1
|
Manouras T, Vagias A, Koufakis E, Anastasiadis SH, Müller-Buschbaum P, Vamvakaki M. Microphase Separation of Poly(2-(Dimethylamino)Ethyl Methacrylate)-b-Poly(Tetrahydropyranyl Methacrylate) Diblock Copolymer Thin Films. Macromol Rapid Commun 2025:e2500138. [PMID: 40350973 DOI: 10.1002/marc.202500138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/11/2025] [Indexed: 05/14/2025]
Abstract
The microphase separation in diblock copolymer films comprising two chemically similar methacrylate blocks, poly(2-(dimethylamino)ethyl methacrylate) and poly(tetrahydropyranyl methacrylate), is investigated. Four symmetric diblock copolymers, with Mn's ranging from 4300 to 109 700 g mol-1 and narrow molecular weight distributions, are synthesized by group-transfer polymerization, are spin-coated from ethyl lactate solutions and are subsequently solvent vapor annealed. The two lower Mn copolymers dewet the silicon substrates after annealing, whereas the two higher Mn copolymers reveal the formation of holes and islands by optical microscopy, suggesting their microphase separation into lamellae structures orientated parallel to the substrate. The ordering of these weakly segregated diblock copolymers is verified by X-ray reflectivity (XRR) and grazing-incidence small-angle X-ray scattering (GISAXS). XRR provided the film thickness and lamellae spacing by probing along the direction perpendicular to the sample surface, whereas GISAXS probes the nanoscale morphology along the sample plane and the lateral and vertical correlation lengths of the films by analyzing the diffuse scattering. The lamellae thicknesses determined by XRR and GISAXS are in good agreement with those measured by atomic force microscopy. The results hold great promise for the development of highly functional ordered nanostructures in thin film geometries for applications in energy, catalysis, and others.
Collapse
Affiliation(s)
- Theodore Manouras
- Department of Materials Science and Engineering, University of Crete, Heraklion, 700 13, Crete, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 700 13, Crete, Greece
| | - Apostolos Vagias
- Institut Laue Langevin (ILL), 71 Avenue des Martyrs, 38000, Grenoble, France
- Heinz Maier-Leibnitz Zentrum (MLZ), Technical University of Munich, Lichtenbergstr. 1, 85748, Garching, Germany
| | - Eleftherios Koufakis
- Department of Materials Science and Engineering, University of Crete, Heraklion, 700 13, Crete, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 700 13, Crete, Greece
| | - Spiros H Anastasiadis
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 700 13, Crete, Greece
- Department of Chemistry, University of Crete, Heraklion, Crete, 700 13, Greece
| | - Peter Müller-Buschbaum
- TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, Technical University of Munich, James-Franck-Str. 1, 85748, Garching, Germany
| | - Maria Vamvakaki
- Department of Materials Science and Engineering, University of Crete, Heraklion, 700 13, Crete, Greece
- Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, Heraklion, 700 13, Crete, Greece
| |
Collapse
|
2
|
Babutan I, Atanase LI, Botiz I. Self-Assembly of Lamellar/Micellar Block Copolymers Induced Through Their Rich Exposure to Various Solvent Vapors: An AFM Study. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1759. [PMID: 40333407 PMCID: PMC12028553 DOI: 10.3390/ma18081759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
In this work, we have employed an advanced method of solvent vapor annealing to expose spin-cast thin films made from various lamellar and micellar block copolymers to generous amounts of different types of solvent vapors, with the final goal of stimulating the films' self-assembly into (hierarchically) ordered structures. As revealed by atomic force microscopy measurements, periodic lamellar nanostructures of molecular dimensions based on poly(4-vinylpyridine)-b-polybutadiene and poly(2-vinylpyridine)-b-polybutadiene, as well as micellar structures further packed into either (parallel) stripe-like or honeycomb-resembling configurations based on poly(2-vinylpyridine)-b-poly(tert-butyl methacrylate)-b-poly(methacrylate cyclohexyl), were successfully produced through processing.
Collapse
Affiliation(s)
- Iulia Babutan
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania;
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| | - Leonard Ionut Atanase
- Department of Biomaterials, Faculty of Medicine, “Apollonia” University of Iasi, 700511 Iasi, Romania;
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Ioan Botiz
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania;
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania
| |
Collapse
|
3
|
Magruder BR, Ellison CJ, Dorfman KD. Equilibrium phase behavior of gyroid-forming diblock polymer thin films. J Chem Phys 2024; 161:084902. [PMID: 39171715 DOI: 10.1063/5.0224767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024] Open
Abstract
Thin-film confinement of self-assembling block polymers results in materials with myriad potential applications-including membranes and optical devices-and provides design parameters for altering phase behavior that are not available in the bulk, namely, film thickness and preferential wetting. However, most research has been limited to lamella- and cylinder-forming polymers; three-dimensional phases, such as double gyroid (DG), have been observed in thin films, but their phase behavior under confinement is not yet well understood. We use self-consistent field theory to predict the equilibrium morphology of bulk-gyroid-forming AB diblock polymers under thin-film confinement. Phase diagrams reveal that the (211) orientation of DG, often observed in experiments, is stable between nonpreferential boundaries at thicknesses as small as 1.2 times the bulk DG lattice parameter. The (001) orientation is stable between modestly B-preferential boundaries, where B is the majority block, while a different (211)-oriented termination plane is stabilized by strongly B-preferential boundaries, neither of which has been observed experimentally. We then describe two particularly important phenomena for explaining the phase behavior of DG thin films at low film thicknesses. The first is "constructive interference," which arises when distortions due to the top and bottom boundaries overlap and is significant for certain DG orientations. The second is a symmetry-dependent, in-plane unit-cell distortion that arises because the distorted morphology near the boundary has a different preferred unit-cell size and shape than the bulk. These results provide a thermodynamic portrait of the phase behavior of DG thin films.
Collapse
Affiliation(s)
- Benjamin R Magruder
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota - Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
4
|
Maekawa S, Seshimo T, Dazai T, Sato K, Hatakeyama-Sato K, Nabae Y, Hayakawa T. Chemically tailored block copolymers for highly reliable sub-10-nm patterns by directed self-assembly. Nat Commun 2024; 15:5671. [PMID: 38971785 PMCID: PMC11227500 DOI: 10.1038/s41467-024-49839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/19/2024] [Indexed: 07/08/2024] Open
Abstract
While block copolymer (BCP) lithography is theoretically capable of printing features smaller than 10 nm, developing practical BCPs for this purpose remains challenging. Herein, we report the creation of a chemically tailored, highly reliable, and practically applicable block copolymer and sub-10-nm line patterns by directed self-assembly. Polystyrene-block-[poly(glycidyl methacrylate)-random-poly(methyl methacrylate)] (PS-b-(PGMA-r-PMMA) or PS-b-PGM), which is based on PS-b-PMMA with an appropriate amount of introduced PGMA (10-33 mol%) is quantitatively post-functionalized with thiols. The use of 2,2,2-trifluoroethanethiol leads to polymers (PS-b-PGFMs) with Flory-Huggins interaction parameters (χ) that are 3.5-4.6-times higher than that of PS-b-PMMA and well-defined higher-order structures with domain spacings of less than 20 nm. This study leads to the smallest perpendicular lamellar domain size of 12.3 nm. Furthermore, thin-film lamellar domain alignment and vertical orientation are highly reliably and reproducibly obtained by directed self-assembly to yield line patterns that correspond to a 7.6 nm half-pitch size.
