1
|
Koput J. Toward Accurate Ab Initio Ground-State Potential Energy and Electric Dipole Moment Functions of Carbon Monoxide. J Chem Theory Comput 2024; 20:9041-9047. [PMID: 39353046 PMCID: PMC11500290 DOI: 10.1021/acs.jctc.4c01082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024]
Abstract
Accurate potential energy and electric dipole moment functions of the CO molecule in its ground electronic state X1Σ+ have been obtained using the single-reference coupled-cluster approach, up to the CCSDTQP level of approximation, in conjunction with the augmented core-valence correlation-consistent basis sets, aug-cc-pCVnZ, up to octuple-zeta quality. The scalar relativistic, adiabatic, and nonadiabatic effects were discussed. The ab initio predicted functions were compared with their experimentally derived counterparts.
Collapse
Affiliation(s)
- Jacek Koput
- Department of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
2
|
Špirko V. Three-Parameter Electric Dipole Moment Function for the CO Molecule. J Chem Theory Comput 2024; 20:4711-4717. [PMID: 38775378 PMCID: PMC11171294 DOI: 10.1021/acs.jctc.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 06/12/2024]
Abstract
A global electric dipole moment function of the ground electronic state of carbon monoxide is constructed by morphing its best theoretical approximants from the literature to the best available experimental data within the framework of the reduced radial curve approach. The resulting functions coincide with their best many-parameter empirical counterparts so closely that they can be used as highly accurate three-parameter representations. Apparently, given the mathematical nature of the problem addressed, this approach can be applied equally well to all radial molecular functions that have similarly cumbersome shapes as the function probed. This means that the property characteristics of diatomic molecules can, in principle, be described with high precision even when as few as three pertinent experimental data points are accurately known. To date, no such functional approximants are available in the literature.
Collapse
Affiliation(s)
- Vladimír Špirko
- Institute of Organic Chemistry and
Biochemistry, p.r.i., Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czechia
| |
Collapse
|
3
|
Balashov AA, Wójtewicz S, Domysławska J, Ciuryło R, Lisak D, Bielska K. CRDS line-shape study of the (7-0) band of CO. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124041. [PMID: 38368819 DOI: 10.1016/j.saa.2024.124041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/20/2024]
Abstract
We present the results of the spectral line-shape study of the first measurement of the extremely weak (7-0) band of the 12C16O molecule. Measurements were done with a highly sensitive cavity ring-down spectrometer. Collisional narrowing, analyzed in terms of speed-dependent effects, was observed for the first time for transitions with line intensities below 2⋅10-29 cm/molecule at 296 K. We provide a full set of line-shape parameters of the speed-dependent and regular Voigt profile analysis for 14 transitions from P and R branches. Experimental verification of a strong vibrational dependence of the pressure shifting described by the Hartmann model (Hartmann, 2009) is extended up to the sixth overtone highly sensitive to the model parameter.
Collapse
Affiliation(s)
- Aleksandr A Balashov
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Szymon Wójtewicz
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Jolanta Domysławska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Roman Ciuryło
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Daniel Lisak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland
| | - Katarzyna Bielska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziadzka 5, 87-100 Toruń, Poland.
| |
Collapse
|
4
|
Malicka MI, Field RW, Ryzner S, Stasik A, Ubachs W, Heays AN, de Oliveira N, Szajna W, Hakalla R. FT-spectroscopy of the 12C 18O rare isotopologue and deperturbation analysis of the A 1Π(v = 3) level. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 312:124011. [PMID: 38428210 DOI: 10.1016/j.saa.2024.124011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 03/03/2024]
Abstract
Research on 12C18O was carried out using two complementary Fourier-transform methods: (1) vacuum-ultraviolet absorption spectroscopy, with an accuracy ca. 0.03 cm-1 on the DESIRS beamline (SOLEIL synchrotron) and (2) visible emission spectroscopy with an accuracy of about 0.005-0.007 cm-1 by means of the Bruker IFS 125HR spectrometer (University of Rzeszów). The maximum rotational quantum number of the energy levels involved in the observed spectral lines was Jmax = 54. An effective Hamiltonian and the term-value fitting approach were implemented for the precise analysis of the A1Π(v = 3) level in 12C18O. It was performed by means of the PGOPHER code. The data set consisted of 571 spectral lines belonging to the A1Π-X1Σ+(3, 0), B1Σ+-A1Π(0, 3), C1Σ+-A1Π(0, 3) bands and several lines involving states that perturb the A1Π(v = 3) level as well as to the previously analysed B1Σ+-X1Σ+(0, 0) and C1Σ+-X1Σ+(0, 0) transitions. A significantly extended quantum-mechanical description of the A1Π(v = 3) level in 12C18O was provided. It consists of the 5 new unimolecular interactions of the spin-orbit and rotation-electronic nature, which had not been taken into account previously in the literature. The ro-vibronic term values of the A1Π(v = 3, Jmax = 55), a'3Σ+(v = 13), D1Δ(v = 4) and I1Σ-(v = 5) levels were determined with precision improved by a factor of 10 relative to the previously known values.
