Rheology of debris flow materials is controlled by the distance from jamming.
Proc Natl Acad Sci U S A 2022;
119:e2209109119. [PMID:
36279442 PMCID:
PMC9636957 DOI:
10.1073/pnas.2209109119]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Debris flows are fast-flowing and dangerous slurries of soil and water that often form when intense rainfall soaks hillsides burned by wildfire. As climate change intensifies this hazard, models capable of predicting failure and flow behaviors are needed. Here we capitalize on recent progress in the physics of dense suspensions, to determine how the physical and chemical composition of natural hillslope soils controls the viscosity and yield stress of debris flows. We show how a simple flow model—previously developed for idealized suspensions—can be extended to highly heterogeneous, natural debris flow materials. This model reconciles previously contradictory observations and could help to improve computer models that assess the hazard potential of debris flows in the field.
Debris flows are dense and fast-moving complex suspensions of soil and water that threaten lives and infrastructure. Assessing the hazard potential of debris flows requires predicting yield and flow behavior. Reported measurements of rheology for debris flow slurries are highly variable and sometimes contradictory due to heterogeneity in particle composition and volume fraction (ϕ) and also inconsistent measurement methods. Here we examine the composition and flow behavior of source materials that formed the postwildfire debris flows in Montecito, CA, in 2018, for a wide range of ϕ that encapsulates debris flow formation by overland flow. We find that shear viscosity and yield stress are controlled by the distance from jamming, Δϕ=ϕm−ϕ, where the jamming fraction ϕm is a material parameter that depends on grain size polydispersity and friction. By rescaling shear and viscous stresses to account for these effects, the data collapse onto a simple nondimensional flow curve indicative of a Bingham plastic (viscoplastic) fluid. Given the highly nonlinear dependence of rheology on Δϕ, our findings suggest that determining the jamming fraction for natural materials will significantly improve flow models for geophysical suspensions such as hyperconcentrated flows and debris flows.
Collapse