1
|
Li J, Lin K, Xu H, Yang W, Zhang Q, Yu C, Zhang Q, Chen J, Wang CW, Kato K, Kawaguchi S, You L, Cao Y, Li Q, Chen X, Miao J, Deng J, Xing X. High-Entropy Magnet Enabling Distinctive Thermal Expansions in Intermetallic Compounds. J Am Chem Soc 2024. [PMID: 39445542 DOI: 10.1021/jacs.4c10681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The high-entropy strategy has gained increasing popularity in the design of functional materials due to its four core effects. In this study, we introduce the concept of a "high-entropy magnet (HEM)", which integrates diverse magnetic compounds within a single phase and is anticipated to demonstrate unique magnetism-related properties beyond that of its individual components. This concept is exemplified in AB2-type layered Kagome intermetallic compounds (Ti,Zr,Hf,Nb,Fe)Fe2. It is revealed that the competition among individual magnetic states and the presence of magnetic Fe in originally nonmagnetic high-entropy sites lead to intricate magnetic transitions with temperature. Consequently, unusual transformations in thermal expansion property (from positive to zero, negative, and back to near zero) are observed. Specifically, a near-zero thermal expansion is achieved over a wide temperature range (10-360 K, αv = -0.62 × 10-6 K-1) in the A-site equal-atomic ratio (Ti1/5Zr1/5Hf1/5Nb1/5Fe1/5)Fe2 compound, which is associated with successive deflection of average Fe moments. The HEM strategy holds promise for discovering new functionalities in solid materials.
Collapse
Affiliation(s)
- Jinghan Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Hankun Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Wanda Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qian Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Chengyi Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qinghua Zhang
- Institution of Physics, Chinese Academic of Science, No.8, Third South Street, Zhongguancun, Haidian District, Beijing 100190, China
| | - Jing Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Chin-Wei Wang
- Neutron Group, National Synchrotron Radiation Research Center, Hinchu 30077, Taiwan
| | - Kenichi Kato
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-gun, Hyogo 679-5148, Janpan
| | - Shogo Kawaguchi
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-gun, Hyogo 679-5148, Janpan
| | - Li You
- State Key Laboratory for Advanced Metals and Materials, University of Science and Technology, Beijing 100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Miao
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Zhou H, Cao Y, Khmelevskyi S, Zhang Q, Hu S, Avdeev M, Wang CW, Zhou R, Yu C, Chen X, Li Q, Miao J, Li Q, Lin K, Xing X. Colossal Zero-Field-Cooled Exchange Bias via Tuning Compensated Ferrimagnetic in Kagome Metals. J Am Chem Soc 2024. [PMID: 39039443 DOI: 10.1021/jacs.4c04173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Exchange bias (EB) is a crucial property with widespread applications but particularly occurs by complex interfacial magnetic interactions after field cooling. To date, intrinsic zero-field-cooled EB (ZEB) has only emerged in a few bulk frustrated systems and their magnitudes remain small yet. Here, enabled by high temperature synthesis, we uncover a colossal ZEB field of 4.95 kOe via tuning compensated ferrimagnetism in a family of kagome metals, which is almost twice the magnitude of known materials. Atomic-scale structure, spin dynamics, and magnetic theory revealed that these compensated ferrimagnets originate from significant antiferromagnetic exchange interactions embedded in the holmium-iron ferrimagnetic matrix due to supersaturated preferential manganese doping. A random antiferromagnetic order of manganese sublattice sandwiched between ferromagnetic iron kagome bilayers accounts for such unconventional pinning. The outcome of the present study outlines disorder-induced giant bulk ZEB and coercivity in layered frustrated systems.
