID: 39007862 DOI: 10.1021/acs.nanolett.4c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The coexistence of superconductivity and ferromagnetism is an intrinsically interesting research focus in condensed matter physics, but the study is limited by low superconducting (Tc) and magnetic (Tm) transition temperatures in related materials. Here, we used a scanning superconducting quantum interference device to image the in situ diamagnetic and ferromagnetic responses of RbEuFe4As4 with high Tc and Tm. We observed significant suppression of the superfluid density in the vicinity of the magnetic phase transition, signifying fluctuation-enhanced magnetic scatterings between Eu spins and Fe 3d conduction electrons. Intriguingly, we observed multiple ferromagnetic domains that should be absent in an ideal magnetic helical phase. The formation of these domains demonstrates a weak c-axis ferromagnetic component probably arising from the Eu spin-canting effect, indicative of possible superconductivity-driven domain Meissner and domain vortex-antivortex phases, as revealed in EuFe2(As0.79P0.21)2. Our observations highlight that RbEuFe4As4 is a unique system that includes multiple interplay channels between superconductivity and ferromagnetism.
Collapse
Affiliation(s)
- Huiyuan Man
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States
- Stanford Nano Shared Facilities, Stanford University, Stanford, California 94305, United States
| | - Yusuke Iguchi
- Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305, United States
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Jin-Ke Bao
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Duck Young Chung
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Mercouri G Kanatzidis
- Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Chen X, Deng J, Jin S, Ying T, Fei G, Ren H, Yang Y, Ma K, Yang M, Wang J, Li Y, Chen X, Liu X, Du S, Guo JG, Chen X. Two-Dimensional Pb Square Nets from Bulk ( RO) nPb ( R = Rare Earth Metals, n = 1,2). J Am Chem Soc 2023; 145:17435-17442. [PMID: 37524115 DOI: 10.1021/jacs.3c05807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
All two-dimensional (2D) materials of group IV elements from Si to Pb are stabilized by carrier doping and interface bonding from substrates except graphene which can be free-standing. The involvement of strong hybrid of bonds, adsorption of exotic atomic species, and the high concentration of crystalline defects are often unavoidable, complicating the measurement of the intrinsic properties. In this work, we report the discovery of seven kinds of hitherto unreported bulk compounds (RO)nPb (R = rare earth metals, n = 1,2), which consist of quasi-2D Pb square nets that are spatially and electronically detached from the [RO]δ+ blocking layers. The band structures of these compounds near Fermi levels are relatively clean and dominantly contributed by Pb, resembling the electron-doped free-standing Pb monolayer. The R2O2Pb compounds are metallic at ambient pressure and become superconductors under high pressures with much enhanced critical fields. In particular, Gd2O2Pb (9.1 μB/Gd) exhibits an interesting bulk response of lattice distortion in conjunction with the emergence of superconductivity and magnetic anomalies at a critical pressure of 10 GPa. Our findings reveal the unexpected facets of 2D Pb sheets that are considerably different from their bulk counterparts and provide an alternative route for exploring 2D properties in bulk materials.
Collapse
Affiliation(s)
- Xu Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Deng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shifeng Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Tianping Ying
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ge Fei
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China
| | - Huifen Ren
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yunfan Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Ma
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingzhang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junjie Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanchun Li
- Beijing Synchrotron Radiation Facility Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Chen
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China
| | - Xiaobing Liu
- Laboratory of High Pressure Physics and Material Science (HPPMS), School of Physics and Physical Engineering, Qufu Normal University, Qufu 273100, China
| | - Shixuan Du
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian-Gang Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Xiaolong Chen
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
3
|
Bulk and Single Crystal Growth Progress of Iron-Based Superconductors (FBS): 1111 and 1144. CRYSTALS 2021. [DOI: 10.3390/cryst12010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The discovery of iron-based superconductors (FBS) and their superconducting properties has generated huge research interest and provided a very rich physics high Tc family for fundamental and experimental studies. The 1111 (REFeAsO, RE = Rare earth) and 1144 (AEAFe4As4, AE = Ca, Eu; A = K, Rb) families are the two most important families of FBS, which offer the high Tc of 58 K and 36 K with doping and without doping, respectively. Furthermore, the crystal growth of these families is not an easy process, and a lot of efforts have been reported in this direction. However, the preparation of high-quality and suitable-sized samples is still challenging. In this short review, we will summarize the growth of materials with their superconducting properties, especially polycrystals and single crystals, for the 1111 and 1144 families, and make a short comparison between them to understand the developmental issues.