Collapse
Affiliation(s)
- Shinsuke Maekawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, 152-8552, Japan
| | - Takehiro Seshimo
- Research & Development Department, Tokyo Ohka Kogyo Co., Ltd., Kanagawa, 253-0114, Japan
| | - Takahiro Dazai
- Research & Development Department, Tokyo Ohka Kogyo Co., Ltd., Kanagawa, 253-0114, Japan
| | - Kazufumi Sato
- Research & Development Department, Tokyo Ohka Kogyo Co., Ltd., Kanagawa, 253-0114, Japan
| | - Kan Hatakeyama-Sato
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, 152-8552, Japan
| | - Yuta Nabae
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, 152-8552, Japan
| | - Teruaki Hayakawa
- Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Tokyo, 152-8552, Japan.
| |
Collapse
|
5
|
Magruder BR, Morse DC, Ellison CJ, Dorfman KD. Boundary Frustration in Double-Gyroid Thin Films. ACS Macro Lett 2024; 13:382-388. [PMID: 38478981 DOI: 10.1021/acsmacrolett.4c00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Self-consistent field theory for thin films of AB diblock polymers in the double-gyroid phase reveals that in the absence of preferential wetting of monomer species at the film boundaries, films with the (211) plane oriented parallel to the boundaries are more stable than other orientations, consistent with experimental results. This preferred orientation is explained in the context of boundary frustration. Specifically, the angle of intersection between the A/B interface and the film boundary, the wetting angle, is thermodynamically restricted to a narrow range of values. Most termination planes in the double gyroid cannot accommodate this narrow range of wetting angles without significant local distortion relative to the bulk morphology; the (211)-oriented termination plane with the "double-wave" pattern produces relatively minimal distortion, making it the least frustrated boundary. The principle of boundary frustration provides a framework to understand the relative stability of termination planes for complex ordered block polymer phases confined between flat, nonpreferential boundaries.
Collapse
Affiliation(s)
- Benjamin R Magruder
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - David C Morse
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Christopher J Ellison
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Kevin D Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Hendeniya N, Chittick C, Hillery K, Abtahi S, Mosher C, Chang B. Revealing the Kinetic Phase Behavior of Block Copolymer Complexes Using Solvent Vapor Absorption-Desorption Isotherms. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18144-18153. [PMID: 38530201 PMCID: PMC11009910 DOI: 10.1021/acsami.4c00076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/27/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Controlling the self-assembled morphologies in block copolymers heavily depends on their molecular architecture and processing conditions. Solvent vapor annealing is a versatile processive pathway to obtain highly periodic self-assemblies from high chi (χ) block copolymers (BCPs) and supramolecular BCP complexes. Despite the importance of navigating the energy landscape, controlled solvent vapor annealing (SVA) has not been investigated in BCP complexes, partly due to its intricate multicomponent nature. We introduce characteristic absorption-desorption solvent vapor isotherms as an effective way to understand swelling behavior and follow the morphological evolution of the polystyrene-block-poly(4-vinylpyridine) block copolymer complexed with pentadecylphenol (PS-b-P4VP(PDP)). Using the sorption isotherms, we identify the glass transition points, polymer-solvent interaction parameters, and bulk modulus. These parameters indicate that complexation completely screens the polymer interchain interactions. Furthermore, we established that the sorption isotherm of the homopolymer blocks serves to deconvolute the intricacy of BCP complexes. We applied our findings by developing annealing pathways for grain coarsening while preventing macroscopic film dewetting under SVA. Here, grain coarsening obeyed a power law and the growth exponent revealed a kinetic transition point for rapid self-assembly. Overall, SVA-based sorption isotherms have emerged as a critical method for understanding and developing annealing pathways for BCP complexes.
Collapse
Affiliation(s)
- Nayanathara Hendeniya
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
| | - Caden Chittick
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
| | - Kaitlyn Hillery
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
| | - Shaghayegh Abtahi
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
| | - Curtis Mosher
- Roy
J. Carver High-Resolution Microscopy Facility, Office of Biotechnology, Iowa State University, Ames, Iowa 50011, United States
| | - Boyce Chang
- Department
of Materials Science and Engineering, Iowa
State University, Ames, Iowa 50011, United States
- Micro-Electronics
Research Center, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
7
|
Chen Z, Ribbe AE, Steinmetz C, Coughlin EB, Hu M, Gan X, Russell TP. Phase Behavior of Charged Star Block Copolymers at Fluids Interface. Angew Chem Int Ed Engl 2024; 63:e202400127. [PMID: 38206892 DOI: 10.1002/anie.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
The phase behavior of block copolymers (BCPs) at the water-oil interface is influenced by the segmental interaction parameter ( χ ${\chi }$ ) and chain architecture. We synthesized a series of star block copolymers (s-BCPs) having polystyrene (PS) as core and poly(2-vinylpyridine) (P2VP) as corona. The interaction parameters of block-block ( χ ${\chi }$ PS-P2VP ) and block-solvent ( χ ${\chi }$ P2VP-solvent ) were varied by adjusting the pH of the aqueous solution. Lowering pH increased the fraction of quaternized-P2VP (Q-P2VP) with enhanced hydrophilicity. By transferring the equilibrated interfacial assemblies, morphologies ranging from bicontinuous films at pH of 7 and 3.1 to nanoporous and nanotubular structure at pH of 0.65 were observed. The nanoporous films formed hexagonally packed pores in s-BCP matrix, while nanotubes comprised Q-P2VP as corona and PS as core. Control over pore size, d-spacing between pores, and nanotube diameters was achieved by varying polymer concentration, molecular weight, volume fraction and arm number of s-BCPs. Large-scale nanoporous films were obtained by freeze-drying emulsions. Remarkably, the morphologies of linear BCPs were inverted, forming hexagonal-packed rigid spherical micelles with Q-P2VP as core and PS as corona in multilayer. This work provides insights of phase behaviors of BCP at fluids interface and offer a facile approach to prepare nanoporous film with well-controlled pore structure.
Collapse
Affiliation(s)
- Zhan Chen
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alexander E Ribbe
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Christian Steinmetz
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - E Bryan Coughlin
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Mingqiu Hu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Xuchen Gan
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Thomas P Russell
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Material Science Division, Lawrence Berkeley National Laboratory, Cyclotron Road, Berkeley, CA 94720, USA
| |
Collapse
|
8
|
Vargo E, Ma L, Li H, Zhang Q, Kwon J, Evans KM, Tang X, Tovmasyan VL, Jan J, Arias AC, Destaillats H, Kuzmenko I, Ilavsky J, Chen WR, Heller W, Ritchie RO, Liu Y, Xu T. Functional composites by programming entropy-driven nanosheet growth. Nature 2023; 623:724-731. [PMID: 37938779 DOI: 10.1038/s41586-023-06660-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/20/2023] [Indexed: 11/09/2023]
Abstract
Nanomaterials must be systematically designed to be technologically viable1-5. Driven by optimizing intermolecular interactions, current designs are too rigid to plug in new chemical functionalities and cannot mitigate condition differences during integration6,7. Despite extensive optimization of building blocks and treatments, accessing nanostructures with the required feature sizes and chemistries is difficult. Programming their growth across the nano-to-macro hierarchy also remains challenging, if not impossible8-13. To address these limitations, we should shift to entropy-driven assemblies to gain design flexibility, as seen in high-entropy alloys, and program nanomaterial growth to kinetically match target feature sizes to the mobility of the system during processing14-17. Here, following a micro-then-nano growth sequence in ternary composite blends composed of block-copolymer-based supramolecules, small molecules and nanoparticles, we successfully fabricate high-performance barrier materials composed of more than 200 stacked nanosheets (125 nm sheet thickness) with a defect density less than 0.056 µm-2 and about 98% efficiency in controlling the defect type. Contrary to common perception, polymer-chain entanglements are advantageous to realize long-range order, accelerate the fabrication process (<30 min) and satisfy specific requirements to advance multilayered film technology3,4,18. This study showcases the feasibility, necessity and unlimited opportunities to transform laboratory nanoscience into nanotechnology through systems engineering of self-assembly.