Collapse
Affiliation(s)
- Haowei Zhou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Sergii Khmelevskyi
- Vienna Scientific Cluster Research Center, Technical University of Vienna, Operngasse 10, Vienna A-1040, Austria
| | - Qinghua Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shixin Hu
- Institute of Applied Magnetics, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, China
| | - Maxim Avdeev
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chin-Wei Wang
- Neutron Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Rui Zhou
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chengyi Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiheng Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Miao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
3
|
Yu C, Lin K, Zhang Q, Zhu H, An K, Chen Y, Yu D, Li T, Fu X, Yu Q, You L, Kuang X, Cao Y, Li Q, Deng J, Xing X. An isotropic zero thermal expansion alloy with super-high toughness. Nat Commun 2024; 15:2252. [PMID: 38480744 PMCID: PMC10937970 DOI: 10.1038/s41467-024-46613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/04/2024] [Indexed: 03/17/2024] Open
Abstract
Zero thermal expansion (ZTE) alloys with high mechanical response are crucial for their practical usage. Yet, unifying the ZTE behavior and mechanical response in one material is a grand obstacle, especially in multicomponent ZTE alloys. Herein, we report a near isotropic zero thermal expansion (αl = 1.10 × 10-6 K-1, 260-310 K) in the natural heterogeneous LaFe54Co3.5Si3.35 alloy, which exhibits a super-high toughness of 277.8 ± 14.7 J cm-3. Chemical partition, in the dual-phase structure, assumes the role of not only modulating thermal expansion through magnetic interaction but also enhancing mechanical properties via interface bonding. The comprehensive analysis reveals that the hierarchically synergistic enhancement among lattice, phase interface, and heterogeneous structure is significant for strong toughness. Our findings pave the way to tailor thermal expansion and obtain prominent mechanical properties in multicomponent alloys, which is essential to ultra-stable functional materials.
Collapse
Affiliation(s)
- Chengyi Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qinghua Zhang
- Institution of Physics, Chinese Academic of Science, No.8, 3rd South Street, Zhongguancun Haidian District, Beijing, 100190, P. R. China
| | - Huihui Zhu
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ke An
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Yan Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dunji Yu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Tianyi Li
- X-Ray Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Xiaoqian Fu
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qian Yu
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou, China
| | - Li You
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaojun Kuang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
4
|
Sun Y, Cao Y, Hu S, Avdeev M, Wang CW, Khmelevskyi S, Ren Y, Lapidus SH, Chen X, Li Q, Deng J, Miao J, Lin K, Kuang X, Xing X. Interplanar Ferromagnetism Enhanced Ultrawide Zero Thermal Expansion in Kagome Cubic Intermetallic (Zr,Nb)Fe 2. J Am Chem Soc 2023; 145:17096-17102. [PMID: 37490643 DOI: 10.1021/jacs.3c03160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
A cubic metal exhibiting zero thermal expansion (ZTE) over a wide temperature window demonstrates significant applications in a broad range of advanced technologies but is extremely rare in nature. Here, enabled by high-temperature synthesis, we realize tunable thermal expansion via magnetic doping in the class of kagome cubic (Fd-3m) intermetallic (Zr,Nb)Fe2. A remarkably isotropic ZTE is achieved with a negligible coefficient of thermal expansion (+0.47 × 10-6 K-1) from 4 to 425 K, almost wider than most ZTE in metals available. A combined in situ magnetization, neutron powder diffraction, and hyperfine Mössbauer spectrum analysis reveals that interplanar ferromagnetic ordering contributes to a large magnetic compensation for normal lattice contraction upon cooling. Trace Fe-doping introduces extra magnetic exchange interactions that distinctly enhance the ferromagnetism and magnetic ordering temperature, thus engendering such an ultrawide ZTE. This work presents a promising ZTE in kagome metallic materials.
