1
|
Gutiérrez Fosado YA, Michieletto D, Martelli F. Link to Densify: Topological Transitions and Origin of Hysteresis During the Compression and Decompression of Amorphous Ices. PHYSICAL REVIEW LETTERS 2024; 133:266102. [PMID: 39879015 DOI: 10.1103/physrevlett.133.266102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/23/2024] [Accepted: 12/03/2024] [Indexed: 01/31/2025]
Abstract
In this Letter, we study the phase transition between amorphous ices and the nature of the hysteresis cycle separating them. We discover that a topological transition takes place as the system transforms from low-density amorphous ice (LDA) at low pressures to high-density amorphous ice (HDA) at high pressures. Specifically, we uncover that the hydrogen bond network (HBN) displays qualitatively different topologies in the LDA and HDA phases: the former characterized by disentangled loop motifs, with the latter displaying topologically complex long-lived Hopf-linked and knotted configurations. At the phase transition, the transient opening of the HBN topological motifs yields mechanical fragility on the macroscale. Our results provide a detailed microscopic description of the topological nature of the phase transition and the hysteresis cycle between amorphous ices. We argue that the topological transition discovered in this work may not only improve our understanding of amorphous ices, but also represent a generic mechanism for the densification of network-forming materials.
Collapse
Affiliation(s)
- Yair Augusto Gutiérrez Fosado
- University of Edinburgh, School of Physics and Astronomy, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
| | - Davide Michieletto
- University of Edinburgh, School of Physics and Astronomy, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom
- University of Edinburgh, MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh EH4 2XU, United Kingdom
| | - Fausto Martelli
- BM Research Europe, Hartree Centre, Daresbury WA4 4AD, United Kingdom
- University of Manchester, Department of Chemical Engineering, Manchester M13 9PL, United Kingdom
| |
Collapse
|
2
|
Roy U, Bongiorno A. Nonlinear Elasticity of Amorphous Silicon and Silica from Density Functional Theory. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:21220-21227. [PMID: 39691901 PMCID: PMC11648081 DOI: 10.1021/acs.jpcc.4c06550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/19/2024]
Abstract
Density functional theory calculations and a finite deformation method are used to calculate second- and, most notably, third-order elastic constants of amorphous silicon and amorphous silicon dioxide, as represented by model structures generated via melt-quench force-field molecular dynamics simulations. Linear and nonlinear elastic constants are used to deduce macroscopic elastic moduli, such as the bulk and shear moduli, their pressure derivatives, and the elastic Grüneisen parameter. Our calculations show that the elastic properties of amorphous silicon reach the isotropic elastic limit within the nanometer length scale, attaining characteristics, both linear and nonlinear, comparable to those of crystalline silicon. In contrast, the nonlinear elastic properties of silica retain an anisotropic character over the nanometer length scales, yielding nonetheless the expected pressure-induced softening of the elastic moduli. This atypical elastic behavior is correlated to the occurrence of long-wavelength acoustic modes with negative Grüneisen parameters.
Collapse
Affiliation(s)
- Umesh
C. Roy
- Department
of Chemistry, College of Staten Island, Staten Island, New York 10314, United States
| | - Angelo Bongiorno
- Department
of Chemistry, College of Staten Island, Staten Island, New York 10314, United States
- The
Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
3
|
Logrado M, Gomes YHF, Inoue T, Nakane S, Kato Y, Yamazaki H, Yamada A, Eckert H. Densification of sodium and magnesium aluminosilicate glasses at ambient temperature: structural investigations by solid-state nuclear magnetic resonance and molecular dynamics simulations. Phys Chem Chem Phys 2024; 26:27348-27362. [PMID: 39440589 DOI: 10.1039/d4cp02431a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Sodium and magnesium aluminosilicate glasses with compositions 20Na2O-20Al2O3-60SiO2 (NAS) and 20MgO-20Al2O3-60SiO2 (MAS) were subjected to a 12 and 25 GPa compression and decompression at room temperature, resulting in density increases from 3.7% to 5.3% (NAS) and from 8.2 to 8.4% (MAS), respectively. The pressurization at 25 GPa was done on 17O-enriched glasses, to facilitate characterization by 17O NMR. The structural changes associated with this process have been investigated by solid state 29Si, 27Al, 23Na, 25Mg, and 17O magic-angle spinning NMR and compared with the situation in thermally relaxed glasses and/or glasses prepared at ambient pressure. While in the Na aluminosilicate glass only subtle structural changes were observed in a sample densified at 12 GPa, the average coordination number of Al 〈CN(Al)〉 increases moderately from 4.00 to 4.26 by pressurization at 25 GPa. In the Mg-based system, 〈CN(Al)〉 increases from 4.34 to 4.57 to 4.83 in the sequence 10-4 GPa → 12 GPa → 25 GPa. The experimental result at 25 GPa was qualitatively confirmed by molecular dynamics (MD) simulations. Overall, pressurization results in more positive 29Si and 17O chemical shifts, most likely reflecting a reduction in the Si-O-Si and Si-O-Al bonding angles in the pressurized glasses. Furthermore, the results are also consistent with either an increased number of non-bridging O-atoms upon pressurization, or a larger number of Si-O-Al or Al-O-Al linkages. The significantly higher sensitivity of MAS, compared to NAS glass, to an increase in 〈CN(Al)〉 upon pressurization, provides a good structural rationale for its significantly higher crack initiation resistance.
Collapse
Affiliation(s)
- Millena Logrado
- Eduard-Zintl-Institut für Anorganische und Physikalische Chemie, Technische Universität of Darmstadt, 64287 Darmstadt, Germany
| | - Yara Hellen Firmo Gomes
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, SP 13566-590, Brazil.
| | - Tomiki Inoue
- Nippon Electric Glass Co., Ltd, 7-1, Seiran 2-chome, Otsu, Shiga 520-8639, Japan
| | - Shingo Nakane
- Nippon Electric Glass Co., Ltd, 7-1, Seiran 2-chome, Otsu, Shiga 520-8639, Japan
| | - Yoshinari Kato
- Nippon Electric Glass Co., Ltd, 7-1, Seiran 2-chome, Otsu, Shiga 520-8639, Japan
| | - Hiroki Yamazaki
- Nippon Electric Glass Co., Ltd, 7-1, Seiran 2-chome, Otsu, Shiga 520-8639, Japan
| | - Akihiro Yamada
- Department of Materials Chemistry, The University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan
| | - Hellmut Eckert
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, SP 13566-590, Brazil.