Collapse
Affiliation(s)
- Emma Vargo
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Le Ma
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - He Li
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Qingteng Zhang
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Junpyo Kwon
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Katherine M Evans
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Xiaochen Tang
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Victoria L Tovmasyan
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jasmine Jan
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Ana C Arias
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
| | - Hugo Destaillats
- Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ivan Kuzmenko
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Jan Ilavsky
- X-ray Science Division, Argonne National Laboratory, Lemont, IL, USA
| | - Wei-Ren Chen
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - William Heller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Robert O Ritchie
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Yi Liu
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ting Xu
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
- Kavli Energy NanoScience Institute, Berkeley, CA, USA.
| |
Collapse
|
9
|
Majkrzak CF. The development of neutron reflectometry as a probe of the nanoscale structure of polymer thin film systems - founded on the pioneering work of Professor Thomas P. Russell. NANOSCALE 2023; 15:4725-4737. [PMID: 36799457 DOI: 10.1039/d2nr06756k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Among Professor Russell's numerous, original, and significant contributions to polymer science are those in which he helped pioneer the application of neutron reflectometry to the study of thin film systems. For this groundbreaking work, along with his support of neutron scattering methods in general, he was awarded the 2020 Clifford G. Shull Prize by the Neutron Scattering Society of America, named after and in honor of the Nobel Prize laureate. This article highlights some of the first applications of neutron reflectometry to probe the nanoscale structure of polymer thin film systems that Professor Russell and his colleagues pioneered. A concise account of the subsequent evolution of even more powerful phase-sensitive reflectometry techniques, following the success of their early work, is then presented. In addition to a general description of this current methodology, several particularly relevant and illustrative examples are given.
Collapse
Affiliation(s)
- C F Majkrzak
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD, USA.
| |
Collapse
|
10
|
Liu D, Lin Y, Gong K, Bo H, Li D, Zhang Z, Chen W. Phase behavior and interfacial tension of ternary polymer mixtures with block copolymers. RSC Adv 2021; 11:38316-38324. [PMID: 35493217 PMCID: PMC9044050 DOI: 10.1039/d1ra07671j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
The phase behavior and interfacial tension of ternary polymeric mixtures (polystyrene/polystyrene-b-poly(methyl methacrylate)/poly(methyl methacrylate), PS/PS-b-PMMA/PMMA) are investigated by dissipative particle dynamics (DPD) simulations. Our simulation results show that, as the PS-b-PMMA diblock copolymer concentration increases, the interfacial tension decreases due to the decayed correlations between homopolymers PS and PMMA. When the chain lengths of copolymers are fixed, with the increase of the chain lengths of PS and PMMA homopolymers the interfacial width becomes wider and the interfacial tension becomes smaller, due to the copolymers presenting more stretched and swollen structures in the mixtures with the short length of homopolymers. However, with simultaneously increasing chain lengths of both diblock copolymer and homopolymers with a fixed ratio, the interfacial tension increases because the copolymer chains with longer chain length penetrate more deeply into the homopolymer phase and the interactions between diblock copolymers become weaker. These results will provide a way to mix incompatible homopolymers to improve material performances.
Collapse
Affiliation(s)
- Dongmei Liu
- School of Science, North China University of Science and Technology Tangshan 063210 P. R. China
| | - Ye Lin
- School of Science, North China University of Science and Technology Tangshan 063210 P. R. China
| | - Kai Gong
- School of Science, North China University of Science and Technology Tangshan 063210 P. R. China
| | - Huifeng Bo
- School of Science, North China University of Science and Technology Tangshan 063210 P. R. China
| | - Deyang Li
- School of Science, North China University of Science and Technology Tangshan 063210 P. R. China
| | - Zhanxin Zhang
- School of Science, North China University of Science and Technology Tangshan 063210 P. R. China
| | - Wenduo Chen
- School of Materials, Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
11
|
Hong JW, Jian YQ, Liao YP, Hung HH, Huang TY, Nelson A, Tsao IY, Wu CM, Sun YS. Distributions of Deuterated Polystyrene Chains in Perforated Layers of Blend Films of a Symmetric Polystyrene -block-poly(methyl methacrylate). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13046-13058. [PMID: 34696591 DOI: 10.1021/acs.langmuir.1c02132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have examined the spatial distributions of polymer chains in blend films of weakly segregated polystyrene-block-poly(methyl methacrylate) [P(S-b-MMA)] and deuterated polystyrene (dPS). By fine-tuning the composition (ϕPS+dPS = 63.8 vol %) of the total PS/dPS component and annealing temperature (230 and 270 °C), P(S-b-MMA)/dPS blend films mainly form perforated layers with a parallel orientation (hereafter PLs//). The distributions of dPS in PLs// were probed by grazing-incidence small-angle neutron scattering (GISANS) and time-of-flight neutron reflectivity (ToF-NR). GISANS and ToF-NR results offer evidence that dPS chains preferentially locate at the free surface and within the PS layers for blend films that were annealed at 230 °C. Upon annealing at 270 °C, dPS chains distribute within PS layers and perforated PMMA layers. Nevertheless, dPS chains still retain a surface preference for thin films. In contrast, such surface segregation of dPS chains is prohibited for thick films when annealed at 270 °C.
Collapse
Affiliation(s)
- Jia-Wen Hong
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yi-Qing Jian
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Yin-Ping Liao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Hsiang-Ho Hung
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Tzu-Yen Huang
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Andrew Nelson
- Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232, Australia
| | - I-Yu Tsao
- Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan
| | - Chun-Ming Wu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Ya-Sen Sun
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan
| |
Collapse
|
12
|
Robertson M, Zhou Q, Ye C, Qiang Z. Developing Anisotropy in Self-Assembled Block Copolymers: Methods, Properties, and Applications. Macromol Rapid Commun 2021; 42:e2100300. [PMID: 34272778 DOI: 10.1002/marc.202100300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/23/2021] [Indexed: 01/03/2023]
Abstract
Block copolymers (BCPs) self-assembly has continually attracted interest as a means to provide bottom-up control over nanostructures. While various methods have been demonstrated for efficiently ordering BCP nanodomains, most of them do not generically afford control of nanostructural orientation. For many applications of BCPs, such as energy storage, microelectronics, and separation membranes, alignment of nanodomains is a key requirement for enabling their practical use or enhancing materials performance. This review focuses on summarizing research progress on the development of anisotropy in BCP systems, covering a variety of topics from established aligning techniques, resultant material properties, and the associated applications. Specifically, the significance of aligning nanostructures and the anisotropic properties of BCPs is discussed and highlighted by demonstrating a few promising applications. Finally, the challenges and outlook are presented to further implement aligned BCPs into practical nanotechnological applications, where exciting opportunities exist.
Collapse
Affiliation(s)
- Mark Robertson
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| | - Qingya Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Changhuai Ye
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Zhe Qiang
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS, 39406, USA
| |
Collapse
|
13
|
Sunday DF, Thelen JL, Zhou C, Ren J, Nealey PF, Kline RJ. Buried Structure in Block Copolymer Films Revealed by Soft X-ray Reflectivity. ACS NANO 2021; 15:9577-9587. [PMID: 34014640 DOI: 10.1021/acsnano.0c09907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Interactions between polymers and surfaces can be used to influence properties including mechanical performance in nanocomposites, the glass transition temperature, and the orientation of thin film block copolymers (BCPs). In this work we investigate how specific interactions between the substrate and BCPs with varying substrate affinity impact the interfacial width between polymer components. The interface width is generally assumed to be a function of the BCP properties and independent of the surface affinity or substrate proximity. Using resonant soft X-ray reflectivity the optical constants of the film can be controlled by changing the incident energy, thereby varying the depth sensitivity of the measurement. Resonant soft X-ray reflectivity measurements were conducted on films of polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) and PS-b-poly(methyl methacrylate) (PS-b-PMMA), where the thickness of the film was varied from half the periodicity (L0) of the BCP to 5.5 L0. The results of this measurement on the PS-b-P2VP films show a significant expansion of the interface width immediately adjacent to the surface. This is likely caused by the strong adsorption of P2VP to the substrate, which constrains the mobility of the junction points, preventing them from reaching their equilibrium distribution and expanding the observed interface width. The interface width decays toward equilibrium moving away from the substrate, with the decay rate being a function of film thickness below a critical limit. The PMMA block appears to be more mobile, and the BCP interfaces near the substrate match their equilibrium value.
