1
|
Gopalakrishnan S, McCulloch E, Vasseur R. Non-Gaussian diffusive fluctuations in Dirac fluids. Proc Natl Acad Sci U S A 2024; 121:e2403327121. [PMID: 39630864 DOI: 10.1073/pnas.2403327121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 11/02/2024] [Indexed: 12/07/2024] Open
Abstract
Dirac fluids-interacting systems obeying particle-hole symmetry and Lorentz invariance-are among the simplest hydrodynamic systems; they have also been studied as effective descriptions of transport in strongly interacting Dirac semimetals. Direct experimental signatures of the Dirac fluid are elusive, as its charge transport is diffusive as in conventional metals. In this paper, we point out a striking consequence of fluctuating relativistic hydrodynamics: The full counting statistics (FCS) of charge transport is highly non-Gaussian. We predict the exact asymptotic form of the FCS, which generalizes a result previously derived for certain interacting integrable systems. A consequence is that, starting from quasi-one-dimensional nonequilibrium initial conditions, charge noise in the hydrodynamic regime is parametrically enhanced relative to that in conventional diffusive metals.
Collapse
Affiliation(s)
- Sarang Gopalakrishnan
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544
| | - Ewan McCulloch
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ 08544
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| | - Romain Vasseur
- Department of Physics, University of Massachusetts, Amherst, MA 01003
| |
Collapse
|
2
|
Young AW, Geller S, Eckner WJ, Schine N, Glancy S, Knill E, Kaufman AM. An atomic boson sampler. Nature 2024; 629:311-316. [PMID: 38720040 DOI: 10.1038/s41586-024-07304-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 03/13/2024] [Indexed: 05/12/2024]
Abstract
A boson sampler implements a restricted model of quantum computing. It is defined by the ability to sample from the distribution resulting from the interference of identical bosons propagating according to programmable, non-interacting dynamics1. An efficient exact classical simulation of boson sampling is not believed to exist, which has motivated ground-breaking boson sampling experiments in photonics with increasingly many photons2-12. However, it is difficult to generate and reliably evolve specific numbers of photons with low loss, and thus probabilistic techniques for postselection7 or marked changes to standard boson sampling10-12 are generally used. Here, we address the above challenges by implementing boson sampling using ultracold atoms13,14 in a two-dimensional, tunnel-coupled optical lattice. This demonstration is enabled by a previously unrealized combination of tools involving high-fidelity optical cooling and imaging of atoms in a lattice, as well as programmable control of those atoms using optical tweezers. When extended to interacting systems, our work demonstrates the core abilities required to directly assemble ground and excited states in simulations of various Hubbard models15,16.
Collapse
Affiliation(s)
- Aaron W Young
- JILA, University of Colorado and National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA.
| | - Shawn Geller
- National Institute of Standards and Technology, Boulder, CO, USA
- Department of Physics, University of Colorado, Boulder, CO, USA
| | - William J Eckner
- JILA, University of Colorado and National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA
| | - Nathan Schine
- JILA, University of Colorado and National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA
- Joint Quantum Institute, University of Maryland Department of Physics and National Institute of Standards and Technology, College Park, MD, USA
| | - Scott Glancy
- National Institute of Standards and Technology, Boulder, CO, USA
| | - Emanuel Knill
- National Institute of Standards and Technology, Boulder, CO, USA
- Center for Theory of Quantum Matter, University of Colorado, Boulder, CO, USA
| | - Adam M Kaufman
- JILA, University of Colorado and National Institute of Standards and Technology and Department of Physics, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
3
|
Prichard ML, Spar BM, Morera I, Demler E, Yan ZZ, Bakr WS. Directly imaging spin polarons in a kinetically frustrated Hubbard system. Nature 2024; 629:323-328. [PMID: 38720039 DOI: 10.1038/s41586-024-07356-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/26/2024] [Indexed: 05/12/2024]