- Institut für Physikalische Chemie, Universität Münster, Corrensstraße 28-30, 48149 Münster, Germany
| |
Collapse
|
4
|
Mijit E, Durandurdu M, Rodrigues JEFS, Trapananti A, Rezvani SJ, Rosa AD, Mathon O, Irifune T, Di Cicco A. Structural and electronic transformations of GeSe 2 glass under high pressures studied by X-ray absorption spectroscopy. Proc Natl Acad Sci U S A 2024; 121:e2318978121. [PMID: 38536755 PMCID: PMC10998580 DOI: 10.1073/pnas.2318978121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/20/2024] [Indexed: 04/08/2024] Open
Abstract
Pressure-induced transformations in an archetypal chalcogenide glass (GeSe2) have been investigated up to 157 GPa by X-ray absorption spectroscopy (XAS) and molecular dynamics (MD) simulations. Ge and Se K-edge XAS data allowed simultaneous tracking of the correlated local structural and electronic changes at both Ge and Se sites. Thanks to the simultaneous analysis of extended X-ray absorption fine structure (EXAFS) signals of both edges, reliable quantitative information about the evolution of the first neighbor Ge-Se distribution could be obtained. It also allowed to account for contributions of the Ge-Ge and Se-Se bond distributions (chemical disorder). The low-density to high-density amorphous-amorphous transformation was found to occur within 10 to 30 GPa pressure range, but the conversion from tetrahedral to octahedral coordination of the Ge sites is completed above [Formula: see text] 80 GPa. No convincing evidence of another high-density amorphous state with coordination number larger than six was found within the investigated pressure range. The number of short Ge-Ge and Se-Se "wrong" bonds was found to increase upon pressurization. Experimental XAS results are confirmed by MD simulations, indicating the increase of chemical disorder under high pressure.
Collapse
Affiliation(s)
- Emin Mijit
- Physics Division, School of Science and Technology, University of Camerino, CamerinoI-62032, Italy
- European Synchrotron Radiation Facility, Grenoble Cedex 938043, France
| | - Murat Durandurdu
- Department of Nanotechnology Engineering, Abdullah Gül University, Kayseri38080, Turkey
| | | | - Angela Trapananti
- Physics Division, School of Science and Technology, University of Camerino, CamerinoI-62032, Italy
| | - S. Javad Rezvani
- Physics Division, School of Science and Technology, University of Camerino, CamerinoI-62032, Italy
| | | | - Olivier Mathon
- European Synchrotron Radiation Facility, Grenoble Cedex 938043, France
| | - Tetsuo Irifune
- Geodynamics Research Center, Ehime University, Matsuyama790-8577, Japan
| | - Andrea Di Cicco
- Physics Division, School of Science and Technology, University of Camerino, CamerinoI-62032, Italy
| |
Collapse
|
5
|
Fan Z, Tanaka H. Microscopic mechanisms of pressure-induced amorphous-amorphous transitions and crystallisation in silicon. Nat Commun 2024; 15:368. [PMID: 38228606 DOI: 10.1038/s41467-023-44332-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 12/08/2023] [Indexed: 01/18/2024] Open
Abstract
Some low-coordination materials, including water, silica, and silicon, exhibit polyamorphism, having multiple amorphous forms. However, the microscopic mechanism and kinetic pathway of amorphous-amorphous transition (AAT) remain largely unknown. Here, we use a state-of-the-art machine-learning potential and local structural analysis to investigate the microscopic kinetics of AAT in silicon after a rapid pressure change. We find that the transition from low-density-amorphous (LDA) to high-density-amorphous (HDA) occurs through nucleation and growth, resulting in non-spherical interfaces that underscore the mechanical nature of AAT. In contrast, the reverse transition occurs through spinodal decomposition. Further pressurisation transforms LDA into very-high-density amorphous (VHDA), with HDA serving as an intermediate state. Notably, the final amorphous states are inherently unstable, transitioning into crystals. Our findings demonstrate that AAT and crystallisation are driven by joint thermodynamic and mechanical instabilities, assisted by preordering, occurring without diffusion. This unique mechanical and diffusion-less nature distinguishes AAT from liquid-liquid transitions.
Collapse
Affiliation(s)
- Zhao Fan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8904, Japan.
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
6
|
Shim SH, Ko B, Sokaras D, Nagler B, Lee HJ, Galtier E, Glenzer S, Granados E, Vinci T, Fiquet G, Dolinschi J, Tappan J, Kulka B, Mao WL, Morard G, Ravasio A, Gleason A, Alonso-Mori R. Ultrafast x-ray detection of low-spin iron in molten silicate under deep planetary interior conditions. SCIENCE ADVANCES 2023; 9:eadi6153. [PMID: 37862409 PMCID: PMC10588943 DOI: 10.1126/sciadv.adi6153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/20/2023] [Indexed: 10/22/2023]
Abstract
The spin state of Fe can alter the key physical properties of silicate melts, affecting the early differentiation and the dynamic stability of the melts in the deep rocky planets. The low-spin state of Fe can increase the affinity of Fe for the melt over the solid phases and the electrical conductivity of melt at high pressures. However, the spin state of Fe has never been measured in dense silicate melts due to experimental challenges. We report detection of dominantly low-spin Fe in dynamically compressed olivine melt at 150 to 256 gigapascals and 3000 to 6000 kelvin using laser-driven shock wave compression combined with femtosecond x-ray diffraction and x-ray emission spectroscopy using an x-ray free electron laser. The observation of dominantly low-spin Fe supports gravitationally stable melt in the deep mantle and generation of a dynamo from the silicate melt portion of rocky planets.
