1
|
An D, Zhao W, Jiang Q, Ma T, Tian F, Duan D, Cui T. Design of High-Temperature Superconducting Ternary Hydride NaY3H20 at Moderate Pressure via Introducing Hydrogen Vacancies. Inorg Chem 2025; 64:1587-1595. [PMID: 39815398 DOI: 10.1021/acs.inorgchem.4c05085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Superconducting hydrides exhibiting a high critical temperature (Tc) under extreme pressures have garnered significant interest. However, the extremely high pressures required for their stability have limited their practical applications. The current challenge is to identify high-Tc superconducting hydrides that can be stabilized at lower or even ambient pressures. Here, we propose a strategy for designing high-Tc superconducting hydrides at low pressures by introducing defects into the hydrogen frameworks of clathrate hydrides. We present a type of hydrogen-vacancy structural type AB3H20 derived from type-I clathrate hydrides and identified a stable NaY3H20 through high-throughput calculations. Further calculations show that NaY3H20 is thermodynamically stable above 133 GPa and dynamically stable down to 20 GPa, with a predicted high Tc of approximately 115 K. It significantly reduces the pressure required for stability compared to that of type-I clathrate hydrides with high Tc. Our results provide a foundation for further exploration of high-Tc superconducting hydrides at lower pressures or even ambient conditions.
Collapse
Affiliation(s)
- Decheng An
- State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Wendi Zhao
- State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Qiwen Jiang
- State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Tiancheng Ma
- State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Defang Duan
- State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Tian Cui
- State Key Laboratory of Superhard Materials and Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Pinsook U, Tsuppayakorn-Aek P, Bovornratanaraks T. Superconductivity in hexagonal Ce 0.5La 0.5H 9 under high pressure. Phys Chem Chem Phys 2025; 27:768-774. [PMID: 39659279 DOI: 10.1039/d4cp04244a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Recently, experimental observation has shown that the substitutional alloy (Ce,La)H9 can be successfully synthesized under high pressure, approximately 90-170 GPa, and become a superconductor with a high critical temperature (Tc) superconductivity in ternary rare-earth clathrate hydrides between 148-178 K. In this work, we theoretically simplified the hydride alloy (Ce,La)H9, a compound in a series that could function as a potential superconductor, with Ce0.5La0.5H9 exhibiting strong electron-phonon coupling (EPC). The Ce0.5La0.5H9 alloy is scrutinized for its lattice dynamical stability in the pressure range of 100 to 150 GPa. Remarkably, we have first unlocked the theoretical structure of Ce0.5La0.5H9, which remains ambiguous in identifying its crystal structure through experimental measurements. With these remarkable results, the Ce0.5La0.5H9 begins to exhibit structural stability at 110 GPa. The superconducting spectral function is also calculated. We found that the EPC reaches strong-coupling at a pressure of 120 GPa. Using the Allen-Dynes-modified McMillan equation in the strong coupling regime, the Ce0.5La0.5H9 exhibits superconductivity with a Tc of approximately 127 K.
Collapse
Affiliation(s)
- Udomsilp Pinsook
- Department of Physics, Faculty of Science, Chulalongkorn University, 10330 Bangkok, Thailand
| | - Prutthipong Tsuppayakorn-Aek
- Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Thiti Bovornratanaraks
- Extreme Conditions Physics Research Laboratory and Center of Excellence in Physics of Energy Materials (CE:PEM), Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Jiang Q, Chen L, Du M, Duan D. A perspective on reducing stabilizing pressure for high-temperature superconductivity in hydrides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:493002. [PMID: 39168147 DOI: 10.1088/1361-648x/ad7217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/21/2024] [Indexed: 08/23/2024]
Abstract
The theoretical predictions and experimental syntheses of hydrogen sulfide (H3S) have ignited a surge of research interest in hydride superconductors. Over the past two decades, extensive investigations have been conducted on hydrides with the ultimate goal of achieving room-temperature superconductivity under ambient conditions. In this review, we present a comprehensive summary of the current strategies and progress towards this goal in hydride materials. We conclude their electronic characteristics, hydrogen atom aggregation forms, stability mechanisms, and more. While providing a real-time snapshot of the research landscape, our aim is to offer deeper insights into reducing the stabilizing pressure for high-temperature superconductors in hydrides. This involves defining key long-term theoretical and experimental opportunities and challenges. Although achieving high critical temperatures for hydrogen-based superconductors still requires high pressure, we remain confident in the potential of hydrides as candidates for room-temperature superconductors at ambient pressure.
Collapse
Affiliation(s)
- Qiwen Jiang
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Ling Chen
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Mingyang Du
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Defang Duan
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
4
|
Jiang Q, Duan D, Song H, Zhang Z, Huo Z, Jiang S, Cui T, Yao Y. Prediction of Room-Temperature Superconductivity in Quasi-Atomic H 2-Type Hydrides at High Pressure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405561. [PMID: 39033541 PMCID: PMC11425200 DOI: 10.1002/advs.202405561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Achieving superconductivity at room temperature (RT) is a holy grail in physics. Recent discoveries on high-Tc superconductivity in binary hydrides H3S and LaH10 at high pressure have directed the search for RT superconductors to compress hydrides with conventional electron-phonon mechanisms. Here, an exceptional family of superhydrides is predicated under high pressures, MH12 (M = Mg, Sc, Zr, Hf, Lu), all exhibiting RT superconductivity with calculated Tcs ranging from 313 to 398 K. In contrast to H3S and LaH10, the hydrogen sublattice in MH12 is arranged as quasi-atomic H2 units. This unique configuration is closely associated with high Tc, attributed to the high electronic density of states derived from H2 antibonding states at the Fermi level and the strong electron-phonon coupling related to the bending vibration of H2 and H-M-H. Notably, MgH12 and ScH12 remain dynamically stable even at pressure below 100 GPa. The findings offer crucial insights into achieving RT superconductivity and pave the way for innovative directions in experimental research.
Collapse
Affiliation(s)
- Qiwen Jiang
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Defang Duan
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Hao Song
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Zihan Zhang
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Zihao Huo
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Shuqing Jiang
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
- Synergetic Extreme Condition User Facility, College of Physics, Jilin University, Changchun, Jilin, 130012, China
| | - Tian Cui
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Yansun Yao
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5E2, Canada
| |
Collapse
|
5
|
Tao YL, Liu QJ, Fan DH, Liu FS, Liu ZT. Emerging superconductivity rules in rare-earth and alkaline-earth metal hydrides. iScience 2024; 27:110542. [PMID: 39184437 PMCID: PMC11342274 DOI: 10.1016/j.isci.2024.110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 08/27/2024] Open
Abstract
Hydrides of alkaline-earth and rare-earth metals have garnered significant interest in high-temperature superconductor research due to their excellent electron-phonon coupling and high T c upon pressurization. This study explores the electronic structures and electron-phonon coupling of metal hydrides XHn (n = 4,6), where X includes Ca, Mg, Sc, and Y. The involvement of d-orbital electrons alters the Fermi surface, leading to saddle-point nesting and a charge density wave (CDW) phase transition, which opens the superconducting gap. For instance, in YH6, the exchange coupling between Y-4d and H-1s holes in the phonon softening region results in T c values up to 230 K. The study suggests that factors, such as the origin of the CDW order, hydrogen concentration, and d-orbital contributions are crucial to superconductivity. This work proposes a new rule for high T c superconductors, emphasizing the importance of double gaps and electron-phonon interactions at exchange coupling sites, and predicts potential high-quality superconductors among rare-earth hydrides.
Collapse
Affiliation(s)
- Ya-Le Tao
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Qi-Jun Liu
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Dai-He Fan
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Fu-Sheng Liu
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China
| | - Zheng-Tang Liu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| |
Collapse
|
6
|
Wang Y, Jin Y, Yang F, Zhang J, Zhang C, Kuang F, Ju M, Li S, Cheng S. Prediction of potential high-temperature superconductivity in ternary Y-Hf-H compounds under high pressure. Sci Rep 2024; 14:17670. [PMID: 39085479 PMCID: PMC11291659 DOI: 10.1038/s41598-024-68697-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024] Open
Abstract
Compressed ternary alloy superhydrides are currently considered to be the most promising competitors for high-temperature superconducting materials. Here, the stable stoichiometries in the Y-Hf-H ternary system under pressure are comprehensively explored in theory and four fresh phases are predicted: Pmna-YHfH6 and P4/mmm-YHfH7 at 200 GPa, P4/mmm-YHfH8 at 300 GPa and P-6m2-YHfH18 at 400 GPa. The four Y-Hf-H ternary phases are thermodynamically and dynamically stable at corresponding pressure. In addition, structural features, bonding characteristics, electronic properties, and superconductivity of the four ternary Y-Hf-H phases are systematically calculated and discussed. As the hydrogen content and the density of states of H atoms at the Fermi level increase, the superconducting transition temperatures (Tc) of Y-Hf-H system are significantly enhanced. The P-6m2-YHfH18 with high hydrogen content exhibits a high calculated Tc value of 130 K at 400 GPa.
Collapse
Affiliation(s)
- Yanqi Wang
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Yuanyuan Jin
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Fulong Yang
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Jinquan Zhang
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Chuanzhao Zhang
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China.
| | - Fangguang Kuang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou, 341000, China.
| | - Meng Ju
- School of Physical Science and Technology, Southwest University, Chongqing, 400715, China
| | - Song Li
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| | - Shubo Cheng
- Department of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou, 434023, China
| |
Collapse
|
7
|
Sun W, Li S, Li X, Ouyang T, Liu K, Mu D, Lu C, Peng F. High-Tcsuperconductivity in doped molecular superconductors ofK4B8-xMxH32(M = C, N) under high pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:425704. [PMID: 38955332 DOI: 10.1088/1361-648x/ad5e2d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Stabilized and metallic light elements hydrides have provided a potential route to achieve the goal of room-temperature superconductors at moderate or ambient pressures. Here, we have performed systematic DFT theoretical calculations to examine the effects of different light elements C and N atoms doped in cubic K4B8H32hydrides on the superconductivity at low pressures. As a result of various atoms substituting, we have found that metallic K4B_{8-x}MxH32(M = C, N) hydrides are dynamically stable at 50 GPa, band structures and density of states (DOS) indicate that sizeableTccorrelates with a high B-H DOS at the Fermi level. With the increasing of B atoms in K4B_{8-x}MxH32hydrides, the DOS values at Fermi level have been improved due to the delocalized electrons in B-H bonds, which result in strong electron-phonon coupling (EPC) interaction and increase theTcfrom 19.04 to 77.07 K for KC2H8and KB2H8at 50 GPa. The NH4unit in stable K4B7NH32hydrides has weakened the EPC and led to lowTcvalue of 21.47 K. Our results suggest the light elements hydrides KB2H8and K4B7CH32could estimate highTcvalues at 50 GPa, and the boron hydrides would be potential candidates to design or modulate hydrides superconductors with highTcat moderate or ambient pressures.