Abstract
The emergence of quasiparticles in quantum many-body systems underlies the rich phenomenology in many strongly interacting materials. In the context of doped Mott insulators, magnetic polarons are quasiparticles that usually arise from an interplay between the kinetic energy of doped charge carriers and superexchange spin interactions1-8. However, in kinetically frustrated lattices, itinerant spin polarons-bound states of a dopant and a spin flip-have been theoretically predicted even in the absence of superexchange coupling9-14. Despite their important role in the theory of kinetic magnetism, a microscopic observation of these polarons is lacking. Here we directly image itinerant spin polarons in a triangular-lattice Hubbard system realized with ultracold atoms, revealing enhanced antiferromagnetic correlations in the local environment of a hole dopant. In contrast, around a charge dopant, we find ferromagnetic correlations, a manifestation of the elusive Nagaoka effect15,16. We study the evolution of these correlations with interactions and doping, and use higher-order correlation functions to further elucidate the relative contributions of superexchange and kinetic mechanisms. The robustness of itinerant spin polarons at high temperature paves the way for exploring potential mechanisms for hole pairing and superconductivity in frustrated systems10,11. Furthermore, our work provides microscopic insights into related phenomena in triangular-lattice moiré materials17-20.
Collapse
Affiliation(s)
- Max L Prichard
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Benjamin M Spar
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Ivan Morera
- Departament de Física Quàntica i Astrofísica, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
- Institut de Ciències del Cosmos, Universitat de Barcelona, ICCUB, Barcelona, Spain
- Institute for Theoretical Physics, ETH Zürich, Zürich, Switzerland
| | - Eugene Demler
- Institute for Theoretical Physics, ETH Zürich, Zürich, Switzerland
| | - Zoe Z Yan
- Department of Physics, Princeton University, Princeton, NJ, USA
- James Franck Institute and Department of Physics, The University of Chicago, Chicago, IL, USA
| | - Waseem S Bakr
- Department of Physics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
4
|
Zhao L, Lee MDK, Aliyu MM, Loh H. Floquet-tailored Rydberg interactions. Nat Commun 2023; 14:7128. [PMID: 37932268 PMCID: PMC10628180 DOI: 10.1038/s41467-023-42899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
The Rydberg blockade is a key ingredient for entangling atoms in arrays. However, it requires atoms to be spaced well within the blockade radius, which limits the range of local quantum gates. Here we break this constraint using Floquet frequency modulation, with which we demonstrate Rydberg-blockade entanglement beyond the traditional blockade radius and show how the enlarged entanglement range improves qubit connectivity in a neutral atom array. Further, we find that the coherence of entangled states can be extended under Floquet frequency modulation. Finally, we realize Rydberg anti-blockade states for two sodium Rydberg atoms within the blockade radius. Such Rydberg anti-blockade states for atoms at close range enables the robust preparation of strongly-interacting, long-lived Rydberg states, yet their steady-state population cannot be achieved with only the conventional static drive. Our work transforms between the paradigmatic regimes of Rydberg blockade versus anti-blockade and paves the way for realizing more connected, coherent, and tunable neutral atom quantum processors with a single approach.
Collapse
Affiliation(s)
- Luheng Zhao
- Centre for Quantum Technologies, National University of Singapore, 117543, Singapore, Singapore
| | - Michael Dao Kang Lee
- Centre for Quantum Technologies, National University of Singapore, 117543, Singapore, Singapore
| | - Mohammad Mujahid Aliyu
- Centre for Quantum Technologies, National University of Singapore, 117543, Singapore, Singapore
| | - Huanqian Loh
- Centre for Quantum Technologies, National University of Singapore, 117543, Singapore, Singapore.