Collapse
Affiliation(s)
- Daniel F Sunday
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Jacob L Thelen
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Chun Zhou
- Institute for Molecular Engineering, University of Chicago, 5801 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Jiaxing Ren
- Institute for Molecular Engineering, University of Chicago, 5801 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Paul F Nealey
- Institute for Molecular Engineering, University of Chicago, 5801 S Ellis Ave, Chicago, Illinois 60637, United States
| | - R Joseph Kline
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
14
|
Singh M, Apata IE, Samant S, Wu W, Tawade BV, Pradhan N, Raghavan D, Karim A. Nanoscale Strategies to Enhance the Energy Storage Capacity of Polymeric Dielectric Capacitors: Review of Recent Advances. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1917609] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Maninderjeet Singh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX
| | | | - Saumil Samant
- Department of Polymer Engineering, University of Akron, Akron, OH
| | - Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX
| | | | - Nihar Pradhan
- Department of Chemistry, Physics and Atmospheric Science, Jackson State University, Jackson, MS
| | | | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX
| |
Collapse
|
15
|
Masud A, Longanecker M, Bhadauriya S, Singh M, Wu W, Sharma K, Terlier T, Al-Enizi AM, Satija S, Douglas JF, Karim A. Ionic Liquid Enhanced Parallel Lamellar Ordering in Block Copolymer Films. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ali Masud
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Melanie Longanecker
- Department of Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | | | - Maninderjeet Singh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Wenjie Wu
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Kshitij Sharma
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| | - Tanguy Terlier
- SIMS Laboratory, Shared Equipment Authority, Rice University, 6100 Main Street, Houston, Texas 77005-1892, United States
| | - Abdullah M. Al-Enizi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sushil Satija
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Jack F. Douglas
- Materials Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899-3460, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204-4004, United States
| |
Collapse
|
16
|
Ogawa H, Takenaka M, Miyazaki T. Molecular Weight Effect on the Transition Processes of a Symmetric PS- b-P2VP during Spin-Coating. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c01567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hiroki Ogawa
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Riken SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Riken SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Tsukasa Miyazaki
- Comprehensive Research Organization for Science and Society, Shirakata, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
17
|
Samant S, Basutkar M, Singh M, Masud A, Grabowski CA, Kisslinger K, Strzalka J, Yuan G, Satija S, Apata I, Raghavan D, Durstock M, Karim A. Effect of Molecular Weight and Layer Thickness on the Dielectric Breakdown Strength of Neat and Homopolymer Swollen Lamellar Block Copolymer Films. ACS APPLIED POLYMER MATERIALS 2020; 2:10.1021/acsapm.0c00127. [PMID: 39380785 PMCID: PMC11459528 DOI: 10.1021/acsapm.0c00127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Designing next-generation lightweight pulsed power devices hinges on understanding the factors influencing the energy storage performance of dielectric materials. Polymer dielectric films have a quadratic dependence of energy storage on the voltage breakdown strength, and strategies to enhance the breakdown strength are expected to yield a path toward high energy storage densities. Highly stratified lamellar block copolymer (L-BCP) films of model polystyrene-b-polymethylmethacrylate (PS-b-PMMA) exhibited as much as ~50% enhancement in breakdown voltage (E BD ) (225% increase in stored energy density, U ∼ E BD 2 ) compared to unordered as-cast L-BCP films. Such an energy density using amorphous polymer is on par with industry-standard semicrystalline biaxially oriented polypropylene (BOPP) and as such a notable development in the field. This work develops a deeper understanding of the molecular mechanisms ofE BD enhancement in L-BCP films, relatingE BD directly to molecular weight (M n ), with interpretation to effects of chain-end density and distribution, interface formation, layer thickness, and their relative contributions. As-cast disordered L-BCP films show decreasingE BD with decreasingM n similar to homopolymer studies because of the increase of homogeneously distributed chain ends in the film.E BD increases significantly in parallel ordered L-BCP films because of the combination of interface formation and spatial isolation of the chain ends into segregated zones. We further confirm the role of chain ends in the breakdown process blending a lowM n L-BCP with matchedM n homopolymers to attain the same layer spacing as neat L-BCP of higherM n .E BD shows a significant decrease at low homopolymer fractions because of increased net chain-end density within swollen ordered L-BCP domains in wet-brush regime, followed by increasedE BD because of layer thickness increase via segregated "interphase layer" formation by excess homopolymers. Notably,E BD of homopolymer swollen L-BCPs is always lower than that of neat L-BCPs of the same domain spacing because of overall adverse chain-end contribution from homopolymers. These findings provide important selection rules for L-BCPs for designing next-generation flexible electronics with high energy density solid-state BCP film capacitors.
Collapse
Affiliation(s)
- Saumil Samant
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Monali Basutkar
- Department of Polymer Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Maninderjeet Singh
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Ali Masud
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | | | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Guangcui Yuan
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Sushil Satija
- NIST Center for Neutron Research, National Institute of Standards and Technology (NIST), Gaithersburg, Maryland 20899, United States
| | - Ikeoluwa Apata
- Department of Chemistry, Howard University, Washington, D.C. 20059, United States
| | - Dharmaraj Raghavan
- Department of Chemistry, Howard University, Washington, D.C. 20059, United States
| | - Michael Durstock
- Air Force Research Laboratory, Wright Patterson Air Force Base, Dayton, Ohio 45433, United States
| | - Alamgir Karim
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
18
|
Park SY, Choi C, Lee KS, Kim E, Ahn S, Lee J, Kim JK. Microdomain Orientation of Star-Shaped Block Copolymer Thin Film Depending on Molecular Weight. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- So Yeong Park
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - Chungryong Choi
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - Kyu Seong Lee
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - Eunseol Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - Seonghyeon Ahn
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jaeyong Lee
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, Kyungbuk 37673, Republic of Korea
| |
Collapse
|
19
|
Thomas P. Russell. Angew Chem Int Ed Engl 2020; 59:1768. [PMID: 31977163 DOI: 10.1002/anie.201910805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
"My greatest achievement has been successfully introducing students to research and seeing the lightbulb come on in their heads. The most exciting thing about my research is pursuing the unknown …" Find out more about Thomas P. Russell in his Author Profile.
Collapse
|
20
|
Thomas P. Russell. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201910805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
Zhang J, Kremer K, Michels JJ, Daoulas KC. Exploring Disordered Morphologies of Blends and Block Copolymers for Light-Emitting Diodes with Mesoscopic Simulations. Macromolecules 2020; 53:523-538. [PMID: 32655190 PMCID: PMC7343280 DOI: 10.1021/acs.macromol.9b02402] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/20/2019] [Indexed: 01/29/2023]
Abstract
![]()
Recently,
disordered blends of semiconducting and insulating polymers have been
used to prepare light-emitting diodes with increased luminous efficiency.
Because the thermodynamic stability of the disordered phase in blends
is limited, equivalent diblock copolymers (BCPs) could be an alternative.
However, the choice between disordered blends and BCPs requires understanding
structural differences and their effect on charge carrier transport.
Using a hybrid mesoscopic model, we simulate blends and equivalent
BCPs of two representative semiconducting and insulating polymers:
poly(p-phenylene vinylene) (PPV) and polyacrylate.
The immiscibility is varied to mimic annealing at different temperatures.
We find stable or metastable disordered morphologies until we reach
the mean-field (MF) spinodal. Disordered morphologies are heterogeneous
because of thermal fluctuations and local segregation. Near the MF
spinodal, segregation is stronger in BCPs than in the blends, even
though the immiscibility, normalized by the MF spinodal, is the same.
We link the spatial distribution of PPV with electric conductance.
We predict that the immiscibility (temperature at which the layer
is annealed) affects electrical percolation much stronger in BCPs
than in blends. Differences in the local structure and percolation
between blends and BCPs are enhanced at a high insulator content.