Collapse
Affiliation(s)
- Weiguo Sun
- College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, People's Republic of China
| | - Simin Li
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Xiaofeng Li
- College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, People's Republic of China
| | - Tong Ouyang
- College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, People's Republic of China
| | - Kainan Liu
- College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, People's Republic of China
| | - Dexin Mu
- College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, People's Republic of China
| | - Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Feng Peng
- College of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022, People's Republic of China
| |
Collapse
|
8
|
Hou P, Ma Y, Pang M, Cai Y, Shen Y, Xie H, Tian F. Anharmonic and quantum effects in Pm3̄ AlM(M = Hf, Zr)H6 under high pressure: A first-principles study. J Chem Phys 2024; 161:024504. [PMID: 38984960 DOI: 10.1063/5.0219790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
First-principles calculations were employed to investigate the impact of quantum ionic fluctuations and lattice anharmonicity on the crystal structure and superconductivity of Pm3̄ AlM(M = Hf, Zr)H6 at pressures of 0.3-21.2 GPa (AlHfH6) and 4.7-39.5 GPa (AlZrH6) within the stochastic self-consistent harmonic approximation. A correction is predicted for the crystal lattice parameters, phonon spectra, and superconducting critical temperatures, previously estimated without considering ionic fluctuations on the crystal structure and assuming the harmonic approximation for lattice dynamics. The findings suggest that quantum ionic fluctuations have a significant impact on the crystal lattice parameters, phonon spectra, and superconducting critical temperatures. Based on our anharmonic phonon spectra, the structures will be dynamically stable at 0.3 GPa for AlHfH6 and 6.2 GPa for AlZrH6, ∼6 and 7 GPa lower than pressures given by the harmonic approximation, respectively. Due to the anharmonic correction of their frequencies, the electron-phonon coupling constants (λ) are suppressed by 28% at 11 GPa for AlHfH6 and 22% at 30 GPa for AlZrH6, respectively. The decrease in λ causes Tc to be overestimated by ∼12 K at 11 GPa for AlHfH6 and 30 GPa for AlZrH6. Even if the anharmonic and quantum effects are not as strong as those of Pm3̄n-AlH3, our results also indicate that metal hydrides with hydrogen atoms in interstitial sites are subject to anharmonic effects. Our results will inevitably stimulate future high-pressure experiments on synthesis, structural, and conductivity measurements.
Collapse
Affiliation(s)
- Pugeng Hou
- College of Science, Northeast Electric Power University, Changchun Road 169, 132012 Jilin, People's Republic of China
| | - Yao Ma
- Department of Applied Physics, School of Sciences, Xi'an University of Technology, Xi'an 710048, People's Republic of China
| | - Mi Pang
- Department of Applied Physics, School of Sciences, Xi'an University of Technology, Xi'an 710048, People's Republic of China
| | - Yongmao Cai
- College of Science, Northeast Electric Power University, Changchun Road 169, 132012 Jilin, People's Republic of China
| | - Yuhua Shen
- College of Science, Northeast Electric Power University, Changchun Road 169, 132012 Jilin, People's Republic of China
| | - Hui Xie
- College of Physics and Electronic Engineering, Hebei Minzu Normal University, Chengde 067000, People's Republic of China
| | - Fubo Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
9
|
Thomsen SR, Goesten MG. Symmetry-Shaped Singularities in High-Temperature Superconductor H 3S. J Am Chem Soc 2024; 146:18298-18305. [PMID: 38916582 DOI: 10.1021/jacs.4c02038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The superconducting critical temperature of H3S ranks among the highest measured, at 203 K. This impressive value stems from a singularity in the electronic density-of-states, induced by a flat-band region that consists of saddle points. The peak sits right at the Fermi level, so that it gives rise to a giant electron-phonon coupling constant. In this work, we show how atomic orbital interactions and space group symmetry work in concert to shape the singularity. The body-centered cubic Brillouin Zone offers a unique 2D hypersurface in reciprocal space: fully connecting squares with two different high-symmetry points at the corners, Γ and H, and a third one in the center, N. Orbital mixing leads to the collapse of fully connected 1D saddle point lines around the square centers, due to a symmetry-enforced s-p energy inversion between Γ and H. The saddle-point states are invariably nonbonding, which explains the unconventionally weak response of the superconductor's critical temperature to pressure. Although H3S appears to be a unique case, the theory shows how it is possible to engineer flat bands and singularities in 3D lattices through symmetry considerations.
Collapse
Affiliation(s)
- Sebastian R Thomsen
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Maarten G Goesten
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| |
Collapse
|
10
|
Shan P, Ma L, Cheng J. Ternary superhydrides for high-temperature superconductivity at low pressures. Natl Sci Rev 2024; 11:nwae003. [PMID: 38883288 PMCID: PMC11173189 DOI: 10.1093/nsr/nwae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 10/11/2023] [Indexed: 06/18/2024] Open
Abstract
Focusing on the ternary hydrides, the new hope of Room-Temperature Superconductivity, this perspective delves into the research background, highlights current challenges, and illuminates promising avenues for future studies.
Collapse
Affiliation(s)
- Pengfei Shan
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, China
- School of Physical Sciences, University of Chinese Academy of Sciences, China
| | - Liang Ma
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, China
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, China
| | - Jinguang Cheng
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, China
- School of Physical Sciences, University of Chinese Academy of Sciences, China
| |
Collapse
|
11
|
Sun Y, Zhong X, Liu H, Ma Y. Clathrate metal superhydrides under high-pressure conditions: enroute to room-temperature superconductivity. Natl Sci Rev 2024; 11:nwad270. [PMID: 38883291 PMCID: PMC11173197 DOI: 10.1093/nsr/nwad270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/16/2023] [Accepted: 09/21/2023] [Indexed: 06/18/2024] Open
Abstract
Room-temperature superconductivity has been a long-held dream of mankind and a focus of considerable interest in the research field of superconductivity. Significant progress has recently been achieved in hydrogen-based superconductors found in superhydrides (hydrides with unexpectedly high hydrogen contents) that are stabilized under high-pressure conditions and are not capturable at ambient conditions. Of particular interest is the discovery of a class of best-ever-known superconductors in clathrate metal superhydrides that hold the record for high superconductivity (e.g. T c = 250-260 K for LaH10) among known superconductors and have great promise to be those that realize the long-sought room-temperature superconductivity. In these peculiar clathrate superhydrides, hydrogen forms unusual 'clathrate' cages containing encaged metal atoms, of which such a kind was first reported in a calcium hexa-superhydride (CaH6) showing a measured high T c of 215 K under a pressure of 170 GPa. In this review, we aim to offer an overview of the current status of research progress on the clathrate metal superhydride superconductors, discuss the superconducting mechanism and highlight the key features (e.g. structure motifs, bonding features, electronic structure, etc.) that govern the high-temperature superconductivity. Future research direction along this line to find room-temperature superconductors will be discussed.
Collapse
Affiliation(s)
- Ying Sun
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xin Zhong
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Hanyu Liu
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Yanming Ma
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Zhao W, Huang X, Zhang Z, Chen S, Du M, Duan D, Cui T. Superconducting ternary hydrides: progress and challenges. Natl Sci Rev 2024; 11:nwad307. [PMID: 38883295 PMCID: PMC11173187 DOI: 10.1093/nsr/nwad307] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/29/2023] [Accepted: 10/29/2023] [Indexed: 06/18/2024] Open
Abstract
Since the discovery of the high-temperature superconductors H3S and LaH10 under high pressure, compressed hydrides have received extensive attention as promising candidates for room-temperature superconductors. As a result of current high-pressure theoretical and experimental studies, it is now known that almost all the binary hydrides with a high superconducting transition temperature (T c) require extremely high pressure to remain stable, hindering any practical application. In order to further lower the stable pressure and improve superconductivity, researchers have started exploring ternary hydrides and had many achievements in recent years. Here, we discuss recent progress in ternary hydrides, aiming to deepen the understanding of the key factors regulating the structural stability and superconductivity of ternary hydrides, such as structural motifs, bonding features, electronic structures, electron-phonon coupling, etc. Furthermore, the current issues and challenges of superconducting ternary hydrides are presented, together with the prospects and opportunities for future research.
Collapse
Affiliation(s)
- Wendi Zhao
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xiaoli Huang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Zihan Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Su Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Mingyang Du
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Defang Duan
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Tian Cui
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
13
|
He XL, Zhao W, Xie Y, Hermann A, Hemley RJ, Liu H, Ma Y. Predicted hot superconductivity in LaSc 2H 24 under pressure. Proc Natl Acad Sci U S A 2024; 121:e2401840121. [PMID: 38900793 PMCID: PMC11214075 DOI: 10.1073/pnas.2401840121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
The recent theory-driven discovery of a class of clathrate hydrides (e.g., CaH6, YH6, YH9, and LaH10) with superconducting critical temperatures (Tc) well above 200 K has opened the prospects for "hot" superconductivity above room temperature under pressure. Recent efforts focus on the search for superconductors among ternary hydrides that accommodate more diverse material types and configurations compared to binary hydrides. Through extensive computational searches, we report the prediction of a unique class of thermodynamically stable clathrate hydrides structures consisting of two previously unreported H24 and H30 hydrogen clathrate cages at megabar pressures. Among these phases, LaSc2H24 shows potential hot superconductivity at the thermodynamically stable pressure range of 167 to 300 GPa, with calculated Tcs up to 331 K at 250 GPa and 316 K at 167 GPa when the important effects of anharmonicity are included. The very high critical temperatures are attributed to an unusually large hydrogen-derived density of states at the Fermi level arising from the newly reported peculiar H30 as well as H24 cages in the structure. Our predicted introduction of Sc in the La-H system is expected to facilitate future design and realization of hot superconductors in ternary clathrate superhydrides.
