1
|
Caldwell R, Cui Y, Guo HK, Mandic V, Mariotti A, No JM, Ramsey-Musolf MJ, Sakellariadou M, Sinha K, Wang LT, White G, Zhao Y, An H, Bian L, Caprini C, Clesse S, Cline JM, Cusin G, Fornal B, Jinno R, Laurent B, Levi N, Lyu KF, Martinez M, Miller AL, Redigolo D, Scarlata C, Sevrin A, Haghi BSE, Shu J, Siemens X, Steer DA, Sundrum R, Tamarit C, Weir DJ, Xie KP, Yang FW, Zhou S. Detection of early-universe gravitational-wave signatures and fundamental physics. GENERAL RELATIVITY AND GRAVITATION 2022; 54:156. [PMID: 36465478 PMCID: PMC9712380 DOI: 10.1007/s10714-022-03027-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Detection of a gravitational-wave signal of non-astrophysical origin would be a landmark discovery, potentially providing a significant clue to some of our most basic, big-picture scientific questions about the Universe. In this white paper, we survey the leading early-Universe mechanisms that may produce a detectable signal-including inflation, phase transitions, topological defects, as well as primordial black holes-and highlight the connections to fundamental physics. We review the complementarity with collider searches for new physics, and multimessenger probes of the large-scale structure of the Universe.
Collapse
Affiliation(s)
- Robert Caldwell
- Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755 USA
| | - Yanou Cui
- Department of Physics and Astronomy, University of California, Riverside, CA 92521 USA
| | - Huai-Ke Guo
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 USA
| | - Vuk Mandic
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Alberto Mariotti
- Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jose Miguel No
- Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13- 15, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Michael J. Ramsey-Musolf
- Tsung Dao Lee Institute/Shanghai Jiao Tong University, Shanghai, 200120 People’s Republic of China
- University of Massachusetts, Amherst, MA 01003 USA
| | | | - Kuver Sinha
- Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 USA
| | - Lian-Tao Wang
- Department of Physics, University of Chicago, Chicago, IL 60637 USA
| | - Graham White
- Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583 Japan
| | - Yue Zhao
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 USA
| | - Haipeng An
- Department of Physics, Tsinghua University, Beijing, 100084 People’s Republic of China
- Center for High Energy Physics, Tsinghua University, Beijing, 100084 People’s Republic of China
- Center for High Energy Physics, Peking University, Beijing, 100871 People’s Republic of China
| | - Ligong Bian
- Center for High Energy Physics, Peking University, Beijing, 100871 People’s Republic of China
- Department of Physics and Chongqing Key Laboratory for Strongly Coupled Physics, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Chiara Caprini
- Theoretical Physics Department, University of Geneva, 1211 Geneva, Switzerland
- CERN, Theoretical Physics Department, 1 Esplanade des Particules, 1211 Genève 23, Switzerland
| | - Sebastien Clesse
- Service de Physique Théorique (CP225), University of Brussels (ULB), Boulevard du Triomphe, 1050 Brussels, Belgium
| | - James M. Cline
- Department of Physics, McGill University, Montréal, QC H3A2T8 Canada
| | - Giulia Cusin
- Theoretical Physics Department, University of Geneva, 1211 Geneva, Switzerland
- Sorbonne Université, CNRS, UMR 7095, Institut d’Astrophysique de Paris, 75014 Paris, France
| | - Bartosz Fornal
- Department of Chemistry and Physics, Barry University, Miami Shores, FL 33161 USA
| | - Ryusuke Jinno
- Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13- 15, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Benoit Laurent
- Department of Physics, McGill University, Montréal, QC H3A2T8 Canada
| | - Noam Levi
- Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, 69978 Israel
| | - Kun-Feng Lyu
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Mario Martinez
- Institut de Física d’Altes Energies, Barcelona Institute of Science and Technology and ICREA, 08193 Barcelona, Spain
| | - Andrew L. Miller
- Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
| | - Diego Redigolo
- INFN, Sezione di Firenze Via G. Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Claudia Scarlata
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 USA
| | - Alexander Sevrin
- Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, 1050 Brussels, Belgium
| | - Barmak Shams Es Haghi
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 USA
| | - Jing Shu
- CAS Key Laboratory of Theoretical Physics, Insitute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 People’s Republic of China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
- School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024 People’s Republic of China
- International Center for Theoretical Physics Asia-Pacific, Beijing, Hanzhou, People’s Republic of China
| | - Xavier Siemens
- Department of Physics, Oregon State University, Corvallis, OR 97331 USA
| | - Danièle A. Steer
- Laboratoire Astroparticule et Cosmologie, CNRS, Université Paris Cité, 75013 Paris, France
| | | | - Carlos Tamarit
- Physik-Department T70, Technische Universität München, James-Franck-Straße, 85748 Garching, Germany
| | - David J. Weir
- Department of Physics and Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland
| | - Ke-Pan Xie
- Department of Physics and Astronomy, University of Nebraska, Lincoln, NE 68588 USA
| | - Feng-Wei Yang
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 USA
| | - Siyi Zhou
- Department of Physics, Kobe University, Kobe, 657-8501 Japan
| |
Collapse
|
3
|
Stochastic Gravitational-Wave Backgrounds: Current Detection Efforts and Future Prospects. GALAXIES 2022. [DOI: 10.3390/galaxies10010034] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The collection of individually resolvable gravitational wave (GW) events makes up a tiny fraction of all GW signals that reach our detectors, while most lie below the confusion limit and are undetected. Similarly to voices in a crowded room, the collection of unresolved signals gives rise to a background that is well-described via stochastic variables and, hence, referred to as the stochastic GW background (SGWB). In this review, we provide an overview of stochastic GW signals and characterise them based on features of interest such as generation processes and observational properties. We then review the current detection strategies for stochastic backgrounds, offering a ready-to-use manual for stochastic GW searches in real data. In the process, we distinguish between interferometric measurements of GWs, either by ground-based or space-based laser interferometers, and timing-residuals analyses with pulsar timing arrays (PTAs). These detection methods have been applied to real data both by large GW collaborations and smaller research groups, and the most recent and instructive results are reported here. We close this review with an outlook on future observations with third generation detectors, space-based interferometers, and potential noninterferometric detection methods proposed in the literature.
Collapse
|