- Department of Physics, National University of Singapore, 117542, Singapore, Singapore.
| |
Collapse
|
5
|
Naldesi P, Elben A, Minguzzi A, Clément D, Zoller P, Vermersch B. Fermionic Correlation Functions from Randomized Measurements in Programmable Atomic Quantum Devices. PHYSICAL REVIEW LETTERS 2023; 131:060601. [PMID: 37625073 DOI: 10.1103/physrevlett.131.060601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 03/16/2023] [Indexed: 08/27/2023]
Abstract
We provide an efficient randomized measurement protocol to estimate two- and four-point fermionic correlations in ultracold atom experiments. Our approach is based on combining random atomic beam splitter operations, which can be realized with programmable optical landscapes, with high-resolution imaging systems such as quantum gas microscopes. We illustrate our results in the context of the variational quantum eigensolver algorithm for solving quantum chemistry problems.
Collapse
Affiliation(s)
- Piero Naldesi
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - Andreas Elben
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Institute for Quantum Information and Matter, Caltech, Pasadena, California 91125, USA
- Walter Burke Institute for Theoretical Physics, Caltech, Pasadena, California 91125, USA
| | - Anna Minguzzi
- Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
| | - David Clément
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127, Palaiseau, France
| | - Peter Zoller
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
| | - Benoît Vermersch
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Innsbruck A-6020, Austria
- Univ. Grenoble Alpes, CNRS, LPMMC, 38000 Grenoble, France
| |
Collapse
|
6
|
Liang A, Xie Y, Huang M, Wang B, Zhou S, Liu L. Compensating three-dimensional field inhomogeneity in cold atom Efimov-state search by a time-averaged optical potential. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:073203. [PMID: 37462458 DOI: 10.1063/5.0156075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023]
Abstract
The Efimov effect and its universal property are of paramount importance in quantum few-body physics. Despite this, the predicted ground state Efimov resonance has not yet been observed in 39,40,41K-87Rb mixtures within the currently available observation window. Cooling atoms in the microgravity environment of outer space might overcome this limitation, whereas the residual curvature of the strong magnetic fields may result in significant atom leakage. In this work, we propose an optical method based on far-detuned time-averaged dipole potential to counteract the three-dimensional inhomogeneous field. The target intensity distribution can be conveniently obtained by modulating the central position of the quasi-1D print beam using acoustic optical modulators. Within a volume of 300 × 300 × 400 µm3, the residual potential fluctuations can be reduced by two orders of magnitude to less than 100 pK. The proposed approach offers a realistic prospect of investigating the Efimov-type resonance in the 40K-87Rb Bose-Fermi mixture.
Collapse
Affiliation(s)
- Angang Liang
- Space Laser Engineering Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Yu Xie
- Space Laser Engineering Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Mingshan Huang
- Space Laser Engineering Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Bin Wang
- Space Laser Engineering Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Shuyu Zhou
- Key Laboratory for Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Liang Liu
- Space Laser Engineering Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
| |
Collapse
|
7
|
Shaw AL, Scholl P, Finklestein R, Madjarov IS, Grinkemeyer B, Endres M. Dark-State Enhanced Loading of an Optical Tweezer Array. PHYSICAL REVIEW LETTERS 2023; 130:193402. [PMID: 37243641 DOI: 10.1103/physrevlett.130.193402] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/29/2023]
Abstract
Neutral atoms and molecules trapped in optical tweezers have become a prevalent resource for quantum simulation, computation, and metrology. However, the maximum achievable system sizes of such arrays are often limited by the stochastic nature of loading into optical tweezers, with a typical loading probability of only 50%. Here we present a species-agnostic method for dark-state enhanced loading (DSEL) based on real-time feedback, long-lived shelving states, and iterated array reloading. We demonstrate this technique with a 95-tweezer array of ^{88}Sr atoms, achieving a maximum loading probability of 84.02(4)% and a maximum array size of 91 atoms in one dimension. Our protocol is complementary to, and compatible with, existing schemes for enhanced loading based on direct control over light-assisted collisions, and we predict it can enable close-to-unity filling for arrays of atoms or molecules.