Collapse
Affiliation(s)
- Xin-Ling He
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun130012, China
- Institute of Physics, Henan Academy of Sciences, Zhengzhou450046, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Wenbo Zhao
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Yu Xie
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Andreas Hermann
- Centre for Science at Extreme Conditions and Scottish Universities Physics Alliance, School of Physics and Astronomy, University of Edinburgh, EdinburghEH9 3FD, United Kingdom
| | - Russell J. Hemley
- Department of Physics, University of Illinois Chicago, Chicago, IL60607
- Department of Chemistry, University of Illinois Chicago, Chicago, IL60607
- Department of Earth and Environmental Sciences, University of Illinois Chicago, Chicago, IL60607
| | - Hanyu Liu
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
- International Center of Future Science, Jilin University, Changchun130012, China
| | - Yanming Ma
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
- International Center of Future Science, Jilin University, Changchun130012, China
| |
Collapse
|
14
|
Luo YX, Gao J, Liu QJ, Fan DH, Liu ZT. Structural and electronic properties of clathrate-like hydride: MH 6 and MH 9 (M = Sc, Y, La). J Mol Model 2024; 30:229. [PMID: 38918212 DOI: 10.1007/s00894-024-06034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
CONTEXT The addition of central metal atoms to hydrogen clathrate structures is thought to provide a certain amount of "internal chemical pressure" to offset some of the external physical pressure required for compound stability. The size and valence of the central atoms significantly affect the minimum pressure required for the stabilization of hydrogen-rich compounds and their superconducting transition temperature. In recent years, many studies have calculated the minimum stable pressure and superconducting transition temperature of compounds with H24, H29, and H32 hydrogen clathrates, with centrally occupied metal atoms. In order to investigate the stability and physical properties of compounds with H cages in which the central atoms change in the same third group B, herein, based on first-principles calculations, we systematically investigated the lattice parameters, crystal volume, band structures, density of states, Mulliken analysis, charge density, charge density difference, and electronic localization function in I m 3 ¯ m -MH6 and P63/mmc-MH9 systems with different centered rare earth atoms M (M = Sc, Y, La) under a series of pressures. We find that for MH9, the pressure mainly changes the crystal lattice parameters along the c-axis, and the contributions of the different H atoms in MH9 to the Fermi level are H3 > H1 > H2. The density of states at the Fermi level of MH6 is mainly provided by H 1 s. Moreover, the size of the central atom M is particularly important for the stability of the crystal. By observing a series of properties of the structures with H24 and H29 cages wrapping the same family of central atoms under a series of pressures, our theoretical study is helpful for further understanding the formation mechanism of high-temperature superconductors and provides a reference for future research and design of high-temperature superconductors. METHODS The first principles based on the density functional theory and density functional perturbation theory were employed to execute all calculations by using the CASTEP code in this work.
Collapse
Affiliation(s)
- Ying-Xi Luo
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Juan Gao
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China.
| | - Qi-Jun Liu
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Dai-He Fan
- Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University, Chengdu, 610031, People's Republic of China
| | - Zheng-Tang Liu
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| |
Collapse
|
15
|
Liu P, Wang C, Zhang D, Wang X, Duan D, Liu Z, Cui T. Strategies for improving the superconductivity of hydrides under high pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:353001. [PMID: 38754446 DOI: 10.1088/1361-648x/ad4ccc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/16/2024] [Indexed: 05/18/2024]
Abstract
The successful prediction and confirmation of unprecedentedly high-temperature superconductivity in compressed hydrogen-rich hydrides signify a remarkable advancement in the continuous quest for attaining room-temperature superconductivity. The recent studies have established a broad scope for developing binary and ternary hydrides and illustrated correlation between specific hydrogen motifs and high-Tcs under high pressures. The analysis of the microscopic mechanism of superconductivity in hydrides suggests that the high electronic density of states at the Fermi level (EF), the large phonon energy scale of the vibration modes and the resulting enhanced electron-phonon coupling are crucial contributors towards the high-Tcphonon-mediated superconductors. The aim of our efforts is to tackle forthcoming challenges associated with elevating theTcand reducing the stabilization pressures of hydrogen-based superconductors, and offer insights for the future discoveries of room-temperature superconductors. Our present Review offers an overview and analysis of the latest advancements in predicting and experimentally synthesizing various crystal structures, while also exploring strategies to enhance the superconductivity and reducing their stabilization pressures of hydrogen-rich hydrides.
Collapse
Affiliation(s)
- Pengye Liu
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Chang Wang
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Daoyuan Zhang
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Xiang Wang
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Defang Duan
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Zhao Liu
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Tian Cui
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
16
|
Song X, Hao X, Wei X, He XL, Liu H, Ma L, Liu G, Wang H, Niu J, Wang S, Qi Y, Liu Z, Hu W, Xu B, Wang L, Gao G, Tian Y. Superconductivity above 105 K in Nonclathrate Ternary Lanthanum Borohydride below Megabar Pressure. J Am Chem Soc 2024; 146:13797-13804. [PMID: 38722223 DOI: 10.1021/jacs.3c14205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hydrides are promising candidates for achieving room-temperature superconductivity, but a formidable challenge remains in reducing the stabilization pressure below a megabar. In this study, we successfully synthesized a ternary lanthanum borohydride by introducing the nonmetallic element B into the La-H system, forming robust B-H covalent bonds that lower the pressure required to stabilize the superconducting phase. Electrical transport measurements confirm the presence of superconductivity with a critical temperature (Tc) of up to 106 K at 90 GPa, as evidenced by zero resistance and Tc shift under an external magnetic field. X-ray diffraction and transport measurements identify the superconducting compound as LaB2H8, a nonclathrate hydride, whose crystal structure remains stable at pressures as low as ∼ half megabar (59 GPa). Stabilizing superconductive stoichiometric LaB2H8 in a submegabar pressure regime marks a substantial advancement in the quest for high-Tc superconductivity in polynary hydrides, bringing us closer to the ambient pressure conditions.
Collapse
Affiliation(s)
- Xiaoxu Song
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Xiaokuan Hao
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Xudong Wei
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Xin-Ling He
- Institute of Physics, Henan Academy of Sciences, Zhengzhou 450046, China
| | - Hanyu Liu
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Liang Ma
- Key Laboratory of Materials Physics (Ministry of Education), School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China
| | - Guangtao Liu
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Hongbo Wang
- State Key Laboratory of Superhard Materials and International Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China
| | - Jingyu Niu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Shaojie Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Yanpeng Qi
- School of Physical Science and Technology and Shanghai Tech Laboratory for Topological Physics, Shanghai Tech University, Shanghai 201210, China
| | - Zhongyuan Liu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Wentao Hu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Bo Xu
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Lin Wang
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Guoying Gao
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
| | - Yongjun Tian
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, Hebei 066004, China
| |
Collapse
|
17
|
Huang H, Deng C, Song H, Du M, Duan D, Liu Y, Cui T. Superconductivity of thulium substituted clathrate hexahydrides at moderate pressure. Sci Rep 2024; 14:10729. [PMID: 38730055 PMCID: PMC11087549 DOI: 10.1038/s41598-024-61400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Due to the BCS theory, hydrogen, the lightest element, would be the prospect of room-temperature superconductor after metallization, but because of the difficulty of the hydrogen metallization, the theory about hydrogen pre-compression was proposed that the hydrogen-rich compounds could be a great option for the high Tc superconductors. The superior properties of TmH6, YbH6 and LuH6 indicated the magnificent potential of heavy rare earth elements for low-pressure stability. Here, we designed XTmH12 (X = Y, Yb, Lu, and La) to obtain higher Tc while maintaining low pressure stability. Most prominently, YbTmH12 can stabilize at a pressure of 60 GPa. Compared with binary TmH6 hydride, its Tc was increased to 48 K. The results provide an effective method for the rational design of moderate pressure stabilized hydride superconductors.
Collapse
Affiliation(s)
- Hongyu Huang
- School of Physical Science and Technology, Institute of High Pressure Physics, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Chao Deng
- School of Physical Science and Technology, Institute of High Pressure Physics, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Hao Song
- School of Physical Science and Technology, Institute of High Pressure Physics, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Mingyang Du
- School of Physical Science and Technology, Institute of High Pressure Physics, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Defang Duan
- College of Physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Yanhui Liu
- School of Physical Science and Technology, Institute of High Pressure Physics, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tian Cui
- School of Physical Science and Technology, Institute of High Pressure Physics, Ningbo University, Ningbo, 315211, People's Republic of China.
- College of Physics, Jilin University, Changchun, 130012, People's Republic of China.
| |
Collapse
|
18
|
Li X, Guo Z, Zhang X, Yang G. Layered Hydride LiH 4 with a Pressure-Insensitive Superconductivity. Inorg Chem 2024; 63:8257-8263. [PMID: 38662198 DOI: 10.1021/acs.inorgchem.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
For hydride superconductors, each significant advance is built upon the discovery of novel H-based structural units, which in turn push the understanding of the superconducting mechanism to new heights. Based on first-principles calculations, we propose a metastable LiH4 with a wavy H layer composed of the edge-sharing pea-like H18 rings at high pressures. Unexpectedly, it exhibits pressure-insensitive superconductivity manifested by an extremely small pressure coefficient (dTc/dP) of 0.04 K/GPa. This feature is attributed to the slightly weakened electron-phonon coupling with pressure, caused by the reduced charge transfer from Li atoms to wavy H layers, significantly suppressing the substantial increase in the contribution of phonons to Tc. Its superconductivity originates from the strong coupling between the H 1s electrons and the high-frequency phonons associated with the H layer. Our study extends the list of H-based structural units and enhances the in-depth understanding of pressure-related superconductivity.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Zixuan Guo
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiaohua Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
19
|
Jiang Q, Zhang Z, Song H, Ma Y, Sun Y, Miao M, Cui T, Duan D. Ternary superconducting hydrides stabilized via Th and Ce elements at mild pressures. FUNDAMENTAL RESEARCH 2024; 4:550-556. [PMID: 38933186 PMCID: PMC11197597 DOI: 10.1016/j.fmre.2022.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 10/26/2022] [Accepted: 11/28/2022] [Indexed: 12/25/2022] Open
Abstract
The discovery of covalent H3S and clathrate structure LaH10 with excellent superconducting critical temperatures at high pressures has facilitated a multitude of research on compressed hydrides. However, their superconducting pressures are too high (generally above 150 GPa), thereby hindering their application. In addition, making room-temperature superconductivity close to ambient pressure in hydrogen-based superconductors is challenging. In this work, we calculated the chemically "pre-compressed" Be-H by heavy metals Th and Ce to stabilize the superconducting phase near ambient pressure. An unprecedented ThBeH8 (CeBeH8) with a "fluorite-type" structure was predicted to be thermodynamically stable above 69 GPa (76 GPa), yielding a T c of 113 K (28 K) decompressed to 7 GPa (13 GPa) by solving the anisotropic Migdal-Eliashberg equations. Be-H vibrations play a vital role in electron-phonon coupling and structural stability of these ternary hydrides. Our results will guide further experiments toward synthesizing ternary hydride superconductors at mild pressures.