Collapse
|
4
|
Liu YB, Liu Y, Cao GH. Iron-based magnetic superconductors AEuFe 4As 4( A=Rb, Cs): natural superconductor-ferromagnet hybrids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:093001. [PMID: 34818630 DOI: 10.1088/1361-648x/ac3cf2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Superconductivity (SC) and ferromagnetism (FM) are normally antagonistic, and their coexistence in a single crystalline material appears to be very rare. Over a decade ago, the iron-based pnictides of doped EuFe2As2were found to render such a coexistence, primarily because of the Fe-3dmulti-orbitals which simultaneously satisfy the superconducting pairing and the ferromagnetic exchange interaction among Eu local spins. In 2016, the discovery of the iron-based superconductorsAEuFe4As4(A= Rb, Cs) provided an additional and complementary material basis for the study of the coexistence and the interplay between SC and FM. The two sibling compounds, which can be viewed as an intergrowth or a hybrid betweenAFe2As2and EuFe2As2, show SC in the FeAs bilayers atTc= 35-37 K and magnetic ordering atTm∼ 15 K in the sandwiched Eu2+-ion sheets. BelowTm, the Eu2+spins align ferromagnetically within each Eu plane, making the system as a natural atomic-thick superconductor-ferromagnet superlattice. This paper reviews the main research progress in the emerging topic during the past five years. An outlook for the future research opportunities is also presented.
Collapse
Affiliation(s)
- Ya-Bin Liu
- Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
| | - Yi Liu
- Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
- Department of Applied Physics, Zhejiang University of Technology, Hangzhou 310 023, People's Republic of China
| | - Guang-Han Cao
- Department of Physics, Zhejiang University, Hangzhou 310027, People's Republic of China
- Zhejiang Province Key Laboratory of Quantum Technology and Devices, Interdisciplinary Center for Quantum Information, and State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
| |
Collapse
|
5
|
Ishida S, Kagerbauer D, Holleis S, Iida K, Munakata K, Nakao A, Iyo A, Ogino H, Kawashima K, Eisterer M, Eisaki H. Superconductivity-driven ferromagnetism and spin manipulation using vortices in the magnetic superconductor EuRbFe 4As 4. Proc Natl Acad Sci U S A 2021; 118:e2101101118. [PMID: 34493664 PMCID: PMC8449347 DOI: 10.1073/pnas.2101101118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Magnetic superconductors are specific materials exhibiting two antagonistic phenomena, superconductivity and magnetism, whose mutual interaction induces various emergent phenomena, such as the reentrant superconducting transition associated with the suppression of superconductivity around the magnetic transition temperature (T m), highlighting the impact of magnetism on superconductivity. In this study, we report the experimental observation of the ferromagnetic order induced by superconducting vortices in the high-critical-temperature (high-T c) magnetic superconductor EuRbFe4As4 Although the ground state of the Eu2+ moments in EuRbFe4As4 is helimagnetism below T m, neutron diffraction and magnetization experiments show a ferromagnetic hysteresis of the Eu2+ spin alignment. We demonstrate that the direction of the Eu2+ moments is dominated by the distribution of pinned vortices based on the critical state model. Moreover, we demonstrate the manipulation of spin texture by controlling the direction of superconducting vortices, which can help realize spin manipulation devices using magnetic superconductors.
Collapse
Affiliation(s)
- Shigeyuki Ishida
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan;
| | | | | | - Kazuki Iida
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai 319-1106, Japan
| | - Koji Munakata
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai 319-1106, Japan
| | - Akiko Nakao
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, Tokai 319-1106, Japan
| | - Akira Iyo
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Hiraku Ogino
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| | - Kenji Kawashima
- Research & Development Department, IMRA JAPAN CO., LTD., Kariya 448-8650, Japan
| | | | - Hiroshi Eisaki
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
| |
Collapse
|