Collapse
Affiliation(s)
- Sang-Heon Shim
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Byeongkwan Ko
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Dimosthenis Sokaras
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Bob Nagler
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - He Ja Lee
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Eric Galtier
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Siegfried Glenzer
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Eduardo Granados
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| | - Tommaso Vinci
- Laboratoire pour l’Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
| | - Guillaume Fiquet
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Museum National d’Histoire Naturelle, UMR CNRS 7590, 4 Place Jussieu, 75005 Paris, France
| | - Jonathan Dolinschi
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Jackie Tappan
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Britany Kulka
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Wendy L. Mao
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
- Department of Earth and Planetary Sciences, Stanford University, Stanford CA 94305, USA
| | - Guillaume Morard
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Museum National d’Histoire Naturelle, UMR CNRS 7590, 4 Place Jussieu, 75005 Paris, France
- Université Grenoble Alpes, Universé Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, ISTerre, 38000 Grenoble, France
| | - Alessandra Ravasio
- Laboratoire pour l’Utilisation des Lasers Intenses (LULI), Ecole Polytechnique, CNRS, CEA, UPMC, 91128 Palaiseau, France
| | - Arianna Gleason
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
- Department of Earth and Planetary Sciences, Stanford University, Stanford CA 94305, USA
| | - Roberto Alonso-Mori
- SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA 94025, USA
| |
Collapse
|
7
|
Tang H, Cheng Y, Yuan X, Zhang K, Kurnosov A, Chen Z, Xiao W, Jeppesen HS, Etter M, Liang T, Zeng Z, Wang F, Fei H, Wang L, Han S, Wang MS, Chen G, Sheng H, Katsura T. Toughening oxide glasses through paracrystallization. NATURE MATERIALS 2023; 22:1189-1195. [PMID: 37550568 DOI: 10.1038/s41563-023-01625-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 07/04/2023] [Indexed: 08/09/2023]
Abstract
Glasses, unlike crystals, are intrinsically brittle due to the absence of microstructure-controlled toughening, creating fundamental constraints for their technological applications. Consequently, strategies for toughening glasses without compromising their other advantageous properties have been long sought after but elusive. Here we report exceptional toughening in oxide glasses via paracrystallization, using aluminosilicate glass as an example. By combining experiments and computational modelling, we demonstrate the uniform formation of crystal-like medium-range order clusters pervading the glass structure as a result of paracrystallization under high-pressure and high-temperature conditions. The paracrystalline oxide glasses display superior toughness, reaching up to 1.99 ± 0.06 MPa m1/2, surpassing any other reported bulk oxide glasses, to the best of our knowledge. We attribute this exceptional toughening to the excitation of multiple shear bands caused by a stress-induced inverse transformation from the paracrystalline to amorphous states, revealing plastic deformation characteristics. This discovery presents a potent strategy for designing highly damage-tolerant glass materials and emphasizes the substantial influence of atomic-level structural variation on the properties of oxide glasses.
Collapse
Affiliation(s)
- Hu Tang
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany.
- Center for High Pressure Science and Technology Advanced Research, Beijing, China.
- State Key Laboratory of Superhard Materials, Synergetic Extreme Condition High-Pressure Science Center, College of Physics, Jilin University, Changchun, China.
| | - Yong Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, China
| | - Xiaohong Yuan
- Academy for Advanced Interdisciplinary Studies & Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology, Shenzhen, China
| | - Kai Zhang
- Center for High Pressure Science and Technology Advanced Research, Beijing, China
| | | | - Zhen Chen
- National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing, China
| | - Wenge Xiao
- Institute of Light+X Science and Technology, College of Information Science and Engineering, Ningbo University, Ningbo, China.
- State Key Lab of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.
| | | | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
| | - Tao Liang
- Center for High Pressure Science and Technology Advanced Research, Beijing, China
| | - Zhidan Zeng
- Center for High Pressure Science and Technology Advanced Research, Beijing, China
| | - Fei Wang
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - Hongzhan Fei
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
- School of Earth Sciences, Zhejiang University, Hangzhou, China
| | - Lin Wang
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
| | - Songbai Han
- Academy for Advanced Interdisciplinary Studies & Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressures, Southern University of Science and Technology, Shenzhen, China
| | - Ming-Sheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, China
| | - Guang Chen
- National Key Laboratory of Advanced Casting Technologies, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology, Engineering Research Center of Materials Behavior and Design, Ministry of Education, Nanjing University of Science and Technology, Nanjing, China
| | - Howard Sheng
- Center for High Pressure Science and Technology Advanced Research, Beijing, China.
- Department of Physics and Astronomy, George Mason University, Fairfax, VA, USA.
| | - Tomoo Katsura
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth, Germany
- Center for High Pressure Science and Technology Advanced Research, Beijing, China
| |
Collapse
|
8
|
Noguchi N, Shiraishi Y, Kageyama M, Yokoi Y, Kurohama S, Okada N, Okamura H. Direct observation of pressure-induced amorphization of methane/ethane hydrates using Raman and infrared spectroscopy. Phys Chem Chem Phys 2023; 25:22161-22170. [PMID: 37564022 DOI: 10.1039/d3cp03096b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
The pressure-induced amorphization (PIA) of ice and clathrate hydrates occurs at temperatures significantly below their melting and decomposition points. The PIA of type I clathrate hydrates containing methane and ethane as guest molecules was investigated using Raman and infrared (IR) spectroscopy. With isothermal compression at 100 K, methane hydrate (MH) underwent PIA at 2-3.5 GPa, whereas ethane hydrate (EH) underwent PIA at 4.0-5.5 GPa. The type I clathrate structure consists of small (512) and large (51262) cages. The Raman results revealed that the collapsed small and large cages in the amorphous forms of MH and EH were not distinguishable. The collapsed cages, including the methane and ethane molecules, were similar to the small and large cages, respectively. Their water networks were folded or expanded during the PIA process so that the cavity sizes of the collapsed cages were compatible with those of the guest molecules. Peaks in the IR spectra of crystalline MH assignable to the ro-vibrational transition of methane in large cages were observed in the C-H stretching wavenumber region below 40 K. The ro-vibrational IR band disappeared after amorphization, suggesting that the rotational motion of the methane molecule in the large cage was frozen by the collapse, as reported in previous dielectric spectroscopic and simulation studies. This study contributes to a better understanding of the changes in the local structure around guest molecules during PIA and the dynamics of the guest molecules.
Collapse
Affiliation(s)
- Naoki Noguchi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-josanjima-cho, Tokushima 770-8506, Japan.
| | - Yui Shiraishi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-josanjima-cho, Tokushima 770-8506, Japan.
| | - Maho Kageyama
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-josanjima-cho, Tokushima 770-8506, Japan.
| | - Yuu Yokoi
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-josanjima-cho, Tokushima 770-8506, Japan.
| | - Saki Kurohama
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-josanjima-cho, Tokushima 770-8506, Japan.
| | - Natsuki Okada
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-josanjima-cho, Tokushima 770-8506, Japan.
| | - Hidekazu Okamura
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, 2-1 Minami-josanjima-cho, Tokushima 770-8506, Japan.
| |
Collapse
|
9
|
Logrado M, Inoue T, Nakane S, Kato Y, Yamazaki H, Yamada A, Eckert H. Densification of Sodium Borosilicate Glasses at Ambient Temperature: Structural Investigations by Solid-State Nuclear Magnetic Resonance and Raman Scattering. J Phys Chem Lett 2023; 14:4471-4481. [PMID: 37154700 DOI: 10.1021/acs.jpclett.3c00540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Alkali-borosilicate glasses with composition (80-x)SiO2-xB2O3-20Na2O (10 ≤ x ≤ 30) were subjected to a 25 GPa compression and decompression at room temperature, resulting in density increases between 1.4% and 1.9%. The structural changes associated with this process have been investigated and compared with uncompressed glasses having the same thermal history. Systematic trends are identified, using Raman scattering and multinuclear solid-state Nuclear Magnetic Resonance (ssNMR). Perhaps counterintuitively, pressurization tends to increase the concentration of three-coordinated boron species (B(III) units) at the expense of four-coordinated boron (B(IV) units). 23Na NMR spectra show a systematic shift toward higher frequencies in the pressurized glasses, consistent with shorter average Na-O distances. The results are consistently explained in terms of a breakage of Si-O-B4 linkages resulting in the formation of nonbridging oxygen species. Pressure effects on the spectra are reversed by annealing the glasses at their respective glass transition temperatures.