Collapse
Affiliation(s)
- Qiwen Jiang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Zihan Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Hao Song
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yanbin Ma
- College of Physics, Harbin University of Science and Technology, Harbin 150080, China
| | - Yuanhui Sun
- Department of Chemistry and Biochemistry, California State University Northridge, Los Angeles 91330, United States
| | - Maosheng Miao
- Department of Chemistry and Biochemistry, California State University Northridge, Los Angeles 91330, United States
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Defang Duan
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
20
|
Du J, Jiang Q, Zhang Z, Zhao W, Chen L, Huo Z, Song H, Tian F, Duan D, Cui T. First-principles study of high-pressure structural phase transition and superconductivity of YBeH8. J Chem Phys 2024; 160:094116. [PMID: 38445840 DOI: 10.1063/5.0195828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/16/2024] [Indexed: 03/07/2024] Open
Abstract
The theory-led prediction of LaBeH8, which has a high superconducting critical temperature (Tc) above liquid nitrogen under a pressure level below 1 Mbar, has been experimentally confirmed. YBeH8, which has a structural configuration similar to that of LaBeH8, has also been predicted to be a high-temperature superconductor at high pressure. In this study, we focus on the structural phase transition and superconductivity of YBeH8 under pressure by using first-principles calculations. Except for the known face-centered cubic phase of Fm3̄m, we found a monoclinic phase with P1̄ symmetry. Moreover, the P1̄ phase transforms to the Fm3̄m phase at ∼200 GPa with zero-point energy corrections. Interestingly, the P1̄ phase undergoes a complex electronic phase transition from semiconductor to metal and then to superconducting states with a low Tc of 40 K at 200 GPa. The Fm3̄m phase exhibits a high Tc of 201 K at 200 GPa, and its Tc does not change significantly with pressure. When we combine the method using two coupling constants, λopt and λac, with first-principles calculations, λopt is mainly supplied by the Be-H alloy backbone, which accounts for about 85% of total λ and makes the greatest contribution to the high Tc. These insights not only contribute to a deeper understanding of the superconducting behavior of this ternary hydride but may also guide the experimental synthesis of hydrogen-rich compounds.
Collapse
Affiliation(s)
- Jianhui Du
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Qiwen Jiang
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Zihan Zhang
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Wendi Zhao
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Ling Chen
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - ZiHao Huo
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Hao Song
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Fubo Tian
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Defang Duan
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Tian Cui
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
21
|
Liu P, Zhao W, Liu Z, Pan Y, Duan D, Cui T. High-temperature superconductivities and crucial factors influencing the stability of LaThH 12 under moderate pressures. Phys Chem Chem Phys 2024; 26:8237-8246. [PMID: 38385503 DOI: 10.1039/d3cp05408j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
The recent discovery of high-temperature superconductivity in compressed hydrides has reignited the long-standing quest for room-temperature superconductors. However, the synthesis of superconducting hydrides under moderate pressure and the identification of crucial factors that affect their stability remain challenges. Here, we predicted the ternary clathrate phases of LaThH12 with potential superconductivity under high pressures and specifically proposed a novel R3̄c-LaThH12 phase exhibiting a remarkable Tc of 54.95 K at only 30 GPa to address these confusions. Our first-principles studies show that the high-Tc value of Pm3̄m and Cmmm-LaThH12 phases was induced by the strong electron-phonon coupling driven by the synergy of the electron-phonon matrix element and phonon softening caused by Fermi surface nesting. Importantly, we demonstrate the dual effects of enhanced ionic bonding and expanded orbital hybridization between Th-6f and H-sp3 orbitals during depressurization are primary factors governing the dynamic stability of R3̄c-LaThH12 at low pressures. Our findings offer crucial insights into the underlying mechanisms governing low-pressure stability and provide guidance for experimental efforts aimed at realizing hydrogen-based superconductors with both low synthesis pressures and high-Tc.
Collapse
Affiliation(s)
- Pengye Liu
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Wendi Zhao
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Zhao Liu
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yilong Pan
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Defang Duan
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, People's Republic of China
| | - Tian Cui
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China.
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, People's Republic of China
| |
Collapse
|
22
|
Chen LC, Luo T, Cao ZY, Dalladay-Simpson P, Huang G, Peng D, Zhang LL, Gorelli FA, Zhong GH, Lin HQ, Chen XJ. Synthesis and superconductivity in yttrium-cerium hydrides at high pressures. Nat Commun 2024; 15:1809. [PMID: 38418489 PMCID: PMC10901869 DOI: 10.1038/s41467-024-46133-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/12/2024] [Indexed: 03/01/2024] Open
Abstract
Further increasing the critical temperature and/or decreasing the stabilized pressure are the general hopes for the hydride superconductors. Inspired by the low stabilized pressure associated with Ce 4f electrons in superconducting cerium superhydride and the high critical temperature in yttrium superhydride, we carry out seven independent runs to synthesize yttrium-cerium alloy hydrides. The synthetic process is examined by the Raman scattering and X-ray diffraction measurements. The superconductivity is obtained from the observed zero-resistance state with the detected onset critical temperatures in the range of 97-141 K. The upper critical field towards 0 K at pressure of 124 GPa is determined to be between 56 and 78 T by extrapolation of the results of the electrical transport measurements at applied magnetic fields. The analysis of the structural data and theoretical calculations suggest that the phase of Y0.5Ce0.5H9 in hexagonal structure with the space group of P63/mmc is stable in the studied pressure range. These results indicate that alloying superhydrides indeed can maintain relatively high critical temperature at relatively modest pressures accessible by laboratory conditions.
Collapse
Affiliation(s)
- Liu-Cheng Chen
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Tao Luo
- School of Science, Harbin Institute of Technology, Shenzhen, 518055, China
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Zi-Yu Cao
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
- Center for Quantum Materials and Superconductivity (CQMS) and Department of Physics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | | | - Ge Huang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Di Peng
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Li-Li Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Federico Aiace Gorelli
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
- National Institute of Optics (INO-CNR) and European Laboratory for Non-Linear Spectroscopy (LENS), Via N. Carrara 1, 50019, Sesto Fiorentino (Florence), Italy
| | - Guo-Hua Zhong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hai-Qing Lin
- School of Physics, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Jia Chen
- Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
23
|
Wu J, Zhu B, Ding C, Pei C, Wang Q, Sun J, Qi Y. Superconducting ternary hydrides in Ca-U-H under high pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:165703. [PMID: 38194718 DOI: 10.1088/1361-648x/ad1ca7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
The research on hydrogen-rich ternary compounds attract tremendous attention for it paves new route to room-temperature superconductivity at lower pressures. Here, we study the crystal structures, electronic structures, and superconducting properties of the ternary Ca-U-H system, combining crystal structure predictions withab-initiocalculations under high pressure. We found four dynamically stable structures with hydrogen clathrate cages: CaUH12-Cmmm, CaUH12-Fd-3m, Ca2UH18-P-3m1, and CaU3H32-Pm-3m. Among them, the Ca2UH18-P-3m1 and CaU3H32-Pm-3mare likely to be synthesized below 1 megabar. Thefelectrons in U atoms make dominant contribution to the electronic density of states around the Fermi energy. The electron-phonon interaction calculations reveal that phonon softening in the mid-frequency region can enhance the electron-phonon coupling significantly. TheTcvalue of Ca2UH18-P-3m1 is estimated to be 57.5-65.8 K at 100 GPa. Our studies demonstrate that introducing actinides into alkaline-earth metal hydrides provides possibility in designing novel superconducting ternary hydrides.
Collapse
Affiliation(s)
- Juefei Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Bangshuai Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Chi Ding
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Cuiying Pei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Qi Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Jian Sun
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| | - Yanpeng Qi
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
- ShanghaiTech Laboratory for Topological Physics, ShanghaiTech University, Shanghai 201210, People's Republic of China
- Shanghai Key Laboratory of High-resolution Electron Microscopy, ShanghaiTech University, Shanghai 201210, People's Republic of China
| |
Collapse
|
24
|
Chen S, Qian Y, Huang X, Chen W, Guo J, Zhang K, Zhang J, Yuan H, Cui T. High-temperature superconductivity up to 223 K in the Al stabilized metastable hexagonal lanthanum superhydride. Natl Sci Rev 2024; 11:nwad107. [PMID: 38116091 PMCID: PMC10727841 DOI: 10.1093/nsr/nwad107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 12/21/2023] Open
Abstract
As compressed hydrides constantly refresh the records of superconducting critical temperatures (Tc) in the vicinity of room temperature, this further reinforces the confidence to find more high-temperature superconducting hydrides. In this process, metastable phases of superhydrides offer enough possibilities to access superior superconducting properties. Here we report a metastable hexagonal lanthanum superhydride (P63/mmc-LaH10) stabilized at 146 GPa by introducing an appropriate proportion of Al, which exhibits high-temperature superconductivity with Tc ∼ 178 K, and this value is enhanced to a maximum Tc ∼ 223 K at 164 GPa. A huge upper critical magnetic field value Hc2(0) reaches 223 T at 146 GPa. The small volume expansion of P63/mmc-(La, Al) H10 compared with the binary LaH10 indicates the possible interstitial sites of Al atoms filling into the La-H lattice, instead of forming conventional ternary alloy-based superhydrides. This work provides a new strategy for metastable high-temperature superconductors through the multiple-element system.
