1
|
Yang L, Li J, Zhang D, Liu Y, Hu Q. Deviatoric stress-induced metallization, layer reconstruction and collapse of van der Waals bonded zirconium disulfide. Commun Chem 2024; 7:141. [PMID: 38909153 PMCID: PMC11193816 DOI: 10.1038/s42004-024-01223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
In contrast to two-dimensional (2D) monolayer materials, van der Waals layered transition metal dichalcogenides exhibit rich polymorphism, making them promising candidates for novel superconductor, topological insulators and electrochemical catalysts. Here, we highlight the role of hydrostatic pressure on the evolution of electronic and crystal structures of layered ZrS2. Under deviatoric stress, our electrical experiments demonstrate a semiconductor-to-metal transition above 30.2 GPa, while quasi-hydrostatic compression postponed the metallization to 38.9 GPa. Both X-ray diffraction and Raman results reveal structural phase transitions different from those under hydrostatic pressure. Under deviatoric stress, ZrS2 rearranges the original ZrS6 octahedra into ZrS8 cuboids at 5.5 GPa, in which the unique cuboids coordination of Zr atoms is thermodynamically metastable. The structure collapses to a partially disordered phase at 17.4 GPa. These complex phase transitions present the importance of deviatoric stress on the highly tunable electronic properties of ZrS2 with possible implications for optoelectronic devices.
Collapse
Affiliation(s)
- Linfei Yang
- Center for High Pressure Science and Technology Advanced Research, 100193, Beijing, China
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen, 333403, Jiangxi, China
| | - Junwei Li
- Center for High Pressure Science and Technology Advanced Research, 100193, Beijing, China
| | - Dongzhou Zhang
- Hawai'i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Yuegao Liu
- CAS Key Laboratory for Experimental Study under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, 572000, China
| | - Qingyang Hu
- Center for High Pressure Science and Technology Advanced Research, 100193, Beijing, China.
- Shanghai Advanced Research in Physical Sciences (SHARPS), Shanghai, 201203, China.
| |
Collapse
|
2
|
Zhen J, Liu Y, Dong H, Zhang Z, Zhang S, Wang G, Zhou Y, Wan S, Chen B, Liu G. Pressure-induced disorder and nanosizing inhibits superconductivity in In 2Te 3. NANOTECHNOLOGY 2023; 35:05LT01. [PMID: 37871598 DOI: 10.1088/1361-6528/ad0602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/22/2023] [Indexed: 10/25/2023]
Abstract
The generation of disorder often gives rise to profound and irreversible physical phenomena. Here, we explore the influence of disorder on the superconducting properties of In2Te3through comprehensive high-pressure investigations. Building upon previous findings, we investigated the progressive suppression of superconductivity in In2Te3during the depressurization process: the increased disorder that ultimately leads to the complete disappearance of the superconducting state. Simultaneously, our high-pressure x-ray diffraction analysis reveals an irreversible structural phase transition. Furthermore, microstructure analysis using transmission electron microscopy clearly demonstrates both grain refinement and a substantial enhancement of disorder. These findings not only provide valuable insights into the mechanism by which disorder suppresses superconductivity, but also offer guidance for future advancements in the fabrication of atmospheric-pressure superconductors.
Collapse
Affiliation(s)
- Jiapeng Zhen
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
- Science and Technology on Integrated Logistics Support Laboratory, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Ying Liu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
- Science and Technology on Integrated Logistics Support Laboratory, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Ziyou Zhang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Shihui Zhang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Gui Wang
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Yan Zhou
- School of Physics and Technology, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Shun Wan
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
| | - Bin Chen
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Shanghai 201203, People's Republic of China
- School of Science, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Guanjun Liu
- College of Intelligence Science and Technology, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
- Science and Technology on Integrated Logistics Support Laboratory, National University of Defense Technology, Changsha, Hunan 410073, People's Republic of China
| |
Collapse
|
3
|
Creating superconductivity in WB 2 through pressure-induced metastable planar defects. Nat Commun 2022; 13:7901. [PMID: 36550110 PMCID: PMC9780245 DOI: 10.1038/s41467-022-35191-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
High-pressure electrical resistivity measurements reveal that the mechanical deformation of ultra-hard WB2 during compression induces superconductivity above 50 GPa with a maximum superconducting critical temperature, Tcof 17 K at 91 GPa. Upon further compression up to 187 GPa, the Tcgradually decreases. Theoretical calculations show that electron-phonon mediated superconductivity originates from the formation of metastable stacking faults and twin boundaries that exhibit a local structure resembling MgB2 (hP3, space group 191, prototype AlB2). Synchrotron x-ray diffraction measurements up to 145 GPa show that the ambient pressure hP12 structure (space group 194, prototype WB2) continues to persist to this pressure, consistent with the formation of the planar defects above 50 GPa. The abrupt appearance of superconductivity under pressure does not coincide with a structural transition but instead with the formation and percolation of mechanically-induced stacking faults and twin boundaries. The results identify an alternate route for designing superconducting materials.
Collapse
|
4
|
Li W, Feng J, Zhang X, Li C, Dong H, Deng W, Liu J, Tian H, Chen J, Jiang S, Sheng H, Chen B, Zhang H. Metallization and Superconductivity in the van der Waals Compound CuP 2Se through Pressure-Tuning of the Interlayer Coupling. J Am Chem Soc 2021; 143:20343-20355. [PMID: 34813695 DOI: 10.1021/jacs.1c09735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Emergent layered Cu-bearing van der Waals (vdW) compounds have great potentials for use in electrocatalysis, lithium batteries, and electronic and optoelectronic devices. However, many of their alluring properties such as potential superconductivity remain unknown. In this work, using CuP2Se as a model compound, we explored its electrical transport and structural evolution at pressures up to ∼60 GPa using both experimental determinations and ab initio calculations. We found that CuP2Se undergoes a semiconductor-to-metal transition at ∼20 GPa at room temperature and a metal-to-superconductor transition at 3.3-5.7 K in the pressure range from 27.0 to 61.4 GPa. At ∼10 and 20 GPa, there are two isostructural changes in the compound, corresponding to, respectively, the emergence of the interlayer coupling and start of interlayer atomic bonding. At a pressure between 35 and 40 GPa, the vdW layers start to slide and then merge, forming a new phase with high coordination numbers. We also found that the Bardeen-Cooper-Schrieffer (BCS) theory describes quite well the pressure dependence of the critical temperature despite occurrence of a possible medium-to-strong electron-phonon coupling, revealing the determinant roles of the enhanced bulk modulus and electron density of states at high pressure. Moreover, nanosizing of CuP2Se at high pressure further increased the critical temperature even at sizes approaching the Anderson limit. These findings would have important implications for developing novel applications of layered vdW compounds through simple pressure tuning of the interlayer coupling.
Collapse
Affiliation(s)
- Weiwei Li
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Jiajia Feng
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Xiaoliang Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Cong Li
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Wen Deng
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Junxiu Liu
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Hua Tian
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Jian Chen
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Sheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Hongwei Sheng
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Bin Chen
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Hengzhong Zhang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| |
Collapse
|