Collapse
Affiliation(s)
- Adam L Shaw
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Pascal Scholl
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Ran Finklestein
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Ivaylo S Madjarov
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| | - Brandon Grinkemeyer
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Manuel Endres
- Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
8
|
Christakis L, Rosenberg JS, Raj R, Chi S, Morningstar A, Huse DA, Yan ZZ, Bakr WS. Probing site-resolved correlations in a spin system of ultracold molecules. Nature 2023; 614:64-69. [PMID: 36725998 DOI: 10.1038/s41586-022-05558-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 02/03/2023]
Abstract
Synthetic quantum systems with interacting constituents play an important role in quantum information processing and in explaining fundamental phenomena in many-body physics. Following impressive advances in cooling and trapping techniques, ensembles of ultracold polar molecules have emerged as a promising platform that combines several advantageous properties1-11. These include a large set of internal states with long coherence times12-17 and long-range, anisotropic interactions. These features could enable the exploration of intriguing phases of correlated quantum matter, such as topological superfluids18, quantum spin liquids19, fractional Chern insulators20 and quantum magnets21,22. Probing correlations in these phases is crucial to understanding their properties, necessitating the development of new experimental techniques. Here we use quantum gas microscopy23 to measure the site-resolved dynamics of quantum correlations of polar 23Na87Rb molecules confined in a two-dimensional optical lattice. By using two rotational states of the molecules, we realize a spin-1/2 system with dipolar interactions between particles, producing a quantum spin-exchange model21,22,24,25. We study the evolution of correlations during the thermalization process of an out-of-equilibrium spin system for both spatially isotropic and anisotropic interactions. Furthermore, we examine the correlation dynamics of a spin-anisotropic Heisenberg model engineered from the native spin-exchange model by using periodic microwave pulses26-28. These experiments push the frontier of probing and controlling interacting systems of ultracold molecules, with prospects for exploring new regimes of quantum matter and characterizing entangled states that are useful for quantum computation29,30 and metrology31.
Collapse
Affiliation(s)
| | | | - Ravin Raj
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Sungjae Chi
- Department of Physics, Princeton University, Princeton, NJ, USA
| | | | - David A Huse
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Zoe Z Yan
- Department of Physics, Princeton University, Princeton, NJ, USA
| | - Waseem S Bakr
- Department of Physics, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
9
|
Janković V, Vučičević J. Fermionic-propagator and alternating-basis quantum Monte Carlo methods for correlated electrons on a lattice. J Chem Phys 2023; 158:044108. [PMID: 36725525 DOI: 10.1063/5.0133597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Ultracold-atom simulations of the Hubbard model provide insights into the character of charge and spin correlations in and out of equilibrium. The corresponding numerical simulations, on the other hand, remain a significant challenge. We build on recent progress in the quantum Monte Carlo (QMC) simulation of electrons in continuous space and apply similar ideas to the square-lattice Hubbard model. We devise and benchmark two discrete-time QMC methods, namely the fermionic-propagator QMC (FPQMC) and the alternating-basis QMC (ABQMC). In FPQMC, the time evolution is represented by snapshots in real space, whereas the snapshots in ABQMC alternate between real and reciprocal space. The methods may be applied to study equilibrium properties within the grand-canonical or canonical ensemble, external field quenches, and even the evolution of pure states. Various real-space/reciprocal-space correlation functions are also within their reach. Both methods deal with matrices of size equal to the number of particles (thus independent of the number of orbitals or time slices), which allows for cheap updates. We benchmark the methods in relevant setups. In equilibrium, the FPQMC method is found to have an excellent average sign and, in some cases, yields correct results even with poor imaginary-time discretization. ABQMC has a significantly worse average sign, but also produces good results. Out of equilibrium, FPQMC suffers from a strong dynamical sign problem. On the contrary, in ABQMC, the sign problem is not time-dependent. Using ABQMC, we compute survival probabilities for several experimentally relevant pure states.
Collapse
Affiliation(s)
- Veljko Janković
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Jakša Vučičević
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| |
Collapse
|