Collapse
Affiliation(s)
- Su Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Yingcai Qian
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
| | - Xiaoli Huang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Wuhao Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Jianning Guo
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Kexin Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| | - Jinglei Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei230031, China
| | - Huiqiu Yuan
- Center for Correlated Matter, College of Physics, Zhejiang University, Hangzhou 310058, China
| | - Tian Cui
- School of Physical Science and Technology, Ningbo University, Ningbo315211, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun130012, China
| |
Collapse
|
25
|
Xu M, Duan D, Du M, Zhao W, An D, Song H, Cui T. Phase diagrams and superconductivity of ternary Ca-Al-H compounds under high pressure. Phys Chem Chem Phys 2023; 25:32534-32540. [PMID: 37997767 DOI: 10.1039/d3cp03952h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The search for high-temperature superconductors in hydrides under high pressure has always been a research hotspot. Hydrogen-based superconductors offer an avenue to achieve the long-sought goal of superconductivity at room temperature. Here we systematically explored the high-pressure phase diagram, electronic properties, lattice dynamics and superconductivity of the ternary Ca-Al-H system using ab initio methods. At 80 GPa, CaAlH5 transforms from Cmcm to P21/m phase. Both of Cmcm-CaAlH5 and Pnnm-CaAl2H8 are semiconductors. At 200 GPa, P4/mmm-CaAlH7 and a metastable compound Immm-Ca2AlH12 were found. Furthermore, P4/mmm-CaAlH7 shows obvious softening of the high frequency vibration modes, which improves the strength of electron-phonon coupling. Therefore, a superconducting transition temperature Tc of 71 K is generated in P4/mmm-CaAlH7 at 50 GPa. In addition, the thermodynamic metastable Immm-Ca2AlH12 exhibits a superconducting transition temperature of 118 K at 250 GPa. These results are very useful for the experimental searching of new high-Tc superconductors in ternary hydrides. Our work may provide an opportunity to search for high Tc superconductors at lower pressure.
Collapse
Affiliation(s)
- Ming Xu
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Defang Duan
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Mingyang Du
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Wendi Zhao
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Decheng An
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Hao Song
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Tian Cui
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
26
|
Huang G, Peng D, Luo T, Chen LC, Dalladay-Simpson P, Cao ZY, Gorelli FA, Zhong GH, Lin HQ, Chen XJ. Synthesis of superconducting phase of La 0.5Ce 0.5H 10at high pressures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:075702. [PMID: 37918102 DOI: 10.1088/1361-648x/ad0915] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/02/2023] [Indexed: 11/04/2023]
Abstract
Clathrate hydrideFm3-m-LaH10has been proven as the most extraordinary superconductor with the critical temperatureTcabove 250 K upon compression of hundreds of GPa in recent years. A general hope is to reduce the stabilization pressure and maintain the highTcvalue of the specific phase in LaH10. However, strong structural instability distortsFm3-mstructure and leads to a rapid decrease ofTcat low pressures. Here, we investigate the phase stability and superconducting behaviors ofFm3-m-LaH10with enhanced chemical pre-compression through partly replacing La by Ce atoms from both experiments and calculations. For explicitly characterizing the synthesized hydride, we choose lanthanum-cerium alloy with stoichiometry composition of 1:1. X-ray diffraction and Raman scattering measurements reveal the stabilization ofFm3-m-La0.5Ce0.5H10in the pressure range of 140-160 GPa. Superconductivity withTcof 175 ± 2 K at 155 GPa is confirmed with the observation of the zero-resistivity state and supported by the theoretical calculations. These findings provide applicability in the future explorations for a large variety of hydrogen-rich hydrides.
Collapse
Affiliation(s)
- Ge Huang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Di Peng
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
- University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Tao Luo
- School of Science, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Liu-Cheng Chen
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
- School of Science, Harbin Institute of Technology, Shenzhen 518055, People's Republic of China
| | - Philip Dalladay-Simpson
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Zi-Yu Cao
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
- Center for Quantum Materials and Superconductivity (CQMS) and Department of Physics, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Federico A Gorelli
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
- National Institute of Optics (INO-CNR) and European Laboratory for Non-Linear Spectroscopy (LENS), Via N. Carrara 1, 50019 Sesto Fiorentino (Florence), Italy
| | - Guo-Hua Zhong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Shenzhen, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Hai-Qing Lin
- School of Physics, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Xiao-Jia Chen
- Department of Physics and Texas Center for Superconductivity, University of Houston, Houston TX 77204, United States of America
| |
Collapse
|
27
|
Xu YL, Chen YM, Yan XZ, Huang YB, Zhou XZ, Wu QX, Sheng XW, Kuang FG. First-principles study of the structures and superconductivity of H-S-La systems under high pressure. Phys Chem Chem Phys 2023; 25:29283-29288. [PMID: 37876212 DOI: 10.1039/d3cp03368f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Recent experimental and theoretical studies have shown that a La-H system displays remarkable superconducting properties, and it is also possible to improve the superconducting state by introducing other elements into this system. In this study, we systematically investigated the crystal structures and physical properties of an H-S-La system by using first-principles calculations combined with the CALYPSO structure exploration technique. We predicted four stable stoichiometries containing H2SLa, H3SLa, H4Sla, and H6SLa. These compounds undergo a series of phase transitions under 50-300 GPa. The bonding characters and electronic properties were calculated. It was found that Cm-H2SLa, C2/c-H2SLa, and Cmcm-H6SLa exhibit good metallic nature, which stimulates us to further study their superconducting properties. The calculated superconducting transition temperatures (Tc) of Cm-H2SLa, C2/c-H2Sla, and Cmcm-H6SLa are 15.0 K at 200 GPa, 6.9 K at 300 GPa, and 23.6 K at 300 GPa, respectively.
Collapse
Affiliation(s)
- Yin L Xu
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
| | - Yang M Chen
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
| | - Xiao Z Yan
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
| | - Yi B Huang
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
| | - Xing Z Zhou
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
| | - Quan X Wu
- School of Science, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
| | - Xiao W Sheng
- Department of Physics, Anhui Normal University, Wuhu 241000, Anhui, China
- Anhui Province Key Laboratory of Optoelectric Materials Science and Technology, Wuhu 241000, China
| | - Fang G Kuang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
28
|
Lucrezi R, Kogler E, Di Cataldo S, Aichhorn M, Boeri L, Heil C. Quantum lattice dynamics and their importance in ternary superhydride clathrates. COMMUNICATIONS PHYSICS 2023; 6:298. [PMID: 39524969 PMCID: PMC11549051 DOI: 10.1038/s42005-023-01413-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/04/2023] [Indexed: 11/16/2024]
Abstract
The quantum nature of the hydrogen lattice in superconducting hydrides can have crucial effects on the material's properties. Taking a detailed look at the dynamic stability of the recently predicted BaSiH8 phase, we find that the inclusion of anharmonic quantum ionic effects leads to an increase in the critical dynamical pressure to 20 GPa as compared to 5 GPa within the harmonic approximation. We identify the change in the crystal structure due to quantum ionic effects to be the main driving force for this increase and demonstrate that this can already be understood at the harmonic level by considering zero-point energy corrections to the total electronic energy. In fact, the previously determined critical pressure of kinetic stability p kin = 30 GPa still poses a stricter bound for the synthesizability of BaSiH8 and similar hydride materials than the dynamical stability and therefore constitutes a more rigorous and accurate estimate for the experimental realizability of these structures.
Collapse
Affiliation(s)
- Roman Lucrezi
- Institute of Theoretical and Computational Physics, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Eva Kogler
- Institute of Theoretical and Computational Physics, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Simone Di Cataldo
- Institute of Theoretical and Computational Physics, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
| | - Markus Aichhorn
- Institute of Theoretical and Computational Physics, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| | - Lilia Boeri
- Dipartimento di Fisica, Sapienza Università di Roma, 00185 Rome, Italy
- Enrico Fermi Research Center, Via Panisperna 89 A, 00184 Rome, Italy
| | - Christoph Heil
- Institute of Theoretical and Computational Physics, Graz University of Technology, NAWI Graz, 8010 Graz, Austria
| |
Collapse
|
29
|
Li W, Li X, Zhang X, Yu H, Han F, Bergara A, Lin J, Wu J, Yang G. Emergent superconductivity in TaO 3 at high pressures. Phys Chem Chem Phys 2023; 25:23502-23509. [PMID: 37624051 DOI: 10.1039/d3cp03094f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Tantalum (Ta) is an interesting transition metal that exhibits superconductivity in its elemental states. Additionally, several Ta chalcogenides (S and Se) have also demonstrated superconducting properties. In this work, we propose the existence of five high-pressure metallic Ta-O compounds (e.g., TaO3, TaO2, TaO, Ta2O, and Ta3O), composed of polyhedra centered on Ta/O atoms. These compounds exhibit distinct characteristics compared to the well-known semiconducting Ta2O5. One particularly interesting finding is that TaO3 shows an estimated superconducting transition temperature (Tc) of 3.87 K at 200 GPa. This superconductivity is primarily driven by the coupling between the low-frequency phonons derived from Ta and the O 2p and Ta 5d electrons. Remarkably, its dynamically stabilized pressure can be as low as 50 GPa, resulting in an enhanced electron-phonon coupling and a higher Tc of up to 9.02 K. When compared to the superconductivity of isomorphic TaX3 (X = O, S, and Se) compounds, the highest Tc in TaO3 is associated with the highest NEF and phonon vibrational frequency. These characteristics arise from the strong electronegativity and small atomic mass of the O atom. Consequently, our findings offer valuable insights into the intrinsic physical mechanisms of high-pressure behaviors in Ta-O compounds.
Collapse
Affiliation(s)
- Wenjing Li
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Northeast Normal University, Changchun 130024, China.
| | - Xing Li
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xiaohua Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Hong Yu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Northeast Normal University, Changchun 130024, China.
| | - Fanjunjie Han
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Northeast Normal University, Changchun 130024, China.
| | - Aitor Bergara
- Departamento de Física, Universidad del País Vasco-Euskal Herriko Unibertsitatea, UPV/EHU, Bilbao 48080, Spain.
- Donostia International Physics Center (DIPC), Donostia 20018, Spain
- Centro de Física de Materiales CFM, Centro Mixto CSIC-UPV/EHU, Donostia 20018, Spain
| | - Jianyan Lin
- College of Physics, Changchun Normal University, Changchun 130032, China.
| | - Jinhui Wu
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Northeast Normal University, Changchun 130024, China.
| | - Guochun Yang
- Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Northeast Normal University, Changchun 130024, China.
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
30
|
Ferreira PP, Conway LJ, Cucciari A, Di Cataldo S, Giannessi F, Kogler E, Eleno LTF, Pickard CJ, Heil C, Boeri L. Search for ambient superconductivity in the Lu-N-H system. Nat Commun 2023; 14:5367. [PMID: 37666834 PMCID: PMC10477194 DOI: 10.1038/s41467-023-41005-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
Motivated by the recent report of room-temperature superconductivity at near-ambient pressure in N-doped lutetium hydride, we performed a comprehensive, detailed study of the phase diagram of the Lu-N-H system, looking for superconducting phases. We combined ab initio crystal structure prediction with ephemeral data-derived interatomic potentials to sample over 200,000 different structures. Out of the more than 150 structures predicted to be metastable within ~50 meV from the convex hull we identify 52 viable candidates for conventional superconductivity, for which we computed their superconducting properties from Density Functional Perturbation Theory. Although for some of these structures we do predict a finite superconducting Tc, none is even remotely compatible with room-temperature superconductivity as reported by Dasenbrock et al. Our work joins the broader community effort that has followed the report of near-ambient superconductivity, confirming beyond reasonable doubt that no conventional mechanism can explain the reported Tc in Lu-N-H.