Collapse
Affiliation(s)
- M I Malicka
- The Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, Powstańców Warszawy 8 Street, 35-959, Rzeszów, Poland.
| | - R W Field
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge MA02139, USA
| | - S Ryzner
- Materials Spectroscopy Laboratory, Institute of Physics, University of Rzeszów, Pigonia 1 Street, 35-310 Rzeszów, Poland; Doctoral School of the University of Rzeszów, University of Rzeszów, Rejtana 16C Street, 35-959 Rzeszów, Poland
| | - A Stasik
- Materials Spectroscopy Laboratory, Institute of Physics, University of Rzeszów, Pigonia 1 Street, 35-310 Rzeszów, Poland
| | - W Ubachs
- Department of Physics and Astronomy, and LaserLaB, Vrije Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands
| | - A N Heays
- J. Heyrovský Institute of Physical Chemistry, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - N de Oliveira
- Synchrotron SOLEIL, Orme de Merisiers, St. Aubin, BP 48, F-91192 Gif sur Yvette Cedex, France
| | - W Szajna
- Materials Spectroscopy Laboratory, Institute of Physics, University of Rzeszów, Pigonia 1 Street, 35-310 Rzeszów, Poland
| | - R Hakalla
- Materials Spectroscopy Laboratory, Institute of Physics, University of Rzeszów, Pigonia 1 Street, 35-310 Rzeszów, Poland
| |
Collapse
|
5
|
Špirko V. Reduced Radial Curves of Diatomic Molecules. J Chem Theory Comput 2023; 19:7324-7332. [PMID: 37774238 PMCID: PMC10601484 DOI: 10.1021/acs.jctc.3c00622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Indexed: 10/01/2023]
Abstract
The prospect of using the concept of a universal reduced potential energy curve (RPC) for a broader class of radial molecular functions is explored by performing appropriate model calculations for the electric dipole moment functions of the hydrogen halides HF, HCl, and HBr. The reduced radial functions of the model systems, constructed from their best available theoretical approximants, coincide so closely that they can be used as few-parameter universal representations of functions available in the literature. Given the mathematical nature of the problem addressed here, the results are not limited to the functions studied but can be applied equally well to all radial molecular functions that have similar shapes, such as electric quadrupole moment and dipole polarizability functions.
Collapse
Affiliation(s)
- Vladimír Špirko
- Institute of Organic Chemistry
and Biochemistry, p.r.i., Czech Academy
of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czechia
| |
Collapse
|
6
|
Barbosa LFFM, Dubowik PB, Reddemann MA, Kneer R. Development of a cavity ring-down spectrometer toward multi-species composition. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:105117. [PMID: 37902462 DOI: 10.1063/5.0149765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 10/05/2023] [Indexed: 10/31/2023]
Abstract
This work presents the development of a cavity ring-down spectrometer (CRDS) designed for the detection of several molecules relevant for air pollution, including the second overtone of ro-vibration transitions from CO at 1.58 µm and NO at 1.79 µm. A unique feature of this CRDS is the use of custom mirrors with a reflectivity of about 99.99% from 1.52 to 1.80 µm, enabling efficient laser coupling into the cavity while ensuring a minimum detectable absorbance of 1.1 × 10-10 cm-1 within an integration time of about 1.2 s. In this work, the successful implementation of the current CRDS is demonstrated in two different wavelength regions. At 1.79 µm, the transitions R17.5 and R4.5 of the second overtone of NO are detected. At 1.58 µm, carbon dioxide and water vapor from untreated ambient air are measured, serving as an example to investigate the suitability of a post-processing procedure for the determination of the molar fraction in a multi-species composition. This post-processing procedure has the benefit of being calibration-free and SI-traceable. Additionally, CRDS measurements of gas mixtures containing CO and CO2 are also shown. In the future, the advantages of the developed cavity ring-down spectrometer will be exploited in order to perform fundamental studies on the transport processes of heterogeneous catalysis by locally resolving the gas phase near a working catalytic surface. The possibility to cover a broad wavelength region with this CRDS opens up the opportunity to investigate different catalytic reactions, including CO oxidation and NO reduction.
Collapse
Affiliation(s)
- Luís Felipe F M Barbosa
- Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, Aachen 52062, Germany
| | - Philip B Dubowik
- Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, Aachen 52062, Germany
| | - Manuel A Reddemann
- Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, Aachen 52062, Germany
| | - Reinhold Kneer
- Institute of Heat and Mass Transfer, RWTH Aachen University, Augustinerbach 6, Aachen 52062, Germany
| |
Collapse
|
7
|
Reed ZD, Tran H, Ngo HN, Hartmann JM, Hodges JT. Effect of Non-Markovian Collisions on Measured Integrated Line Shapes of CO. PHYSICAL REVIEW LETTERS 2023; 130:143001. [PMID: 37084433 DOI: 10.1103/physrevlett.130.143001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/25/2023] [Accepted: 03/10/2023] [Indexed: 05/03/2023]
Abstract
Using cavity ring-down spectroscopy to probe R-branch transitions of CO in N_{2}, we show that the spectral core of the line shapes associated with the first few rotational quantum numbers, J, can be accurately modeled using a sophisticated line profile, provided that a pressure-dependent line area is introduced. This correction vanishes as J increases and is always negligible in CO-He mixtures. The results are supported by molecular dynamics simulations attributing the effect to non-Markovian behavior of collisions at short times. This work has large implications because corrections must be considered for accurate determinations of integrated line intensities, and for spectroscopic databases and radiative transfer codes used for climate predictions and remote sensing.