Collapse
Affiliation(s)
- Jianrui Zhang
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kurt Kremer
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Jasper J Michels
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kostas Ch Daoulas
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
22
|
Characterisation of the PS-PMMA Interfaces in Microphase Separated Block Copolymer Thin Films by Analytical (S)TEM. NANOMATERIALS 2020; 10:nano10010141. [PMID: 31941037 PMCID: PMC7022429 DOI: 10.3390/nano10010141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/16/2022]
Abstract
Block copolymer (BCP) self-assembly is a promising tool for next generation lithography as microphase separated polymer domains in thin films can act as templates for surface nanopatterning with sub-20 nm features. The replicated patterns can, however, only be as precise as their templates. Thus, the investigation of the morphology of polymer domains is of great importance. Commonly used analytical techniques (neutron scattering, scanning force microscopy) either lack spatial information or nanoscale resolution. Using advanced analytical (scanning) transmission electron microscopy ((S)TEM), we provide real space information on polymer domain morphology and interfaces between polystyrene (PS) and polymethylmethacrylate (PMMA) in cylinder- and lamellae-forming BCPs at highest resolution. This allows us to correlate the internal structure of polymer domains with line edge roughnesses, interface widths and domain sizes. STEM is employed for high-resolution imaging, electron energy loss spectroscopy and energy filtered TEM (EFTEM) spectroscopic imaging for material identification and EFTEM thickness mapping for visualisation of material densities at defects. The volume fraction of non-phase separated polymer species can be analysed by EFTEM. These methods give new insights into the morphology of polymer domains the exact knowledge of which will allow to improve pattern quality for nanolithography.
Collapse
|
23
|
Sunday DF, Chen X, Albrecht TR, Nowak D, Delgadillo PR, Dazai T, Miyagi K, Maehashi T, Yamazaki A, Nealey PF, Kline RJ. The Influence of Additives on the Interfacial Width and Line Edge Roughness in Block Copolymer Lithography. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:https://doi.org/10.1021/acs.chemmater.9b04833. [PMID: 33100517 PMCID: PMC7580231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The challenges of patterning next generation integrated circuits have driven the semiconductor industry to look outside of traditional lithographic methods in order to continue cost effective size scaling. The directed self-assembly (DSA) of block copolymers (BCPs) is a nanofabrication technique used to reduce the periodicity of patterns prepared with traditional optical methods. BCPs with large interaction parameters (χ eff), provide access to smaller pitches and reduced interface widths. Larger χ eff is also expected to be correlated with reduced line edge roughness (LER), a critical performance parameter in integrated circuits. One approach to increasing χ eff is blending the BCP with a phase selective additive, such as an Ionic liquid (IL). The IL does not impact the etching rates of either phase, and this enables a direct interrogation of whether the change in interface width driven by higher χ eff translates into lower LER. The effect of the IL on the layer thickness and interface width of a BCP are examined, along with the corresponding changes in LER in a DSA patterned sample. The results demonstrate that increased χ eff through additive blending will not necessarily translate to a lower LER, clarifying an important design criterion for future material systems.
Collapse
Affiliation(s)
- Daniel F. Sunday
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899
| | - Xuanxuan Chen
- Institute for Molecular Engineering, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637
| | | | | | | | - Takahiro Dazai
- Tokyo Ohka Kogyo, 1590 Tabata, Samukawa-Machi, Koza-Gun, Kanagawa 253-0114, Japan
| | - Ken Miyagi
- Tokyo Ohka Kogyo, 1590 Tabata, Samukawa-Machi, Koza-Gun, Kanagawa 253-0114, Japan
| | - Takaya Maehashi
- Tokyo Ohka Kogyo, 1590 Tabata, Samukawa-Machi, Koza-Gun, Kanagawa 253-0114, Japan
| | - Akiyoshi Yamazaki
- Tokyo Ohka Kogyo, 1590 Tabata, Samukawa-Machi, Koza-Gun, Kanagawa 253-0114, Japan
| | - Paul F. Nealey
- Institute for Molecular Engineering, University of Chicago, 5801 S Ellis Ave, Chicago, IL 60637
| | - R. Joseph Kline
- Materials Science and Engineering Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899
| |
Collapse
|
24
|
Kumar R, Li W, Sumpter BG, Muthukumar M. Understanding the effects of dipolar interactions on the thermodynamics of diblock copolymer melts. J Chem Phys 2019. [DOI: 10.1063/1.5114799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rajeev Kumar
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Wei Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Bobby G. Sumpter
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Murugappan Muthukumar
- Polymer Science and Engineering Department, University of Massachusetts, Amherst, Massachusetts 01002, USA
| |
Collapse
|
25
|
Lang C, Ye D, Song W, Yao C, Tu YM, Capparelli C, LaNasa JA, Hickner MA, Gomez EW, Gomez ED, Hickey RJ, Kumar M. Biomimetic Separation of Transport and Matrix Functions in Lamellar Block Copolymer Channel-Based Membranes. ACS NANO 2019; 13:8292-8302. [PMID: 31251576 DOI: 10.1021/acsnano.9b03659] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell membranes control mass, energy, and information flow to and from the cell. In the cell membrane a lipid bilayer serves as the barrier layer, with highly efficient molecular machines, membrane proteins, serving as the transport elements. In this way, highly specialized transport properties are achieved by these composite materials by segregating the matrix function from the transport function using different components. For example, cell membranes containing aquaporin proteins can transport ∼4 billion water molecules per second per aquaporin while rejecting all other molecules including salts, a feat unmatched by any synthetic system, while the impermeable lipid bilayer provides the barrier and matrix properties. True separation of functions between the matrix and the transport elements has been difficult to achieve in conventional solute separation synthetic membranes. In this study, we created membranes with distinct matrix and transport elements through designed coassembly of solvent-stable artificial (peptide-appended pillar[5]arene, PAP5) or natural (gramicidin A) model channels with block copolymers into lamellar multilayered membranes. Self-assembly of a lamellar structure from cross-linkable triblock copolymers was used as a scalable replacement for lipid bilayers, offering better stability and mechanical properties. By coassembly of channel molecules with block copolymers, we were able to synthesize nanofiltration membranes with sharp selectivity profiles as well as uncharged ion exchange membranes exhibiting ion selectivity. The developed method can be used for incorporation of different artificial and biological ion and water channels into synthetic polymer membranes. The strategy reported here could promote the construction of a range of channel-based membranes and sensors with desired properties, such as ion separations, stimuli responsiveness, and high sensitivity.
Collapse
|
26
|
Kim D, Sihn MR, Jeon MG, Yuan G, Satija SK, Kim Y, Choi J. Non-Equilibrium Phase Behavior of Immiscible Polymer-Grafted Nanoparticle Blends. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Deul Kim
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Moon Ryul Sihn
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Min-Gi Jeon
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Guangcui Yuan
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- University of Georgetown, Washington, D.C. 20057, United States
| | - Sushil K. Satija
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Yeonho Kim
- Electron Microscopy Research Center, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Republic of Korea
| | - Jihoon Choi
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
27
|
Self-Assembly Investigations of Sulfonated Poly(methyl methacrylate-block-styrene) Diblock Copolymer Thin Films. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/4375838] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Poly(methyl methacrylate-block-styrene) block copolymers (BCs) of low dispersity were selectively sulfonated on the styrenic segment. Several combinations of degree of polymerization and volume fraction of each block were investigated to access different self-assembled morphologies. Thin films of the sulfonated block copolymers were prepared by spin-coating and exposed to solvent vapor (SVA) or thermal annealing (TA) to reach equilibrium morphologies. Atomic force microscopy (AFM) was employed for characterizing the films, which exhibited a variety of nanometric equilibrium and nonequilibrium morphologies. Highly sulfonated samples revealed the formation of a honeycomb-like morphology obtained in solution rather than by the self-assembly of the BC in the solid state. The described morphologies may be employed in applications such as templates for nanomanufacturing and as cover and binder of catalytic particles in fuel cells.