Collapse
Affiliation(s)
- Pedro P Ferreira
- Universidade de São Paulo, Escola de Engenharia de Lorena, DEMAR, 12612-550, Lorena, Brazil
- Institute of Theoretical and Computational Physics, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Lewis J Conway
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB30FS, UK
- Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - Alessio Cucciari
- Dipartimento di Fisica, Sapienza Università di Roma, 00185, Rome, Italy
- Enrico Fermi Research Center, Via Panisperna 89 A, 00184, Rome, Italy
| | - Simone Di Cataldo
- Dipartimento di Fisica, Sapienza Università di Roma, 00185, Rome, Italy
- Institut für Festkörperphysik, Wien University of Technology, 1040, Wien, Austria
| | - Federico Giannessi
- Dipartimento di Fisica, Sapienza Università di Roma, 00185, Rome, Italy
- Enrico Fermi Research Center, Via Panisperna 89 A, 00184, Rome, Italy
| | - Eva Kogler
- Institute of Theoretical and Computational Physics, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Luiz T F Eleno
- Universidade de São Paulo, Escola de Engenharia de Lorena, DEMAR, 12612-550, Lorena, Brazil
| | - Chris J Pickard
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB30FS, UK.
- Advanced Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan.
| | - Christoph Heil
- Institute of Theoretical and Computational Physics, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.
| | - Lilia Boeri
- Dipartimento di Fisica, Sapienza Università di Roma, 00185, Rome, Italy.
- Enrico Fermi Research Center, Via Panisperna 89 A, 00184, Rome, Italy.
| |
Collapse
|
31
|
Li WH, Yang WH, Lu WC. Pressure-induced superconductivity of Ac-B-H hydrides. Phys Chem Chem Phys 2023; 25:22032-22039. [PMID: 37555344 DOI: 10.1039/d3cp02099a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The search for room-temperature superconductors among high-pressure hydrides is a hot research topic. In this study, the structures, stabilities and superconducting properties of ternary Ac-B-H hydrides were studied using a genetic algorithm (GA) combined with density functional theory (DFT) calculations. It was shown that the R3̄m-AcBH8 and I4/mmm-AcB2H8 structures were thermodynamically and dynamically stable above 70 and 125 GPa, respectively. In the R3̄m-AcBH8 structure, the BH6 unit and the dispersed H atoms were bonded to form a corrugated structure. The I4/mmm-AcB2H8 structure contained a cage and the Ac atom located at the cage center. The calculations of the electron-phonon coupling showed that the R3̄m-AcBH8 and I4/mmm-AcB2H8 structures had Tc values of 140 K (70 GPa) and 99 K (125 GPa), respectively. The analyses of the phonon dispersion curves revealed that electron-phonon coupling was closely related to the vibrations of the B-H bonds.
Collapse
Affiliation(s)
- Wen-Hua Li
- College of Physics, Qingdao University, Qingdao, Shandong 266071, P. R. China.
| | - Wen-Hua Yang
- College of Physics, Qingdao University, Qingdao, Shandong 266071, P. R. China.
| | - Wen-Cai Lu
- College of Physics, Qingdao University, Qingdao, Shandong 266071, P. R. China.
- Institute of Theoretical Chemistry, Jilin University, Changchun, Jilin 130021, P. R. China
| |
Collapse
|
32
|
Song Y, Bi J, Nakamoto Y, Shimizu K, Liu H, Zou B, Liu G, Wang H, Ma Y. Stoichiometric Ternary Superhydride LaBeH_{8} as a New Template for High-Temperature Superconductivity at 110 K under 80 GPa. PHYSICAL REVIEW LETTERS 2023; 130:266001. [PMID: 37450815 DOI: 10.1103/physrevlett.130.266001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/16/2023] [Accepted: 05/18/2023] [Indexed: 07/18/2023]
Abstract
The search for high-temperature superconducting superhydrides has recently moved into a new phase by going beyond extensively probed binary compounds and focusing on ternary ones with vastly expanded material types and configurations for property optimization. Theoretical and experimental works have revealed promising ternary compounds that superconduct at or above room temperature, but it remains a pressing challenge to synthesize stoichiometric ternary compounds with a well-resolved crystal structure that can host high-temperature superconductivity at submegabar pressures. Here, we report on the successful synthesis of ternary LaBeH_{8} obtained via compression in a diamond anvil cell under 110-130 GPa. X-ray diffraction unveils a rocksalt-like structure composing La and BeH_{8} units in the lattice. Transport measurements determined superconductivity with critical temperature T_{c} up to 110 K at 80 GPa, as evidenced by a sharp drop of resistivity to zero and a characteristic shift of T_{c} driven by a magnetic field. Our experiment establishes the first superconductive ternary compound with a resolved crystal structure. These findings raise the prospects of rational development of the class of high-T_{c} superhydrides among ternary compounds, opening greatly expanded and more diverse structural space for exploration and discovery of superhydrides with enhanced high-T_{c} superconductivity.
Collapse
Affiliation(s)
- Yinggang Song
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Jingkai Bi
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Yuki Nakamoto
- Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Katsuya Shimizu
- Center for Quantum Science and Technology under Extreme Conditions, Osaka University, Toyonaka, Osaka 560-8531, Japan
| | - Hanyu Liu
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Bo Zou
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Guangtao Liu
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Hongbo Wang
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Yanming Ma
- Key Laboratory of Material Simulation Methods and Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
33
|
Morgan HWT, Alexandrova AN. Structures of LaH 10, EuH 9, and UH 8 superhydrides rationalized by electron counting and Jahn-Teller distortions in a covalent cluster model. Chem Sci 2023; 14:6679-6687. [PMID: 37350837 PMCID: PMC10283509 DOI: 10.1039/d3sc00900a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
The superconducting hydrides LaH10, EuH9 and UH8 are studied using chemically intuitive bonding analysis of periodic and molecular models. We find trends in the crystallographic and electronic structures of the materials by focusing on chemically meaningful building blocks in the predicted H sublattices. Atomic charge calculations, using two complementary techniques, allow us to assign oxidation states to the metals and divide the H sublattice into neutral and anionic components. Cubic [H8]q- clusters are an important structural motif, and molecular orbital analysis of this cluster in isolation shows the crystal structures to be consistent with our oxidation state assignments. Crystal orbital Hamilton population analysis confirms the applicability of the cluster model to the periodic electronic structure. A Jahn-Teller distortion predicted by MO analysis rationalises the distortion observed in a prior study of EuH9. The impact of this distortion on superconductivity is determined, and implications for crystal structure prediction in other metal-hydrogen systems are discussed. Additionally, the performance of electronic structure analysis methods at high pressures are tested and recommendations for future studies are given. These results demonstrate the value of simple bonding models in rationalizing chemical structures under extreme conditions.
Collapse
Affiliation(s)
- Harry W T Morgan
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
| | - Anastassia N Alexandrova
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
| |
Collapse
|
34
|
Chen W, Huang X, Semenok DV, Chen S, Zhou D, Zhang K, Oganov AR, Cui T. Enhancement of superconducting properties in the La-Ce-H system at moderate pressures. Nat Commun 2023; 14:2660. [PMID: 37160883 PMCID: PMC10170082 DOI: 10.1038/s41467-023-38254-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 04/17/2023] [Indexed: 05/11/2023] Open
Abstract
Ternary hydrides are regarded as an important platform for exploring high-temperature superconductivity at relatively low pressures. Here, we successfully synthesized the hcp-(La,Ce)H9-10 at 113 GPa with the initial La/Ce ratio close to 3:1. The high-temperature superconductivity was strikingly observed at 176 K and 100 GPa with the extrapolated upper critical field Hc2(0) reaching 235 T. We also studied the binary La-H system for comparison, which exhibited a Tc of 103 K at 78 GPa. The Tc and Hc2(0) of the La-Ce-H are respectively enhanced by over 80 K and 100 T with respect to the binary La-H and Ce-H components. The experimental results and theoretical calculations indicate that the formation of the solid solution contributes not only to enhanced stability but also to superior superconducting properties. These results show how better superconductors can be engineered in the new hydrides by large addition of alloy-forming elements.
Collapse
Affiliation(s)
- Wuhao Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Xiaoli Huang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
| | - Dmitrii V Semenok
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094, China
| | - Su Chen
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Di Zhou
- Center for High Pressure Science and Technology Advanced Research (HPSTAR), Beijing, 100094, China
| | - Kexin Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Artem R Oganov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Bolshoy Boulevard 30, bldg. 1, Moscow, 121205, Russia
| | - Tian Cui
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China.
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
35
|
Talantsev EF. D-Wave Superconducting Gap Symmetry as a Model for Nb1−xMoxB2 (x = 0.25; 1.0) and WB2 Diborides. Symmetry (Basel) 2023. [DOI: 10.3390/sym15040812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Recently, Pei et al. (National Science Review2023, nwad034, 10.1093/nsr/nwad034) reported that ambient pressure β-MoB2 (space group: R3¯m) exhibits a phase transition to α-MoB2 (space group: P6/mmm) at pressure P~70 GPa, which is a high-temperature superconductor exhibiting Tc=32 K at P~110 GPa. Although α-MoB2 has the same crystalline structure as ambient-pressure MgB2 and the superconducting critical temperatures of α-MoB2 and MgB2 are very close, the first-principles calculations show that in α-MoB2, the states near the Fermi level, εF, are dominated by the d-electrons of Mo atoms, while in MgB2, the p-orbitals of boron atomic sheets dominantly contribute to the states near the εF. Recently, Hire et al. (Phys. Rev. B2022, 106, 174515) reported that the P6/mmm-phase can be stabilized at ambient pressure in Nb1−xMoxB2 solid solutions, and that these ternary alloys exhibit Tc~8 K. Additionally, Pei et al. (Sci. China-Phys. Mech. Astron. 2022, 65, 287412) showed that compressed WB2 exhibited Tc~15 K at P~121 GPa. Here, we aimed to reveal primary differences/similarities in superconducting state in MgB2 and in its recently discovered diboride counterparts, Nb1−xMoxB2 and highly-compressed WB2. By analyzing experimental data reported for P6/mmm-phases of Nb1−xMoxB2 (x = 0.25; 1.0) and highly compressed WB2, we showed that these three phases exhibit d-wave superconductivity. We deduced 2Δm(0)kBTc=4.1±0.2 for α-MoB2, 2Δm(0)kBTc=5.3±0.1 for Nb0.75Mo0.25B2, and 2Δm(0)kBTc=4.9±0.2 for WB2. We also found that Nb0.75Mo0.25B2 exhibited high strength of nonadiabaticity, which was quantified by the ratio of TθTF=3.5, whereas MgB2, α-MoB2, and WB2 exhibited TθTF~0.3, which is similar to the TθTF in pnictides, A15 alloys, Heusler alloys, Laves phase compounds, cuprates, and highly compressed hydrides.