Collapse
Affiliation(s)
- Millena Logrado
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13566-590, Brazil
| | - Tomiki Inoue
- Nippon Electric Glass Co., Ltd., 7-1, Seiran 2-chome, Otsu, Shiga 520-8639, Japan
| | - Shingo Nakane
- Nippon Electric Glass Co., Ltd., 7-1, Seiran 2-chome, Otsu, Shiga 520-8639, Japan
| | - Yoshinari Kato
- Nippon Electric Glass Co., Ltd., 7-1, Seiran 2-chome, Otsu, Shiga 520-8639, Japan
| | - Hiroki Yamazaki
- Nippon Electric Glass Co., Ltd., 7-1, Seiran 2-chome, Otsu, Shiga 520-8639, Japan
| | - Akihiro Yamada
- Department of Material Science, University of Shiga Prefecture, 2500 Hassaka, Hikone, Shiga 522-8533, Japan
| | - Hellmut Eckert
- Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-Carlense 400, São Carlos, São Paulo 13566-590, Brazil
- Institut für Physikalische Chemie, WWU Münster, Corrensstraße 28-30, 48149 Münster, Germany
| |
Collapse
|
10
|
Bonatti L, Brugman BL, Subramani T, Leinenweber KD, Navrotsky A. Heat capacity of microgram oxide samples by fast scanning calorimetry. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:2889795. [PMID: 37158701 DOI: 10.1063/5.0131946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/22/2023] [Indexed: 05/10/2023]
Abstract
Quantitative scanning calorimetry on microgram-sized samples opens a broad, new range of opportunities for studying the thermodynamic properties of quantity-limited materials, including those produced under extreme conditions or found as rare accessory minerals in nature. We calibrated the Mettler Toledo Flash DSC 2+ calorimeter to obtain quantitative heat capacities in the range 200-350 °C, using samples weighing between 2 and 11.5 μg. Our technique is applied to a new set of oxide materials to which it has never been used before, without the need for melting, glass transitions, or phase transformations. Heat capacity data were obtained for silica in the high pressure stishovite (rutile) structure, dense post-stishovite glass, standard fused quartz, and for TiO2 rutile. These heat capacities agree within 5%-15% with the literature values reported for rutile, stishovite, and fused SiO2 glass. The heat capacity of post-stishovite glass, made by heating stishovite to 1000 °C, is a newly reported value. After accurate calibrations, measured heat capacities were then used to calculate masses for samples in the microgram range, a substantial improvement over measurement in conventional microbalances, which have uncertainties approaching 50%-100% for such small samples. Since the typical uncertainty of heat capacities measured on 10-100 mg samples in conventional differential scanning calorimetry is typically 7% (1%-5% with careful work), flash differential scanning calorimetry, using samples a factor of 1000 smaller, increases the uncertainty of heat capacity measurements by a factor of <3, opening the door for meaningful measurements on ultra-small, high-pressure samples and other quantity-limited materials.
Collapse
Affiliation(s)
- L Bonatti
- School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, USA
| | - B L Brugman
- School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, USA
| | - T Subramani
- School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, USA
| | - K D Leinenweber
- Eyring Materials Center, Arizona State University, Tempe, Arizona 85287, USA
| | - A Navrotsky
- School of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, USA
| |
Collapse
|
11
|
Lobanov SS, Speziale S, Winkler B, Milman V, Refson K, Schifferle L. Electronic, Structural, and Mechanical Properties of SiO_{2} Glass at High Pressure Inferred from its Refractive Index. PHYSICAL REVIEW LETTERS 2022; 128:077403. [PMID: 35244414 DOI: 10.1103/physrevlett.128.077403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 11/29/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
We report the first direct measurements of the refractive index of silica glass up to 145 GPa that allowed quantifying its density, bulk modulus, Lorenz-Lorentz polarizability, and band gap. These properties show two major anomalies at ∼10 and ∼40 GPa. The anomaly at ∼10 GPa signals the onset of the increase in Si coordination, and the anomaly at ∼40 GPa corresponds to a nearly complete vanishing of fourfold Si. More generally, we show that the compressibility and density of noncrystalline solids can be accurately measured in simple optical experiments up to at least 110 GPa.
Collapse
Affiliation(s)
- Sergey S Lobanov
- Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
- Institut für Geowissenschaften, Universität Potsdam, Karl-Liebknecht-Str. 24-25, Golm 14476, Germany
| | - Sergio Speziale
- Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
| | - Björn Winkler
- Institut für Geowissenschaften, Goethe-Universität Frankfurt, Altenhöferallee 1, 60438 Frankfurt am Main, Germany
| | - Victor Milman
- Dassault Systèmes BIOVIA, 334 Science Park, Cambridge CB4 0WN, United Kingdom
| | - Keith Refson
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Lukas Schifferle
- Deutsches GeoForschungsZentrum GFZ, Telegrafenberg, 14473 Potsdam, Germany
- Institut für Geowissenschaften, Universität Potsdam, Karl-Liebknecht-Str. 24-25, Golm 14476, Germany
| |
Collapse
|
12
|
Rana S, Fleming A, Kandadai N, Subbaraman H. Active Compensation of Radiation Effects on Optical Fibers for Sensing Applications. SENSORS 2021; 21:s21248193. [PMID: 34960286 PMCID: PMC8705361 DOI: 10.3390/s21248193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/28/2021] [Accepted: 12/02/2021] [Indexed: 12/04/2022]
Abstract
Neutron and gamma irradiation is known to compact silica, resulting in macroscopic changes in refractive index (RI) and geometric structure. The change in RI and linear compaction in a radiation environment is caused by three well-known mechanisms: (i) radiation-induced attenuation (RIA), (ii) radiation-induced compaction (RIC), and (iii) radiation-induced emission (RIE). These macroscopic changes induce errors in monitoring physical parameters such as temperature, pressure, and strain in optical fiber-based sensors, which limit their application in radiation environments. We present a cascaded Fabry–Perot interferometer (FPI) technique to measure macroscopic properties, such as radiation-induced change in RI and length compaction in real time to actively account for sensor drift. The proposed cascaded FPI consists of two cavities: the first cavity is an air cavity, and the second is a silica cavity. The length compaction from the air cavity is used to deduce the RI change within the silica cavity. We utilize fast Fourier transform (FFT) algorithm and two bandpass filters for the signal extraction of each cavity. Inclusion of such a simple cascaded FPI structure will enable accurate determination of physical parameters under the test.