Collapse
Affiliation(s)
- Yanming Sun
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Shixin Hu
- Institute of Applied Magnetics, Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Maxim Avdeev
- Australian Nuclear Science and Technology Organisation, Lucas Heights, New South Wales 2234, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Chin-Wei Wang
- Neutron Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Sergii Khmelevskyi
- Research Center for Computational Materials Science and Engineering, Vienna University of Technology, Karlplatz 13, A-1040 Vienna, Austria
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Kowloon 999077, Hong Kong, China
| | - Saul H Lapidus
- X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Miao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiaojun Kuang
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541006, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
5
|
Yu C, Lin K, Chen X, Jiang S, Cao Y, Li W, Chen L, An K, Chen Y, Yu D, Kato K, Zhang Q, Gu L, You L, Kuang X, Wu H, Li Q, Deng J, Xing X. Superior zero thermal expansion dual-phase alloy via boron-migration mediated solid-state reaction. Nat Commun 2023; 14:3135. [PMID: 37253768 DOI: 10.1038/s41467-023-38929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 06/01/2023] Open
Abstract
Rapid progress in modern technologies demands zero thermal expansion (ZTE) materials with multi-property profiles to withstand harsh service conditions. Thus far, the majority of documented ZTE materials have shortcomings in different aspects that limit their practical utilization. Here, we report on a superior isotropic ZTE alloy with collective properties regarding wide operating temperature windows, high strength-stiffness, and cyclic thermal stability. A boron-migration-mediated solid-state reaction (BMSR) constructs a salient "plum pudding" structure in a dual-phase Er-Fe-B alloy, where the precursor ErFe10 phase reacts with the migrated boron and transforms into the target Er2Fe14B (pudding) and α-Fe phases (plum). The formation of such microstructure helps to eliminate apparent crystallographic texture, tailor and form isotropic ZTE, and simultaneously enhance the strength and toughness of the alloy. These findings suggest a promising design paradigm for comprehensive performance ZTE alloys.
Collapse
Affiliation(s)
- Chengyi Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Suihe Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenjie Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Liang Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Ke An
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Yan Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dunji Yu
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Kenichi Kato
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-Cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li You
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaojun Kuang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, P. R. China
| | - Hui Wu
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, 20899-6102, US
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
6
|
Qin F, Wang X, Hu L, Jia N, Gao Z, Aydemir U, Chen J, Ding X, Sun J. Switch of Thermal Expansions Triggered by Itinerant Electrons in Isostructural Metal Trifluorides. Inorg Chem 2022; 61:21004-21010. [PMID: 36520116 DOI: 10.1021/acs.inorgchem.2c03499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Manageable thermal expansion (MTE) of metal trifluorides can be achieved by introducing local structure distortion (LSD) in the negative thermal expansion ScF3. However, an open issue is why isostructural TiF3, free of LSD, exhibits positive thermal expansion. Herein, a combined analysis of synchrotron X-ray diffraction, X-ray pair distribution function, and rigorous first-principles calculations was performed to reveal the important role of itinerant electrons in mediating soft phonons and lattice dynamics. Metallic TiF3 demonstrates itinerant electrons and a suppressed Grüneisen parameter γ ≈ -20, while insulating ScF3 absence of itinerant electrons has a considerable γ ≈ -120. With increasing electron doping concentrations in ScF3, soft phonons become hardened and the γ is repressed significantly, identical to TiF3. The presented results update the thermal expansion transition mechanism in framework structure analogues and provide a practical approach to obtaining MTE without inducing sizable structure distortion.
Collapse
Affiliation(s)
- Feiyu Qin
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xiaoying Wang
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Lei Hu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ning Jia
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zhibin Gao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Umut Aydemir
- Department of Chemistry, Koç University, Sariyer, Istanbul 34450, Turkey.,Koç University Boron and Advanced Materials Application and Research Center (KUBAM), Sariyer, Istanbul 34450, Turkey
| | - Jun Chen
- Department of Physical Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiangdong Ding
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jun Sun
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
7
|
Pevec S, Donlagic D. Nano-strain resolution fiber-optic Fabry-Perot sensors compatible with moderate/low resolution VIS-NIR spectrometers. OPTICS EXPRESS 2022; 30:41999-42014. [PMID: 36366662 DOI: 10.1364/oe.475723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
This paper reports on nano-strain resolution fiber-optic Fabry-Perot sensors produced by an improved selective etching method. The presented sensors exhibit high spectral sensitivity, low intrinsic temperature response, small size and mounting comparable to conventional Fiber Bragg gratings. Furthermore, the proposed sensors can be read-out by a combination of cost-efficient and widely available VIS/NIR spectrometers and LEDs used in lighting/automotive applications. A strain resolution of 1 nɛ was demonstrated when using a high-end FBG signal interrogator, while the application of a cost-efficient VIS spectrometer still yielded a strain resolution of about 20-70 nɛ. When applying suitable temperature compensation, absolute measurements with the nano-strain range are also plausible.