Collapse
|
36
|
Fang Y, Wang J, Zhang L, Niu G, Sui L, Wu G, Yuan K, Wang K, Zou B. Tailoring the high-brightness "warm" white light emission of two-dimensional perovskite crystals via a pressure-inhibited nonradiative transition. Chem Sci 2023; 14:2652-2658. [PMID: 36908947 PMCID: PMC9993844 DOI: 10.1039/d2sc06982b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/05/2023] [Indexed: 02/08/2023] Open
Abstract
Efficient warm white light emission is an ideal characteristic of single-component materials for light-emitting applications. Although two-dimensional hybrid perovskites are promising candidates for light-emitting diodes, as they possess broadband self-trapped emission and outstanding stability, they rarely achieve a high photoluminescence quantum yield of warm white light emissions. Here, an unusual pressure-induced warm white emission enhancement phenomenon from 2.1 GPa to 9.9 GPa was observed in two-dimensional perovskite (2meptH2)PbCl4, accompanied by a large increase in the relative quantum yield of photoluminescence. The octahedral distortions, accompanied with the evolution of organic cations, triggered the structural collapse, which caused the sudden emission enhancement at 2.1 GPa. Afterwards, the further intra-octahedral collapse promotes the formation of self-trapped excitons and the substantial suppression of nonradiative transitions are responsible for the continuous pressure-induced photoluminescence enhancement. This study not only clearly illustrates the relationship between crystal structure and photoluminescence, but also provides an experimental basis for the synthesis of high-quality warm white light-emitting 2D metal halide perovskite materials.
Collapse
Affiliation(s)
- Yuanyuan Fang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Jingtian Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Long Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| | - Guangming Niu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University Liaocheng 252000 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University Changchun 130012 China
| |
Collapse
|
37
|
Dasenbrock-Gammon N, Snider E, McBride R, Pasan H, Durkee D, Khalvashi-Sutter N, Munasinghe S, Dissanayake SE, Lawler KV, Salamat A, Dias RP. Evidence of near-ambient superconductivity in a N-doped lutetium hydride. Nature 2023; 615:244-250. [PMID: 36890373 DOI: 10.1038/s41586-023-05742-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/18/2023] [Indexed: 03/10/2023]
Abstract
The absence of electrical resistance exhibited by superconducting materials would have enormous potential for applications if it existed at ambient temperature and pressure conditions. Despite decades of intense research efforts, such a state has yet to be realized1,2. At ambient pressures, cuprates are the material class exhibiting superconductivity to the highest critical superconducting transition temperatures (Tc), up to about 133 K (refs. 3-5). Over the past decade, high-pressure 'chemical precompression'6,7 of hydrogen-dominant alloys has led the search for high-temperature superconductivity, with demonstrated Tc approaching the freezing point of water in binary hydrides at megabar pressures8-13. Ternary hydrogen-rich compounds, such as carbonaceous sulfur hydride, offer an even larger chemical space to potentially improve the properties of superconducting hydrides14-21. Here we report evidence of superconductivity on a nitrogen-doped lutetium hydride with a maximum Tc of 294 K at 10 kbar, that is, superconductivity at room temperature and near-ambient pressures. The compound was synthesized under high-pressure high-temperature conditions and then-after full recoverability-its material and superconducting properties were examined along compression pathways. These include temperature-dependent resistance with and without an applied magnetic field, the magnetization (M) versus magnetic field (H) curve, a.c. and d.c. magnetic susceptibility, as well as heat-capacity measurements. X-ray diffraction (XRD), energy-dispersive X-ray (EDX) and theoretical simulations provide some insight into the stoichiometry of the synthesized material. Nevertheless, further experiments and simulations are needed to determine the exact stoichiometry of hydrogen and nitrogen, and their respective atomistic positions, in a greater effort to further understand the superconducting state of the material.
Collapse
Affiliation(s)
| | - Elliot Snider
- Department of Mechanical Engineering, School of Engineering and Applied Sciences, University of Rochester, Rochester, NY, USA
| | - Raymond McBride
- Department of Mechanical Engineering, School of Engineering and Applied Sciences, University of Rochester, Rochester, NY, USA
| | - Hiranya Pasan
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| | - Dylan Durkee
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| | - Nugzari Khalvashi-Sutter
- Department of Mechanical Engineering, School of Engineering and Applied Sciences, University of Rochester, Rochester, NY, USA
| | - Sasanka Munasinghe
- Department of Mechanical Engineering, School of Engineering and Applied Sciences, University of Rochester, Rochester, NY, USA
| | - Sachith E Dissanayake
- Department of Mechanical Engineering, School of Engineering and Applied Sciences, University of Rochester, Rochester, NY, USA
| | | | | | - Ranga P Dias
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA.
- Department of Mechanical Engineering, School of Engineering and Applied Sciences, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
38
|
Zhao W, Song H, Du M, Jiang Q, Ma T, Xu M, Duan D, Cui T. Pressure-induced high-temperature superconductivity in ternary Y-Zr-H compounds. Phys Chem Chem Phys 2023; 25:5237-5243. [PMID: 36723263 DOI: 10.1039/d2cp05850b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Compressed hydrogen-rich compounds have received extensive attention as appealing contenders for superconductors. Here, we found several stable hydrides YZrH6, YZrH8, YZr3H16 and YZrH18, and a series of metastable clathrate hexahydrides in the systematic investigation of Y-Zr-H ternary hydrides under pressure. Electron-phonon coupling calculations indicate that they all exhibit high temperature superconductivity and perform better than the binary Zr-H system. YZrH6 can maintain dynamic stability down to ambient pressure and keep a critical temperature (Tc) of 16 K. The stable YZrH18 and metastable Y3ZrH24 with high hydrogen content exhibit high Tc of 156 K and 185 K at 200 GPa, respectively. Further analysis shows that the phonon modes associated with H atoms contribute significantly to the electron-phonon coupling. The hydrogen content and the stoichiometric ratio of Y and Zr closely affect the density of states at the Fermi level, thereby affecting the superconductivity. Our work presents an important step toward understanding the superconductivity and stability of transition metal ternary hydrides.
Collapse
Affiliation(s)
- Wendi Zhao
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Hao Song
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Mingyang Du
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Qiwen Jiang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Tiancheng Ma
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Ming Xu
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Defang Duan
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Tian Cui
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China. .,State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
39
|
Sun Y, Miao M. Chemical templates that assemble the metal superhydrides. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Sun Y, Sun S, Zhong X, Liu H. Prediction for high superconducting ternary hydrides below megabar pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:505404. [PMID: 36261034 DOI: 10.1088/1361-648x/ac9bba] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
The recent findings of high-temperature hydrides ushered a new era of superconductivity research under high pressure. However, the stable pressure for these remarkable hydrides remains extremely high. In this work, we performed the extensive simulations on a series of hydrides with the prototype structure of UH8and UH7. Our results indicate several compounds possess superconducting critical temperature (Tc) above liquid nitrogen temperature below 100 GPa, such as CeBeH8and ThBeH8that are dynamical stable with aTcof 201 K at 30 GPa and aTcof 98 K at 10 GPa, respectively. Further formation enthalpy calculations suggest that thermodynamical stable pressure of CeBeH8and ThBeH8compounds is above 50 GPa and 88 GPa with respect to binary compounds and solid elements. Moreover, we also found that ThBeH7could be dynamically stable down to 20 GPa with aTcof 70 K. Our further simulations suggested this newly predicted ThBeH7is thermodynamically stable above pressure of 33 GPa with respect to binary compounds and solid elements. The present results shed light on future design and discovery of high-temperature superconductor at moderate pressure.
Collapse
Affiliation(s)
- Yao Sun
- International Center for Computational Method & Software and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Shuai Sun
- Engineering Training Center, Jilin University, Changchun, Jilin, People's Republic of China
| | - Xin Zhong
- International Center for Computational Method & Software and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Hanyu Liu
- International Center for Computational Method & Software and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
- Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, People's Republic of China
- International Center of Future Science, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
41
|
Hou Y, Li B, Bai Y, Hao X, Yang Y, Chi F, Liu S, Cheng J, Shi Z. Superconductivity in CeBeH 8and CeBH 8at moderate pressures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:505403. [PMID: 36261041 DOI: 10.1088/1361-648x/ac9bbc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
High-pressure structural searches of superhydrides CeBeH8and CeBH8were performed under ambient pressure up to 300 GPa. We identifyFm3‾m-CeBeH8with a superconducting transition temperatureTcof 56 K at 10 GPa. Two more phases with spacegroupR3‾mandC2/m, were investigated within the increasing pressures. CeBH8shows a similar phase transition process as CeBeH8but with higher transition pressures and higherTc.Fm3‾m-CeBH8is predicted to be superconducting above 120 GPa with a maximumTcof 118 K at 150 GPa.R3‾m-CeBH8andC2/m-CeBH8are dynamically stable above 120 GPa and 100 GPa, respectively. The maximumTcis 123 K at 195 GPa forR3‾m-CeBH8, and 115 K at 350 GPa forC2/m-CeBH8. Our work enriches the family of ternary hydrides and may provide a useful guideline for further search for superconducting hydrides at low and moderate pressures.