Collapse
Affiliation(s)
- Sohel Rana
- Measurement Science Department, Idaho National Laboratory, 1955 N Fremont Avenue, Idaho Falls, ID 83415, USA;
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA; (N.K.); (H.S.)
| | - Austin Fleming
- Measurement Science Department, Idaho National Laboratory, 1955 N Fremont Avenue, Idaho Falls, ID 83415, USA;
- Correspondence:
| | - Nirmala Kandadai
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA; (N.K.); (H.S.)
| | - Harish Subbaraman
- Department of Electrical and Computer Engineering, Boise State University, Boise, ID 83725, USA; (N.K.); (H.S.)
| |
Collapse
|
13
|
Kaya H, Ngo D, Hahn SH, Li M, He H, Yedikardeş B, Sökmen İ, Pester CW, Podraza NJ, Gin S, Kim SH. Estimating Internal Stress of an Alteration Layer Formed on Corroded Boroaluminosilicate Glass through Spectroscopic Ellipsometry Analysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50470-50480. [PMID: 34643085 DOI: 10.1021/acsami.1c10134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aqueous corrosion of glass may result in the formation of an alteration layer in the glass surface of which chemical composition and network structure are different from those of the bulk glass. Since corrosion occurs far below the glass-transition temperature, the alteration layer cannot fully relax to the new structure with the lowest possible energy. Molecular dynamics simulations suggested that such a network will contain highly strained chemical bonds, which can be manifested as a stress in the alteration layer. Common techniques to measure stress in thin films or surface layers were found inadequate for thick monolithic glass samples corroded in water. Here, we explored the use of spectroscopic ellipsometry to test the presence of internal stress in the alteration layer formed by aqueous corrosion of glass. A procedure for analyses of spectroscopic ellipsometry data to determine birefringence in the alteration layer was developed. Findings with the established fitting procedure suggested that a stress builds up in the corroded surface layer of a boroaluminosilicate glass if there is a change in relative humidity, pH, or electrolyte concentration of the environment to which the glass surface is exposed. A similar process may occur in other types of glass, and it may affect the surface properties of corroded glass objects.
Collapse
Affiliation(s)
- Huseyin Kaya
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dien Ngo
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Seung Ho Hahn
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mingxiao Li
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hongtu He
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Beyza Yedikardeş
- Şişecam Science and Technology Center, Şişecam Str., No:2 Çayırova, Kocaeli 41400, Turkey
| | - İlkay Sökmen
- Şişecam Science and Technology Center, Şişecam Str., No:2 Çayırova, Kocaeli 41400, Turkey
| | - Christian W Pester
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nikolas J Podraza
- Department of Physics and Astronomy, The University of Toledo, Toledo, Ohio 43606, United States
- Wright Center for Photovoltaics Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, United States
| | - Stephane Gin
- CEA, DES, ISEC, DE2D, University of Montpellier, Marcoule, Bagnols sur Cèze F-30207, France
| | - Seong H Kim
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
14
|
Drewitt JWE. Liquid structure under extreme conditions: high-pressure x-ray diffraction studies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:503004. [PMID: 34544063 DOI: 10.1088/1361-648x/ac2865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Under extreme conditions of high pressure and temperature, liquids can undergo substantial structural transformations as their atoms rearrange to minimise energy within a more confined volume. Understanding the structural response of liquids under extreme conditions is important across a variety of disciplines, from fundamental physics and exotic chemistry to materials and planetary science.In situexperiments and atomistic simulations can provide crucial insight into the nature of liquid-liquid phase transitions and the complex phase diagrams and melting relations of high-pressure materials. Structural changes in natural magmas at the high-pressures experienced in deep planetary interiors can have a profound impact on their physical properties, knowledge of which is important to inform geochemical models of magmatic processes. Generating the extreme conditions required to melt samples at high-pressure, whilst simultaneously measuring their liquid structure, is a considerable challenge. The measurement, analysis, and interpretation of structural data is further complicated by the inherent disordered nature of liquids at the atomic-scale. However, recent advances in high-pressure technology mean that liquid diffraction measurements are becoming more routinely feasible at synchrotron facilities around the world. This topical review examines methods for high pressure synchrotron x-ray diffraction of liquids and the wide variety of systems which have been studied by them, from simple liquid metals and their remarkable complex behaviour at high-pressure, to molecular-polymeric liquid-liquid transitions in pnicogen and chalcogen liquids, and density-driven structural transformations in water and silicate melts.
Collapse
Affiliation(s)
- James W E Drewitt
- School of Physics, University of Bristol, H H Wills Physics Laboratory, Tyndall Avenue, Bristol, BS8 1TL, United Kingdom
| |
Collapse
|
15
|
Ohara K, Onodera Y, Murakami M, Kohara S. Structure of disordered materials under ambient to extreme conditions revealed by synchrotron x-ray diffraction techniques at SPring-8-recent instrumentation and synergic collaboration with modelling and topological analyses. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:383001. [PMID: 34286699 DOI: 10.1088/1361-648x/ac0193] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
The structure of disordered materials is still not well understood because of insufficient experimental data. Indeed, diffraction patterns from disordered materials are very broad and can be described only in pairwise correlations because of the absence of translational symmetry. Brilliant hard x-rays from third-generation synchrotron radiation sources enable us to obtain high-quality diffraction data for disordered materials from ambient to high temperature and high pressure, which has significantly improved our grasp of the nature of order in disordered materials. Here, we introduce the progress in the instrumentation for hard x-ray beamlines at SPring-8 over the last 20 years with associated results and advanced data analysis techniques to understand the topology in disordered materials.