Collapse
|
28
|
Hancox E, Liarou E, Town JS, Jones GR, Layton SA, Huband S, Greenall MJ, Topham PD, Haddleton DM. Microphase separation of highly amphiphilic, low N polymers by photoinduced copper-mediated polymerization, achieving sub-2 nm domains at half-pitch. Polym Chem 2019. [DOI: 10.1039/c9py01312a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Fluoro-polyacrylic acid block copolymers with vary narrow dispersity are shown to have sub-2 nm domain sizes on phase separation.
Collapse
Affiliation(s)
- Ellis Hancox
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | | | - James S. Town
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - Glen R. Jones
- Department of Chemistry
- University of Warwick
- Coventry
- UK
| | - Siân A. Layton
- Aston Institute of Materials Research
- Aston University
- Birmingham
- UK
| | - Steven Huband
- Department of Physics
- University of Warwick
- Coventry
- UK
| | | | - Paul D. Topham
- Aston Institute of Materials Research
- Aston University
- Birmingham
- UK
| | | |
Collapse
|
29
|
Jiang N, Di X, Salatto D, Nam CY, Fukuto M, Endoh MK, Koga T. Self-Organization of Triblock Copolymer Melt Chains Physisorbed on Non-neutral Surfaces. ACS OMEGA 2018; 3:17805-17813. [PMID: 31458377 PMCID: PMC6644122 DOI: 10.1021/acsomega.8b02912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/06/2018] [Indexed: 06/10/2023]
Abstract
We here report the self-organization process of poly(styrene-b-ethylene/butadiene-b-styrene) (SEBS) triblock copolymer chains physically adsorbed on a non-neutral surface. Spin-cast SEBS thin films were prepared on silicon (Si) substrates and then annealed at a high temperature far above the bulk glass transition temperatures of the two constituent blocks. To reveal the buried interfacial structure, we utilized solvent rinsing processes and a suite of surface-sensitive techniques including ellipsometry, X-ray reflectivity, atomic force microscopy, and grazing incidence small angle X-ray scattering. We revealed that the SEBS chains form two different chain structures on the substrate simultaneously: (i) "flattened chains" with the average height of 2.5 nm but without forming microdomain structures; (ii) "loosely adsorbed chains" with the average height of 11.0 nm and the formation of perpendicularly oriented cylindrical microdomains to the substrate surface. In addition, the kinetics to form the perpendicular-oriented cylinder was sluggish (∼200 h) and proceeded via multistep processes toward the equilibrium state. We also found that the lateral microdomain structures were distorted, and the characteristic lengths of the microdomains were slightly different from the bulk even after reaching "quasiequilibrium" state within the observed time window. Furthermore, we highlight the vital role of the adsorbed chains in the self-assembling process of the entire SEBS thin film: a long-range perturbation associated with the adsorbed chains propagates into the film interior, overwhelming the free surface effect associated with surface segregation of the lower surface tension of polystyrene blocks.
Collapse
Affiliation(s)
- Naisheng Jiang
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
| | - Xiaoyu Di
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
| | - Daniel Salatto
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
| | - Chang-Yong Nam
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973-5000, United States
| | - Masafumi Fukuto
- National
Synchrotron Light Source II, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Maya K. Endoh
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
| | - Tadanori Koga
- Department
of Materials Science and Chemical Engineering, Stony Brook University, Stony
Brook, New York 11794-2275, United States
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
30
|
Gunkel I. Directing Block Copolymer Self-Assembly on Patterned Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802872. [PMID: 30318828 DOI: 10.1002/smll.201802872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Self-assembling block copolymer films provide access to a variety of different nanostructured patterns in one, two, and three dimensions. However, in the absence of any templating, these nanostructures suffer from defects, often limiting utility. Directed block copolymer self-assembly uses patterned substrates that effectively suppress defect formation and allow the creation of desired patterns. The two main directed self-assembly techniques, chemoepitaxy and graphoepitaxy, employ chemically and topographically patterned substrates, respectively, to direct the block copolymer assembly in thin films. Their successful application in generating defect-free patterns in films of block copolymers exhibiting particular morphologies is summarized in this concept article. The possible role of directed self-assembly in extending nanostructured patterning from two to three dimensions is also discussed.
Collapse
Affiliation(s)
- Ilja Gunkel
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, CH-1700, Switzerland
| |
Collapse
|
31
|
Abstract
Reflectometry experiments probe the scattering length density along the normal of interfaces by analysing the specularly scattered intensity. Lateral fluctuations result in intensity scattered away from the specular condition. In this paper the principles and peculiarities of grazing incidence scattering experiments are explained. One specific example, the self assembly of polymer micelles close to interfaces, is taken as a show case in order to introduce the scattering geometry and accessible length scales. The basic idea of the distorted wave Born approximation is lined out and some scientific examples are summarized.
Collapse
|
32
|
Jo S, Jeon S, Jun T, Park C, Ryu DY. Fluorine-Containing Styrenic Block Copolymers toward High χ and Perpendicular Lamellae in Thin Films. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01325] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
33
|
Erwin AJ, Korolovych VF, Iatridi Z, Tsitsilianis C, Ankner JF, Tsukruk VV. Tunable Compartmentalized Morphologies of Multilayered Dual Responsive Star Block Polyampholytes. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00744] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew J. Erwin
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Volodymyr F. Korolovych
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Zacharoula Iatridi
- Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | | | - John F. Ankner
- Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Vladimir V. Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
34
|
Nelson G, Drapes CS, Grant MA, Gnabasik R, Wong J, Baruth A. High-Precision Solvent Vapor Annealing for Block Copolymer Thin Films. MICROMACHINES 2018; 9:E271. [PMID: 30424204 PMCID: PMC6187827 DOI: 10.3390/mi9060271] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 01/24/2023]
Abstract
Despite its efficacy in producing well-ordered, periodic nanostructures, the intricate role multiple parameters play in solvent vapor annealing has not been fully established. In solvent vapor annealing a thin polymer film is exposed to a vapor of solvent(s) thus forming a swollen and mobile layer to direct the self-assembly process at the nanoscale. Recent developments in both theory and experiments have directly identified critical parameters that govern this process, but controlling them in any systematic way has proven non-trivial. These identified parameters include vapor pressure, solvent concentration in the film, and the solvent evaporation rate. To explore their role, a purpose-built solvent vapor annealing chamber was designed and constructed. The all-metal chamber is designed to be inert to solvent exposure. Computer-controlled, pneumatically actuated valves allow for precision timing in the introduction and withdrawal of solvent vapor from the film. The mass flow controller-regulated inlet, chamber pressure gauges, in situ spectral reflectance-based thickness monitoring, and low flow micrometer relief valve give real-time monitoring and control during the annealing and evaporation phases with unprecedented precision and accuracy. The reliable and repeatable alignment of polylactide cylinders formed from polystyrene-b-polylactide, where cylinders stand perpendicular to the substrate and span the thickness of the film, provides one illustrative example.
Collapse
Affiliation(s)
- Gunnar Nelson
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Chloe S Drapes
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Meagan A Grant
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Ryan Gnabasik
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Jeffrey Wong
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| | - Andrew Baruth
- Department of Physics, College of Arts and Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.
| |
Collapse
|
35
|
|
36
|
Shimokita K, Saito I, Yamamoto K, Takenaka M, Yamada NL, Miyazaki T. Effect of Preferential Orientation of Lamellae in the Interfacial Region between a Block Copolymer-based Pressure-Sensitive Adhesive and a Solid Substrate on the Peel Strength. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:2856-2864. [PMID: 29377703 DOI: 10.1021/acs.langmuir.7b03860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We have investigated the relationship between the peel strength of a block copolymer-based pressure-sensitive adhesive comprising of poly(methyl methacrylate) (PMMA) and poly(n-butyl acrylate) (PnBA) components from the substrate and the microdomain orientations in the interfacial region between the adhesive and the substrate. For the PMMA substrate, the PMMA component in the adhesive with a strong affinity for the substrate is attached to the surface of the substrate during an aging process of the sample at 140 °C. Next, the PMMA layer adjacent to the substrate surface is overlaid with a PnBA layer, which gets covalently connected, resulting in the horizontal alignment of the lamellae in the interfacial region. The peel strength of the adhesive substantially increases during aging at 140 °C, which takes the same time as the completion of the horizontally oriented lamellar structure. However, in the case of the polystyrene (PS) substrate, both the components in the adhesive repel the substrate, leading to the formation of the vertically oriented lamellar structure. As a result, the peel strength of the adhesive with respect to its PS substrate does not entirely increase on aging. It is suggested that the peel strength of the adhesive is highly correlated with the interfacial energy between the adhesive and substrate, which can be estimated from the microdomain orientation in the interfacial region.