Collapse
Affiliation(s)
- Zachary D Reed
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| | - Ha Tran
- Laboratoire de Météorologie Dynamique/IPSL, CNRS, Sorbonne Université, Ecole Polytechnique, Institut polytechnique de Paris, Ecole Normale Supérieure, PSL Research University, 4 place Jussieu, 75252, Paris, France
| | - Hoa N Ngo
- Faculty of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
| | - Jean-Michel Hartmann
- Laboratoire de Météorologie Dynamique/IPSL, CNRS, Sorbonne Université, Ecole Polytechnique, Institut polytechnique de Paris, Ecole Normale Supérieure, PSL Research University, 4 place Jussieu, 75252, Paris, France
| | - Joseph T Hodges
- Chemical Sciences Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
8
|
Słowiński M, Makowski M, Sołtys KL, Stankiewicz K, Wójtewicz S, Lisak D, Piwiński M, Wcisło P. Cryogenic mirror position actuator for spectroscopic applications. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:115003. [PMID: 36461519 DOI: 10.1063/5.0116691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate a mirror position actuator that operates in a wide temperature range from room temperature to a deep cryogenic regime (10 K). We use a Michelson interferometer to measure the actuator tuning range (and piezoelectric efficiency) in the full temperature range. We demonstrate an unprecedented range of tunability of the mirror position in the cryogenic regime (over 22 μm at 10 K). The capability of controlling the mirror position in the range from few to few tens of microns is crucial for cavity-enhanced molecular spectroscopy techniques, especially in the important mid-infrared spectral regime where the length of an optical cavity has to be tunable in a range larger than the laser wavelength. The piezoelectric actuator offering this range of tunability in the cryogenic conditions, on the one hand, will enable development of optical cavities operating at low temperatures that are crucial for spectroscopy of large molecules whose dense spectra are difficult to resolve at room temperature. On the other hand, this will enable us to increase the accuracy of the measurement of simple molecules aimed at fundamental studies.
Collapse
Affiliation(s)
- Michał Słowiński
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Marcin Makowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Kamil Leon Sołtys
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Kamil Stankiewicz
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Szymon Wójtewicz
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Daniel Lisak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Mariusz Piwiński
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| | - Piotr Wcisło
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Toruń, Poland
| |
Collapse
|
9
|
Furtenbacher T, Hegedus ST, Tennyson J, Császár AG. Analysis of measured high-resolution doublet rovibronic spectra and related line lists of 12CH and 16OH. Phys Chem Chem Phys 2022; 24:19287-19301. [PMID: 35929432 PMCID: PMC9382695 DOI: 10.1039/d2cp02240k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022]
Abstract
Detailed understanding of the energy-level structure of the quantum states as well as of the rovibronic spectra of the ethylidyne (CH) and the hydroxyl (OH) radicals is mandatory for a multitude of modelling efforts within multiple chemical, combustion, astrophysical, and atmospheric environments. Accurate empirical rovibronic energy levels, with associated uncertainties, are reported for the low-lying doublet electronic states of 12CH and 16OH, using the Measured Active Rotational-Vibrational Energy Levels (MARVEL) algorithm. For 12CH, a total of 1521 empirical energy levels are determined in the primary spectroscopic network (SN) of the radical, corresponding to the following seven electronic states: X 2Π, A 2Δ, B 2Σ-, C2 Σ+, D 2Π, E 2Σ+, and F 2Σ+. The energy levels are derived from 6348 experimentally measured and validated transitions, collected from 29 sources. For 16OH, the lowest four doublet electronic states, X 2Π, A 2Σ+, B 2Σ+, and C 2Σ+, are considered, and a careful analysis and validation of 15 938 rovibronic transitions, collected from 45 sources, results in 1624 empirical rovibronic energy levels. The large set of spectroscopic data presented should facilitate the refinement of line lists for the 12CH and 16OH radicals. For both molecules hyperfine-resolved experimental transitions have also been considered, forming SNs independent from the primary SNs.
Collapse
Affiliation(s)
- Tibor Furtenbacher
- MTA-ELTE Complex Chemical Systems Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
| | - Samuel T Hegedus
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
| | - Jonathan Tennyson
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK.
| | - Attila G Császár
- MTA-ELTE Complex Chemical Systems Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary.
- Laboratory of Molecular Structure and Dynamics, Institute of Chemistry, ELTE Eötvös Loránd University and MTA-ELTE Complex Chemical Systems Research Group, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary
| |
Collapse
|