Collapse
Affiliation(s)
- Koji Ohara
- Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute (JASRI), Sayo-gun, Hyogo 679-5198, Japan
| | - Yohei Onodera
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Sennan-gun, Osaka 590-0494, Japan
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Sayo-gun, Hyogo 679-5148, Japan
| | | | - Shinji Kohara
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science (NIMS), Sayo-gun, Hyogo 679-5148, Japan
- Department of Earth Science, ETH Zürich, Zürich 8092, Switzerland
| |
Collapse
|
16
|
Kono Y, Shu Y, Kenney-Benson C, Wang Y, Shen G. Structural Evolution of SiO_{2} Glass with Si Coordination Number Greater than 6. PHYSICAL REVIEW LETTERS 2020; 125:205701. [PMID: 33258638 DOI: 10.1103/physrevlett.125.205701] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/11/2020] [Indexed: 06/12/2023]
Abstract
Pair distribution function measurement of SiO_{2} glass up to 120 GPa reveals changes in the first-, second-, and third-neighbor distances associated with an increase in Si coordination number C_{Si} to >6 above 95 GPa. Packing fractions of Si and O determined from the first- and second-neighbor distances show marked changes accompanied with the structural evolution from C_{Si}=6 to >6. Structural constraints in terms of ionic radius ratio of Si and O, and ratio of nonbonded radius to bonded Si─O distance support the structural evolution of SiO_{2} glass with C_{Si}>6 at high pressures.
Collapse
Affiliation(s)
- Yoshio Kono
- Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
- Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Yu Shu
- High Pressure Collaborative Access Team, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Curtis Kenney-Benson
- High Pressure Collaborative Access Team, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| | - Yanbin Wang
- GeoSoilEnviroCARS, Center for Advanced Radiation Sources, The University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, USA
| | - Guoyin Shen
- High Pressure Collaborative Access Team, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA
| |
Collapse
|
17
|
Structural dynamics of basaltic melt at mantle conditions with implications for magma oceans and superplumes. Nat Commun 2020; 11:4815. [PMID: 32968073 PMCID: PMC7511909 DOI: 10.1038/s41467-020-18660-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 08/28/2020] [Indexed: 12/04/2022] Open
Abstract
Transport properties like diffusivity and viscosity of melts dictated the evolution of the Earth’s early magma oceans. We report the structure, density, diffusivity, electrical conductivity and viscosity of a model basaltic (Ca11Mg7Al8Si22O74) melt from first-principles molecular dynamics calculations at temperatures of 2200 K (0 to 82 GPa) and 3000 K (40–70 GPa). A key finding is that, although the density and coordination numbers around Si and Al increase with pressure, the Si–O and Al–O bonds become more ionic and weaker. The temporal atomic interactions at high pressure are fluxional and fragile, making the atoms more mobile and reversing the trend in transport properties at pressures near 50 GPa. The reversed melt viscosity under lower mantle conditions allows new constraints on the timescales of the early Earth’s magma oceans and also provides the first tantalizing explanation for the horizontal deflections of superplumes at ~1000 km below the Earth’s surface. Transport properties of melts in the deep Earth have dictated the evolution of the early Earth’s magma oceans and also govern many modern dynamic processes, such as plate tectonics. Here, the authors find there is a reversal in the trends of transport properties of basaltic melts at pressures near 50 GPa, with implications for the timescales of early Earth’s magma oceans.
Collapse
|
18
|
Morard G, Hernandez JA, Guarguaglini M, Bolis R, Benuzzi-Mounaix A, Vinci T, Fiquet G, Baron MA, Shim SH, Ko B, Gleason AE, Mao WL, Alonso-Mori R, Lee HJ, Nagler B, Galtier E, Sokaras D, Glenzer SH, Andrault D, Garbarino G, Mezouar M, Schuster AK, Ravasio A. In situ X-ray diffraction of silicate liquids and glasses under dynamic and static compression to megabar pressures. Proc Natl Acad Sci U S A 2020; 117:11981-11986. [PMID: 32414927 PMCID: PMC7275726 DOI: 10.1073/pnas.1920470117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Properties of liquid silicates under high-pressure and high-temperature conditions are critical for modeling the dynamics and solidification mechanisms of the magma ocean in the early Earth, as well as for constraining entrainment of melts in the mantle and in the present-day core-mantle boundary. Here we present in situ structural measurements by X-ray diffraction of selected amorphous silicates compressed statically in diamond anvil cells (up to 157 GPa at room temperature) or dynamically by laser-generated shock compression (up to 130 GPa and 6,000 K along the MgSiO3 glass Hugoniot). The X-ray diffraction patterns of silicate glasses and liquids reveal similar characteristics over a wide pressure and temperature range. Beyond the increase in Si coordination observed at 20 GPa, we find no evidence for major structural changes occurring in the silicate melts studied up to pressures and temperatures exceeding Earth's core mantle boundary conditions. This result is supported by molecular dynamics calculations. Our findings reinforce the widely used assumption that the silicate glasses studies are appropriate structural analogs for understanding the atomic arrangement of silicate liquids at these high pressures.
Collapse
Affiliation(s)
- Guillaume Morard
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France;
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, Institut de Recherche pour le Développement, Institut Français des Sciences et Technologies des Transports, de L'aménagement et des Réseaux, ISTerre, 38000 Grenoble, France
| | - Jean-Alexis Hernandez
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
- Centre for Earth Evolution and Dynamics, University of Oslo, N-0315 Oslo, Norway
| | - Marco Guarguaglini
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Riccardo Bolis
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Alessandra Benuzzi-Mounaix
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Tommaso Vinci
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| | - Guillaume Fiquet
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France
| | - Marzena A Baron
- Sorbonne Université, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Museum National d'Histoire Naturelle, UMR CNRS 7590, 75005 Paris, France
| | - Sang Heon Shim
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287
| | - Byeongkwan Ko
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287
| | - Arianna E Gleason
- Geological Sciences, Stanford University, Stanford, CA 94305-2115
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Wendy L Mao
- Geological Sciences, Stanford University, Stanford, CA 94305-2115
| | | | - Hae Ja Lee
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Bob Nagler
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Eric Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | | | | | - Denis Andrault
- Université Clermont Auvergne, CNRS, Institut de Recherche pour le Développement, Observatoire Physique du Globe de Clermont-Ferrand, Laboratoire Magmas et Volcans, F-63000 Clermont-Ferrand, France
| | | | - Mohamed Mezouar
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Anja K Schuster
- Helmholtz-Zentrum Dresden Rossendorf, D-01328 Dresden, Germany
| | - Alessandra Ravasio
- Laboratoire pour l'Utilisation des Lasers Intenses, Ecole Polytechnique, CNRS, Commissariat à l'Energie Atomique, Sorbonne Université, 91128 Palaiseau, France
| |
Collapse
|
19
|
Lee SK, Mun KY, Kim YH, Lhee J, Okuchi T, Lin JF. Degree of Permanent Densification in Oxide Glasses upon Extreme Compression up to 24 GPa at Room Temperature. J Phys Chem Lett 2020; 11:2917-2924. [PMID: 32223166 DOI: 10.1021/acs.jpclett.0c00709] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
During the decompression of plastically deformed glasses at room temperature, some aspects of irreversible densification may be preserved. This densification has been primarily attributed to topological changes in glass networks. The changes in short-range structures like cation coordination numbers are often assumed to be relaxed upon decompression. Here the NMR results for aluminosilicate glass upon permanent densification up to 24 GPa reveal noticeable changes in the Al coordination number under pressure conditions as low as ∼6 GPa. A drastic increase in the highly coordinated Al fraction is evident over only a relatively narrow pressure range of up to ∼12 GPa, above which the coordination change becomes negligible up to 24 GPa. In contrast, Si coordination environments do not change, highlighting preferential coordination transformation during deformation. The observed trend in the coordination environment shows a remarkable similarity to the pressure-induced changes in the residual glass density, yielding a predictive relationship between the irreversible densification and the detailed structures under extreme compression. The results open a way to access the nature of plastic deformation in complex glasses at room temperature.