Collapse
Affiliation(s)
- Keisuke Shimokita
- Functional Base Products Sector, Nitto Denko Corporation , 18 Hirayama, Nakahara, Toyohashi, Aichi 441-3194, Japan
| | | | | | - Mikihito Takenaka
- Institute for Chemistry Research, Kyoto University , Gokasho, Uji, Kyoto 611-0011, Japan
| | - Norifumi L Yamada
- Neutron Science Division, Institute for Materials Structure Science, High Energy Acceleration Research Organization , 203-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| | - Tsukasa Miyazaki
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society , 162-1 Shirakata, Tokai, Naka, Ibaraki 319-1106, Japan
| |
Collapse
|
37
|
Woo S, Jo S, Ryu DY, Choi SH, Choe Y, Khan A, Huh J, Bang J. Molecular Tailoring of Poly(styrene- b-methyl methacrylate) Block Copolymer Toward Perpendicularly Oriented Nanodomains with Sub-10 nm Features. ACS Macro Lett 2017; 6:1386-1391. [PMID: 35650801 DOI: 10.1021/acsmacrolett.7b00856] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We demonstrate a novel approach for fabricating vertically orientated, sub-10 nm, block copolymer (BCP) nanodomains on a substrate via molecular tailoring of poly(styrene-b-methyl methacrylate) (PS-b-PMMA) BCP, one of the most widely used BCPs for nanopatterning. The idea is to incorporate a short middle block of self-attracting poly(methacrylic acid) (PMAA) between the PS and PMMA blocks, where the PMAA middle block promotes phase separation between PS and PMMA, while maintaining the domain orientation perpendicular to the substrate. The designed PS-b-PMAA-b-PMMA triblock copolymers, which were synthesized via well-controlled anionic polymerization, exhibited order-disorder transition temperatures higher than that of pristine PS-b-PMMA BCPs, indicating the promotion of phase separation by the middle PMAA block. For PS-b-PMAA-b-PMMA BCPs with total molecular weights of 21 and 18 kg/mol, the domain spacing corresponds to 19.3 and 16.7 nm, respectively, allowing us to fabricate sub-10 nm nanodomain structures. More importantly, it was demonstrated that the PMAA middle block, which has a higher surface energy than PS and PMMA, does not significantly alter lateral concentration fluctuations, which are responsible for phase-separation in the lateral direction. This enabled the vertical orientation of microdomains with sub-10 nm feature size on a PS-r-PMMA neutral surface without an additional neutral top layer. We anticipate that this approach provides an important platform for next-generation lithography and nanopatterning applications that require sub-10 nm features over large areas with simple process and reduced cost.
Collapse
Affiliation(s)
- Sanghoon Woo
- Department
of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Seongjun Jo
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Du Yeol Ryu
- Department
of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Soo-Hyung Choi
- Department
of Chemical Engineering, Hongik University, Seoul, 04066, Republic of Korea
| | - Youngson Choe
- Department
of Chemical Engineering, Pusan National University, Kumjeong-ku, Busan 46241, Republic of Korea
| | - Anzar Khan
- Department
of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - June Huh
- Department
of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joona Bang
- Department
of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
38
|
Riesch C, Radons G, Magerle R. Scaling properties of ageing orientation fluctuations in stripe phases. Interface Focus 2017; 7:20160146. [PMID: 28630676 PMCID: PMC5474038 DOI: 10.1098/rsfs.2016.0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigate the non-equilibrium dynamics of an ordered stripe-forming system free of topological defects. In particular, we study the ageing and the coarsening of orientation fluctuations parallel and perpendicular to the stripes via computer simulations based on a minimal phase-field model (model B with Coulomb interactions). Under the influence of noise, the stripe orientation field develops fluctuations parallel to the stripes, with the dominant modulation length λ*∥ increasing with time t as λ*∥ ∼ t1/4 and the correlation length perpendicular to the stripes ξ⊥θ increasing as ξ⊥θ ∼ t1/2. We explain these anisotropic coarsening dynamics with an analytic theory based on the linear elastic model for stripe displacements first introduced by Landau and Peierls. We thus obtain the scaling forms and the scaling exponents characterizing the correlation functions and the structure factor of the stripe orientation field. Our results reveal how the coarsening of orientation fluctuations prevents a periodically modulated phase free of topological defects from reaching equilibrium.
Collapse
Affiliation(s)
- Christian Riesch
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Günter Radons
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Robert Magerle
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| |
Collapse
|
39
|
Russell TP, Chai Y. 50th Anniversary Perspective: Putting the Squeeze on Polymers: A Perspective on Polymer Thin Films and Interfaces. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00418] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Thomas P. Russell
- Polymer
Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
- Beijing
Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yu Chai
- Materials
Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Cheng LC, Bai W, Fernandez Martin E, Tu KH, Ntetsikas K, Liontos G, Avgeropoulos A, Ross CA. Morphology, directed self-assembly and pattern transfer from a high molecular weight polystyrene-block-poly(dimethylsiloxane) block copolymer film. NANOTECHNOLOGY 2017; 28:145301. [PMID: 28221161 DOI: 10.1088/1361-6528/aa61c9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The self-assembly of block copolymers with large feature sizes is inherently challenging as the large kinetic barrier arising from chain entanglement of high molecular weight (MW) polymers limits the extent over which long-range ordered microdomains can be achieved. Here, we illustrate the evolution of thin film morphology from a diblock copolymer of polystyrene-block-poly(dimethylsiloxane) exhibiting total number average MW of 123 kg mol-1, and demonstrate the formation of layers of well-ordered cylindrical microdomains under appropriate conditions of binary solvent mix ratio, commensurate film thickness, and solvent vapor annealing time. Directed self-assembly of the block copolymer within lithographically patterned trenches occurs with alignment of cylinders parallel to the sidewalls. Fabrication of ordered cobalt nanowire arrays by pattern transfer was also implemented, and their magnetic properties and domain wall behavior were characterized.
Collapse
Affiliation(s)
- Li-Chen Cheng
- Department of Materials Science and Engineering, MIT, Cambridge MA 02139, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Adlmann FA, Pálsson GK, Bilheux JC, Ankner JF, Gutfreund P, Kawecki M, Wolff M. Överlåtaren: a fast way to transfer and orthogonalize two-dimensional off-specular reflectivity data. J Appl Crystallogr 2016. [DOI: 10.1107/s1600576716014382] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Reflectivity measurements offer unique opportunities for the study of surfaces and interfaces, and specular reflectometry has become a standard tool in materials science to resolve structures normal to the surface of a thin film. Off-specular scattering, which probes lateral structures, is more difficult to analyse, because the Fourier space being probed is highly anisotropic and the scattering pattern is truncated by the interface. As a result, scattering patterns collected with (especially time-of-flight) neutron reflectometers are difficult to transform into reciprocal space for comparison with model calculations. A program package is presented for a generic two-dimensional transformation of reflectometry data intoqspace and back. The data are represented on an orthogonal grid, allowing cuts along directions relevant for theoretical modelling. This treatment includes background subtraction as well as a full characterization of the resolution function. The method is optimized for computational performance using repeatable operations and standardized instrument settings.