Collapse
Affiliation(s)
- Yu Hou
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Bin Li
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Yan Bai
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Xiaofeng Hao
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Yeqian Yang
- College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Fengfeng Chi
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Shengli Liu
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Jie Cheng
- New Energy Technology Engineering Laboratory of Jiangsu Province and School of Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, People's Republic of China
| | - Zhixiang Shi
- School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
42
|
Dai W, He S, Ding K, Lu C. Polymeric Hydronitrogen N 4H: A Promising High-Energy-Density Material and High-Temperature Superconductor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49986-49994. [PMID: 36286258 DOI: 10.1021/acsami.2c16293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Solid nitrogen-rich compounds are potential high-energy-density materials (HEDMs). The enormous challenge in this area is to synthesize and stabilize these energetic materials at moderate pressure and better under near-ambient conditions. Here, we perform an extensive theoretical study on hydronitrogens by the reverse design method considering both energies and energy densities. Four hydronitrogens with different stoichiometries, that is, N4H, N3H, N2H, and NH, are found to be stable at pressures of about 80-300 GPa and metastable with pressure releasing to ambient pressure. The energy densities of these hydronitrogens are about 5.6-6.5 kJ/g and 1.3-1.5 times larger than that of trinitrotoluene (TNT). Most importantly, the Pbam phase of the N4H compound is an excellent high-temperature superconductor with a Tc of 37.7 K at 72 GPa. The present findings enrich new phases of hydronitrogens under high pressure and characterize their structural and energetic properties and superconductivity, which offer crucial insights for further design and synthesis of exceptional materials with high energy density and high-temperature superconductivity.
Collapse
Affiliation(s)
- Wei Dai
- School of Mathematics and Physics, Jingchu University of Technology, Hubei448000, China
| | - Shi He
- Faculty of Materials Science and Chemistry, China University of Geosciences (Wuhan), Wuhan430074, China
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan430074, China
| | - Kewei Ding
- State Key Laboratory of Fluorine & Nitrogen Chemicals, Xi'an710065, China
- Xi'an Modern Chemistry Research Institute, Xi'an710065, China
| | - Cheng Lu
- School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan430074, China
| |
Collapse
|
43
|
Giant enhancement of superconducting critical temperature in substitutional alloy (La,Ce)H 9. Nat Commun 2022; 13:5952. [PMID: 36216828 PMCID: PMC9551097 DOI: 10.1038/s41467-022-33743-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/22/2022] [Indexed: 11/28/2022] Open
Abstract
A sharp focus of current research on superconducting superhydrides is to raise their critical temperature Tc at moderate pressures. Here, we report a discovery of giant enhancement of Tc in CeH9 obtained via random substitution of half Ce by La, leading to equal-atomic (La,Ce)H9 alloy stabilized by maximum configurational entropy, containing the LaH9 unit that is unstable in pure compound form. The synthesized (La,Ce)H9 alloy exhibits Tc of 148–178 K in the pressure range of 97–172 GPa, representing up to 80% enhancement of Tc compared to pure CeH9 and showcasing the highest Tc at sub-megabar pressure among the known superhydrides. This work demonstrates substitutional alloying as a highly effective enabling tool for substantially enhancing Tc via atypical compositional modulation inside suitably selected host crystal. This optimal substitutional alloying approach opens a promising avenue for synthesis of high-entropy multinary superhydrides that may exhibit further increased Tc at even lower pressures. Superconductivity was recently discovered in the clathrate hydride CeH9 with superconducting temperature (Tc) of 57 K at pressures below 1 megabar. Here, the authors show that Tc can be increased to 148 K in the substitutional alloy (La,Ce)H9, while maintaining a pressure below 1 megabar.
Collapse
|
44
|
Ding S, Yan X, Bergara A, Zhang X, Liu Y, Yang G. Intrinsic Ferromagnetism in 2D Fe 2H with a High Curie Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44745-44752. [PMID: 36130179 DOI: 10.1021/acsami.2c10504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The rational design of ferromagnetic materials is crucial for the development of spintronic devices. Using first-principles structural search calculations, we have identified 73 two-dimensional transition metal hydrides. Some of them show interesting magnetic properties, even when combined with the characteristics of the electrides. In particular, the P3̅m1 Fe2H monolayer is stabilized in a 1T-MoS2-type structure with a local magnetic moment of 3 μB per Fe atom, whose robust ferromagnetism is attributed to the exchange interaction between neighboring Fe atoms within and between sublayers, leading to a remarkably high Curie temperature of 340 K. On the other hand, it has a large magnetic anisotropic energy and spin-polarization ratio. Interestingly, the above room-temperature ferromagnetism of the Fe2H monolayer is well preserved within a biaxial strain of 5%. The structure and electron property of surface-functionalized Fe2H are also explored. All of these interesting properties make the Fe2H monolayer an attractive candidate for spintronic nanodevices.
Collapse
Affiliation(s)
- Shicong Ding
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Xu Yan
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Aitor Bergara
- Departamento de Física, Universidad del País Vasco-Euskal Herriko Unibertsitatea, UPV/EHU, 48080 Bilbao, Spain
- Donostia International Physics Center (DIPC), 20018 Donostia, Spain
- Centro de Física de Materiales CFM, Centro Mixto CSIC-UPV/EHU, 20018 Donostia, Spain
| | - Xiaohua Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
- Centre for Advanced Optoelectronic Functional Materials, Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
- Centre for Advanced Optoelectronic Functional Materials, Research and Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
45
|
Hilleke KP, Zurek E. Rational Design of Superconducting Metal Hydrides via Chemical Pressure Tuning**. Angew Chem Int Ed Engl 2022; 61:e202207589. [DOI: 10.1002/anie.202207589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Katerina P. Hilleke
- Department of Chemistry State University of New York at Buffalo Buffalo NY 14260-3000 USA
| | - Eva Zurek
- Department of Chemistry State University of New York at Buffalo Buffalo NY 14260-3000 USA
| |
Collapse
|
46
|
Du M, Song H, Zhang Z, Duan D, Cui T. Room-Temperature Superconductivity in Yb/Lu Substituted Clathrate Hexahydrides under Moderate Pressure. Research (Wash D C) 2022; 2022:9784309. [PMID: 36061823 PMCID: PMC9394054 DOI: 10.34133/2022/9784309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Room temperature superconductivity is a dream that mankind has been chasing for a century. In recent years, the synthesis of H3S, LaH10, and C-S-H compounds under high pressures has gradually made that dream become a reality. But the extreme high pressure required for stabilization of hydrogen-based superconductors limit their applications. So, the next challenge is to achieve room-temperature superconductivity at significantly low pressures, even ambient pressure. In this work, we design a series of high temperature superconductors that can be stable at moderate pressures by incorporating heavy rare earth elements Yb/Lu into sodalite-like clathrate hexahydrides. In particular, the critical temperatures (Tc) of Y3LuH24, YLuH12, and YLu3H24 can reach 283 K at 120 GPa, 275 K at 140 GPa, and 288 K at 110 GPa, respectively. Their critical temperatures are close to or have reached room temperature, and minimum stable pressures are significantly lower than that of reported room temperature superconductors. Our work provides an effective method for the rational design of low-pressure stabilized hydrogen-based superconductors with room-temperature superconductivity simultaneously and will stimulate further experimental exploration.
Collapse
Affiliation(s)
- Mingyang Du
- College of Physics, Jilin University, Changchun 130012, China
| | - Hao Song
- College of Physics, Jilin University, Changchun 130012, China
| | - Zihan Zhang
- College of Physics, Jilin University, Changchun 130012, China
| | - Defang Duan
- College of Physics, Jilin University, Changchun 130012, China
| | - Tian Cui
- College of Physics, Jilin University, Changchun 130012, China
- Institute of High-Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
47
|
Hilleke K, Zurek E. Rational Design of Superconducting Metal Hydrides via Chemical Pressure Tuning. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Katerina Hilleke
- State University of New York at Buffalo: University at Buffalo Department of Chemistry 359 Natural Sciences ComplexUniversity at Buffalo, North Campus 14260-3000 Buffalo UNITED STATES
| | - Eva Zurek
- University at Buffalo, State University of New York Department of Chemistry 331 Natural Sciences Complex 14260 Buffalo UNITED STATES
| |
Collapse
|
48
|
Li X, Zhang X, Yang Z, Liu Y, Yang G. Pressure-stabilized graphene-like P layer in superconducting LaP 2. Phys Chem Chem Phys 2022; 24:6469-6475. [PMID: 35253822 DOI: 10.1039/d2cp00055e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MgB2-type superconductors are of great interest in chemistry and condensed matter physics due to their superconductivity dominated by the structural unit of graphene-like B. However, this kind of material is absent in phosphides resulting from the inherent lone pair electrons of phosphorus. Here, we report that a pressure-stabilized LaP2, isostructural to MgB2, shows superconductivity with a predicted Tc of 22.2 K, which is the highest among those of already known transition metal phosphides. Besides the electron-phonon coupling of graphene-like P, alike the role of the B layer in MgB2, La 5d/4f electrons are also responsible for the superconducting transition. The distinct P atomic arrangement is attributed to its sp2 hybridization and out-of-plane symmetric distribution of lone pair electrons. On the other hand, its dynamically stabilized pressure reaches as low as 7 GPa, a desirable feature of pressure-induced superconductors. Although P is isoelectronic to N and As, we hereby find the different stable stoichiometries, structures, and electronic properties of La phosphides compared with La nitrides/arsenides at high pressures.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xiaohua Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China. .,Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Northeast Normal University, Changchun 130024, China
| | - Zeng Yang
- High School Attached to Northeast Normal University, Changchun 130024, China
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China. .,Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory for UV Light-Emitting Materials and Technology of Northeast Normal University, Changchun 130024, China
| |
Collapse
|
49
|
Du M, Zhao W, Cui T, Duan D. Compressed superhydrides: the road to room temperature superconductivity. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:173001. [PMID: 35078164 DOI: 10.1088/1361-648x/ac4eaf] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Room-temperature superconductivity has been a long-held dream and an area of intensive research. The discovery of H3S and LaH10under high pressure, with superconducting critical temperatures (Tc) above 200 K, sparked a race to find room temperature superconductors in compressed superhydrides. In recent groundbreaking work, room-temperature superconductivity of 288 K was achieved in carbonaceous sulfur hydride at 267 GPa. Here, we describe the important attempts of hydrides in the process of achieving room temperature superconductivity in decades, summarize the main characteristics of high-temperature hydrogen-based superconductors, such as hydrogen structural motifs, bonding features, electronic structure as well as electron-phonon coupling etc. This work aims to provide an up-to-date summary of several type hydrogen-based superconductors based on the hydrogen structural motifs, including covalent superhydrides, clathrate superhydrides, layered superhydrides, and hydrides containing isolated H atom, H2and H3molecular units.
Collapse
Affiliation(s)
- Mingyang Du
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Wendi Zhao
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tian Cui
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
- Institute of High Pressure Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Defang Duan
- College of Physics, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|