Collapse
Affiliation(s)
- Sung Keun Lee
- Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul 08826, Korea
| | - Kwan Young Mun
- Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Yong-Hyun Kim
- Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Juho Lhee
- Laboratory of Physics and Chemistry of Earth Materials, School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Korea
| | - Takuo Okuchi
- Institute for Planetary Materials, Okayama University, Misasa 682-0193, Japan
| | - Jung-Fu Lin
- Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Li H, Li N, Zhu P, Wang X. A comparative study of high-pressure behaviors of the two polymorphs of Ho 2Ge 2O 7. RSC Adv 2020; 10:10540-10545. [PMID: 35492896 PMCID: PMC9050406 DOI: 10.1039/c9ra10428c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 11/30/2022] Open
Abstract
Two polymorphs of polycrystalline Ho2Ge2O7, one with tetragonal structure and the other with cubic structure, were synthesized by using different methods. The structural stabilities of these two polymorphs under high pressure were investigated by angle-dispersive X-ray diffraction (ADXRD). Pressure-induced amorphization was found in the tetragonal Ho2Ge2O7, which is suggested to be associated with the breaking-up of long chains of the edge-shared polyhedron group Ho4O20. By contrast, cubic Ho2Ge2O7 is stable at high pressures up to 33.3 GPa. Two polymorphs of Ho2Ge2O7 were synthesized using different methods. The structural stabilities were investigated by ADXRD at high pressures.![]()
Collapse
Affiliation(s)
- Hui Li
- College of Science, Guangxi University for Nationalities Nanning 530006 China.,State Key Laboratory of Superhard Materials, Jilin University Changchun 130012 China
| | - Nana Li
- Center for High Pressure Science and Technology Advanced Research Shanghai 201203 China
| | - Pinwen Zhu
- State Key Laboratory of Superhard Materials, Jilin University Changchun 130012 China .,College of Physics, Jilin University Changchun 130012 China
| | - Xin Wang
- State Key Laboratory of Superhard Materials, Jilin University Changchun 130012 China .,College of Physics, Jilin University Changchun 130012 China
| |
Collapse
|
21
|
Abstract
The structure of hydrous amorphous SiO2 is fundamental in order to investigate the effects of water on the physicochemical properties of oxide glasses and magma. The hydrous SiO2 glass with 13 wt.% D2O was synthesized under high-pressure and high-temperature conditions and its structure was investigated by small angle X-ray scattering, X-ray diffraction, and neutron diffraction experiments at pressures of up to 10 GPa and room temperature. This hydrous glass is separated into two phases: a major phase rich in SiO2 and a minor phase rich in D2O molecules distributed as small domains with dimensions of less than 100 Å. Medium-range order of the hydrous glass shrinks compared to the anhydrous SiO2 glass by disruption of SiO4 linkage due to the formation of Si–OD deuterioxyl, while the response of its structure to pressure is almost the same as that of the anhydrous SiO2 glass. Most of D2O molecules are in the small domains and hardly penetrate into the void space in the ring consisting of SiO4 tetrahedra.
Collapse
|
22
|
Solomatova N, Caracas R. Pressure-Induced Coordination Changes in a Pyrolitic Silicate Melt From Ab Initio Molecular Dynamics Simulations. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH 2019; 124:11232-11250. [PMID: 32025456 PMCID: PMC6988478 DOI: 10.1029/2019jb018238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/04/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
With ab initio molecular dynamics simulations on a Na-, Ca-, Fe-, Mg-, and Al-bearing silicate melt of pyrolite composition, we examine the detailed changes in elemental coordination as a function of pressure and temperature. We consider the average coordination as well as the proportion and distribution of coordination environments at pressures and temperatures encompassing the conditions at which molten silicates may exist in present-day Earth and those of the Early Earth's magma ocean. At ambient pressure and 2,000 K, we find that the average coordination of cations with respect to oxygen is 4.0 for Si-O, 4.0 for Al-O, 3.7 for Fe-O, 4.6 for Mg-O, 5.9 for Na-O, and 6.2 for Ca-O. Although the coordination for iron with respect to oxygen may be underestimated, the coordination number for all other cations are consistent with experiments. By 15 GPa (2,000 K), the average coordination for Si-O remains at 4.0 but increases to 4.1 for Al-O, 4.2 for Fe-O, 4.9 for Mg-O, 8.0 for Na-O, and 6.8 for Ca-O. The coordination environment for Na-O remains approximately constant up to core-mantle boundary conditions (135 GPa and 4000 K) but increases to about 6 for Si-O, 6.5 for Al-O, 6.5 for Fe-O, 8 for Mg-O, and 9.5 for Ca-O. We discuss our results in the context of the metal-silicate partitioning behavior of siderophile elements and the viscosity changes of silicate melts at upper mantle conditions. Our results have implications for melt properties, such as viscosity, transport coefficients, thermal conductivities, and electrical conductivities, and will help interpret experimental results on silicate glasses.