Collapse
|
8
|
Li W, Lin K, Yan Y, Yu C, Cao Y, Chen X, Wang CW, Kato K, Chen Y, An K, Zhang Q, Gu L, Li Q, Deng J, Xing X. A Seawater-Corrosion-Resistant and Isotropic Zero Thermal Expansion (Zr,Ta)(Fe,Co) 2 Alloy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109592. [PMID: 35772730 DOI: 10.1002/adma.202109592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Zero thermal expansion (ZTE) alloys as dimensionally stable materials are usually challenged by harsh environmental erosion, since ZTE and corrosion resistance are generally mutually exclusive. Here, a high-performance alloy, Zr0.8 Ta0.2 Fe1.7 Co0.3 , is reported, that shows isotropic ZTE behavior (αl = 0.21(2) × 10-6 K-1 ) in a wide temperature range of 5-360 K, high corrosion resistance in a seawater-like solution compared with classic Invar and stainless Invar, and excellent cyclic thermal and structural stabilities. Such stabilities are attributed to the cubic symmetry, the controllable magnetic order, and the spontaneously formed passive film with Ta and Zr chemical modifications. The results are evidenced by X-ray/neutron diffraction, microscopy, spectroscopy, and electrochemistry investigations. Such multiple stabilities have the potential to broaden the robust applications of ZTE alloys, especially in marine services.
Collapse
Affiliation(s)
- Wenjie Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yu Yan
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chengyi Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xin Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Chin-Wei Wang
- Neutron Group, National Synchrotron Radiation Research Center, Hsinchu, 30076, Australia
| | - Kenichi Kato
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Yan Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ke An
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Qinghua Zhang
- Institution of Physics, Chinese Academic of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
| | - Lin Gu
- Institution of Physics, Chinese Academic of Science, No. 8, 3rd South Street, Zhongguancun, Haidian District, Beijing, 100190, P. R. China
| | - Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jinxia Deng
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, and Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
9
|
Li Q, Lin K, Liu Z, Hu L, Cao Y, Chen J, Xing X. Chemical Diversity for Tailoring Negative Thermal Expansion. Chem Rev 2022; 122:8438-8486. [PMID: 35258938 DOI: 10.1021/acs.chemrev.1c00756] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Negative thermal expansion (NTE), referring to the lattice contraction upon heating, has been an attractive topic of solid-state chemistry and functional materials. The response of a lattice to the temperature field is deeply rooted in its structural features and is inseparable from the physical properties. For the past 30 years, great efforts have been made to search for NTE compounds and control NTE performance. The demands of different applications give rise to the prominent development of new NTE systems covering multifarious chemical substances and many preparation routes. Even so, the intelligent design of NTE structures and efficient tailoring for lattice thermal expansion are still challenging. However, the diverse chemical routes to synthesize target compounds with featured structures provide a large number of strategies to achieve the desirable NTE behaviors with related properties. The chemical diversity is reflected in the wide regulating scale, flexible ways of introduction, and abundant structure-function insights. It inspires the rapid growth of new functional NTE compounds and understanding of the physical origins. In this review, we provide a systematic overview of the recent progress of chemical diversity in the tailoring of NTE. The efficient control of lattice and deep structural deciphering are carefully discussed. This comprehensive summary and perspective for chemical diversity are helpful to promote the creation of functional zero-thermal-expansion (ZTE) compounds and the practical utilization of NTE.
Collapse
Affiliation(s)
- Qiang Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Kun Lin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhanning Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Lei Hu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Yili Cao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Jun Chen
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| | - Xianran Xing
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute of Solid State Chemistry, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|