Collapse
|
42
|
Miquelard-Garnier G, Roland S. Beware of the Flory parameter to characterize polymer-polymer interactions: A critical reexamination of the experimental literature. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
43
|
Müller-Buschbaum P. GISAXS and GISANS as metrology technique for understanding the 3D morphology of block copolymer thin films. Eur Polym J 2016. [DOI: 10.1016/j.eurpolymj.2016.04.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Luo M, Brown JR, Remy RA, Scott DM, Mackay ME, Hall LM, Epps TH. Determination of Interfacial Mixing in Tapered Block Polymer Thin Films: Experimental and Theoretical Investigations. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00946] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
| | - Jonathan R. Brown
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | | | | | | | - Lisa M. Hall
- William
G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | | |
Collapse
|
45
|
Kim S, Li W, Fredrickson GH, Hawker CJ, Kramer EJ. Order-disorder transition in thin films of horizontally-oriented cylinder-forming block copolymers: thermal fluctuations vs. preferential wetting. SOFT MATTER 2016; 12:5915-5925. [PMID: 27334558 DOI: 10.1039/c6sm00739b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present experimental and theoretical investigations of the order-disorder transition (ODT) in thin films of cylinder-forming diblock copolymers with asymmetric wetting conditions. Grazing incidence small-angle X-ray scattering (GISAXS) was implemented to determine the ODT temperatures (TODT) for poly(styrene-b-2-vinyl pyridine) (PS-P2VP) block copolymer thin films on a P2VP-preferential silicon substrate. Specifically, films consisting of multilayers of horizontally-oriented cylindrical structures (from 1- to 9-layers) were tested. We find that films with more than 2 cylindrical layers have a TODT comparable to the bulk case. However, TODT decreases as the film becomes thinner and the monolayer system has an ODT 30 °C below the bulk. Using self-consistent field theory (SCFT), we studied the ordering in corresponding thin films with asymmetric (top and bottom surface) wetting conditions. Surprisingly, SCFT is found to predict an opposite trend in TODT with film thickness than observed experimentally. Field-theoretic simulations with complex Langevin sampling were employed to resolve this discrepancy and demonstrate that thermal fluctuations in the PS-P2VP thin-film system dominate its ordering behavior in monolayer and bilayer films.
Collapse
Affiliation(s)
- Sangwon Kim
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA. and Department of Polymer Science and Engineering, Inha University, Incheon 402-751, Republic of Korea
| | - Wei Li
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA.
| | - Glenn H Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA. and Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA
| | - Craig J Hawker
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA. and Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Edward J Kramer
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA. and Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA and Materials Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
46
|
Sun X, Gao N, Li Q, Zhang J, Yang X, Ren Z, Yan S. Crystal Morphology of Poly(3-hydroxybutyrate) on Amorphous Poly(vinylphenol) Substrate. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3983-3994. [PMID: 27068580 DOI: 10.1021/acs.langmuir.6b00058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The crystalline morphology and orientation of poly(3-hydroxybutyrate) (PHB) thin film on the poly(vinylphenol) (PVPh) sublayer with different thickness was studied by atomic force microscopy, X-ray diffraction, and infrared spectroscopy. PVPh sublayer influences the morphology of PHB greatly. Although edge-on lamellae form on both Si and PVPh surfaces at relatively lower crystallization temperature, the morphology of them is quite different. It appears as sheaflike edge-on lamellar morphology on PVPh sublayer. In addition, the edge-on lamellae prefer to form on the PVPh sublayers at much higher crystallization temperature compared with that on Si wafer. The PVPh layer thickness also influences the crystalline morphology of PHB. On a 30 nm thick PVPh layer, sheaflike edge-on lamellae form in a wide range of crystallization temperatures. When the PVPh thickness increases to 65 nm, fingerlike morphology is observed when the crystallization temperature is lower than 95 °C. The fingerlike morphology is caused by a diffusion-limited aggregation process, and it requires an optimum condition. Thickness ratio between PHB and PVPh sublayer and temperature are two key factors for the formation of fingerlike morphology.
Collapse
Affiliation(s)
- Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Nan Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Quan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Jidong Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , 5625 Renmin Street, Changchun 130022, China
| | - Xiaoqiu Yang
- Basic Research Service, MOST, Beijing 100862, China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology , Beijing 100029, China
| |
Collapse
|
47
|
Samant SP, Grabowski CA, Kisslinger K, Yager KG, Yuan G, Satija SK, Durstock MF, Raghavan D, Karim A. Directed Self-Assembly of Block Copolymers for High Breakdown Strength Polymer Film Capacitors. ACS APPLIED MATERIALS & INTERFACES 2016; 8:7966-7976. [PMID: 26942835 DOI: 10.1021/acsami.5b11851] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Emerging needs for fast charge/discharge yet high-power, lightweight, and flexible electronics requires the use of polymer-film-based solid-state capacitors with high energy densities. Fast charge/discharge rates of film capacitors on the order of microseconds are not achievable with slower charging conventional batteries, supercapacitors and related hybrid technologies. However, the current energy densities of polymer film capacitors fall short of rising demand, and could be significantly enhanced by increasing the breakdown strength (EBD) and dielectric permittivity (εr) of the polymer films. Co-extruded two-homopolymer component multilayered films have demonstrated much promise in this regard showing higher EBD over that of component polymers. Multilayered films can also help incorporate functional features besides energy storage, such as enhanced optical, mechanical, thermal and barrier properties. In this work, we report accomplishing multilayer, multicomponent block copolymer dielectric films (BCDF) with soft-shear driven highly oriented self-assembled lamellar diblock copolymers (BCP) as a novel application of this important class of self-assembling materials. Results of a model PS-b-PMMA system show ∼50% enhancement in EBD of self-assembled multilayer lamellar BCP films compared to unordered as-cast films, indicating that the breakdown is highly sensitive to the nanostructure of the BCP. The enhancement in EBD is attributed to the "barrier effect", where the multiple interfaces between the lamellae block components act as barriers to the dielectric breakdown through the film. The increase in EBD corresponds to more than doubling the energy storage capacity using a straightforward directed self-assembly strategy. This approach opens a new nanomaterial paradigm for designing high energy density dielectric materials.
Collapse
Affiliation(s)
- Saumil P Samant
- Department of Polymer Engineering, University of Akron , Akron, Ohio 44325, United States
| | - Christopher A Grabowski
- Air Force Research Laboratory, Wright Patterson Air Force Base , Dayton, Ohio 45433, United States
| | - Kim Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Kevin G Yager
- Center for Functional Nanomaterials, Brookhaven National Laboratory , Upton, New York 11973, United States
| | - Guangcui Yuan
- Center for Neutron Research, National Institute of Standards and Technology (NIST) , Gaithersburg, Maryland 20899, United States
| | - Sushil K Satija
- Center for Neutron Research, National Institute of Standards and Technology (NIST) , Gaithersburg, Maryland 20899, United States
| | - Michael F Durstock
- Air Force Research Laboratory, Wright Patterson Air Force Base , Dayton, Ohio 45433, United States
| | - Dharmaraj Raghavan
- Department of Chemistry, Howard University , Washington, D.C. 20059, United States
| | - Alamgir Karim
- Department of Polymer Engineering, University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
48
|
|
49
|
Kim S, Wang HS, Choe Y, Choi SH, Bang J. Controlling the microdomain orientation in block copolymer thin films via cross-linkable random copolymer neutral layer. Polym J 2016. [DOI: 10.1038/pj.2016.9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Dai X, Zhang J, Ren Z, Li H, Sun X, Yan S. A grazing incident XRD study on the structure of poly(3-hydroxybutyrate) ultrathin films sandwiched between Si wafers and amorphous polymers. Polym Chem 2016. [DOI: 10.1039/c6py00613b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The crystallization behavior and morphology of poly(3-hydroxybutyrate) (PHB) ultrathin films sandwiched between Si wafers and amorphous thin polymer layers were studied by using grazing incident X-ray diffraction (GIXD) technology.
Collapse
Affiliation(s)
- Xiying Dai
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Jie Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhongjie Ren
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Huihui Li
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xiaoli Sun
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shouke Yan
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|