Collapse
Affiliation(s)
- N.V. Solomatova
- CNRS, École Normale Supérieure de LyonLaboratoire de Géologie de Lyon, CNRS UMR 5276LyonFrance
| | - R. Caracas
- CNRS, École Normale Supérieure de LyonLaboratoire de Géologie de Lyon, CNRS UMR 5276LyonFrance
| |
Collapse
|
23
|
Huang Y, He Y, Sheng H, Lu X, Dong H, Samanta S, Dong H, Li X, Kim DY, Mao HK, Liu Y, Li H, Li H, Wang L. Li-ion battery material under high pressure: amorphization and enhanced conductivity of Li 4Ti 5O 12. Natl Sci Rev 2019; 6:239-246. [PMID: 34691862 PMCID: PMC8291545 DOI: 10.1093/nsr/nwy122] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/09/2018] [Accepted: 10/11/2018] [Indexed: 11/13/2022] Open
Abstract
Lithium titanium oxide (Li4Ti5O12, LTO), a 'zero-strain' anode material for lithium-ion batteries, exhibits excellent cycling performance. However, its poor conductivity highly limits its applications. Here, the structural stability and conductivity of LTO were studied using in situ high-pressure measurements and first-principles calculations. LTO underwent a pressure-induced amorphization (PIA) at 26.9 GPa. The impedance spectroscopy revealed that the conductivity of LTO improved significantly after amorphization and that the conductivity of decompressed amorphous LTO increased by an order of magnitude compared with its starting phase. Furthermore, our calculations demonstrated that the different compressibility of the LiO6 and TiO6 octahedra in the structure was crucial for the PIA. The amorphous phase promotes Li+ diffusion and enhances its ionic conductivity by providing defects for ion migration. Our results not only provide an insight into the pressure depended structural properties of a spinel-like material, but also facilitate exploration of the interplay between PIA and conductivity.
Collapse
Affiliation(s)
- Yanwei Huang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Yu He
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Howard Sheng
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- Department of Physics and Astronomy, George Mason University, Fairfax VA 22030, USA
| | - Xia Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Energy, Beijing University of Chemical Engineering, Beijing 100029, China
| | - Haini Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Sudeshna Samanta
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Xifeng Li
- School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200072, China
| | - Duck Young Kim
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| | - Ho-kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
- Geophysical Laboratory, Carnegie Institution, Washington, DC 20015, USA
| | - Yuzi Liu
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Heping Li
- Key Laboratory of High-temperature and High-pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Hong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Lin Wang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, China
| |
Collapse
|
24
|
|
25
|
Guerette M, Ackerson MR, Thomas J, Watson EB, Huang L. Thermally induced amorphous to amorphous transition in hot-compressed silica glass. J Chem Phys 2018; 148:194501. [PMID: 30307254 DOI: 10.1063/1.5025592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In situ Raman and Brillouin light scattering techniques were used to study thermally induced high-density amorphous (HDA) to low-density amorphous (LDA) transition in silica glass densified in hot compression (up to 8 GPa at 1100 °C). Hot-compressed silica samples are shown to retain structural and mechanical stability through 600 °C or greater, with reduced sensitivity in elastic response to temperature as compared with pristine silica glass. Given sufficient thermal energy to overcome the energy barrier, the compacted structure of the HDA silica reverts back to the LDA state. The onset temperature for the HDA to LDA transition depends on the degree of densification during hot compression, commencing at lower temperatures for samples with higher density, but all finishing within a temperature range of 250-300 °C. Our studies show that the HDA to LDA transition at high temperatures in hot-compressed samples is different from the gradual changes starting from room temperature in cold-compressed silica glass, indicating greater structural homogeneity achieved by hot compression. Furthermore, the structure and properties of hot-compressed silica glass change continuously during the thermally induced HDA to LDA transition, in contrast to the abrupt and first-order-like polyamorphic transitions in amorphous ice. Different HDA to LDA transition mechanisms in amorphous silica and amorphous ice are explained by their different energy landscapes.
Collapse
Affiliation(s)
- Michael Guerette
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Michael R Ackerson
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015, USA
| | - Jay Thomas
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - E Bruce Watson
- Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Liping Huang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| |
Collapse
|
26
|
Local structure of molten AuGa 2 under pressure: Evidence for coordination change and planetary implications. Sci Rep 2018; 8:6844. [PMID: 29717192 PMCID: PMC5931613 DOI: 10.1038/s41598-018-25297-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/23/2018] [Indexed: 11/08/2022] Open
Abstract
In situ x-ray diffraction measurements and inverse Monte Carlo simulations of pair distribution functions were used to characterize the local structure of molten AuGa2 up to 16 GPa and 940 K. Our results document systematic changes in liquid structure due to a combination of bond compression and coordination increase. Empirical potential structure refinement shows the first-neighbor coordination of Ga around Au and of Au around Ga to increase from about 8 to 10 and 4 to 5, respectively between 0 and 16 GPa, and the inferred changes in liquid structure can explain the observed melting-point depression of AuGa2 up to 5 GPa. As intermetallic AuGa2 is an analogue for metallic SiO2 at much higher pressures, our results imply that structural changes documented for non-metallic silicate melts below 100 GPa are followed by additional coordination changes in the metallic state at pressures in the 0.2–1 TPa range achieved inside large planets.
Collapse
|
27
|
Pressure-induced structural change in MgSiO 3 glass at pressures near the Earth's core-mantle boundary. Proc Natl Acad Sci U S A 2018; 115:1742-1747. [PMID: 29432162 DOI: 10.1073/pnas.1716748115] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the structure and properties of silicate magma under extreme pressure plays an important role in understanding the nature and evolution of Earth's deep interior. Here we report the structure of MgSiO3 glass, considered an analog of silicate melts, up to 111 GPa. The first (r1) and second (r2) neighbor distances in the pair distribution function change rapidly, with r1 increasing and r2 decreasing with pressure. At 53-62 GPa, the observed r1 and r2 distances are similar to the Si-O and Si-Si distances, respectively, of crystalline MgSiO3 akimotoite with edge-sharing SiO6 structural motifs. Above 62 GPa, r1 decreases, and r2 remains constant, with increasing pressure until 88 GPa. Above this pressure, r1 remains more or less constant, and r2 begins decreasing again. These observations suggest an ultrahigh-pressure structural change around 88 GPa. The structure above 88 GPa is interpreted as having the closest edge-shared SiO6 structural motifs similar to those of the crystalline postperovskite, with densely packed oxygen atoms. The pressure of the structural change is broadly consistent with or slightly lower than that of the bridgmanite-to-postperovskite transition in crystalline MgSiO3 These results suggest that a structural change may occur in MgSiO3 melt under pressure conditions corresponding to the deep lower mantle.
Collapse
|
28
|
Petitgirard S, Malfait WJ, Journaux B, Collings IE, Jennings ES, Blanchard I, Kantor I, Kurnosov A, Cotte M, Dane T, Burghammer M, Rubie DC. SiO_{2} Glass Density to Lower-Mantle Pressures. PHYSICAL REVIEW LETTERS 2017; 119:215701. [PMID: 29219420 DOI: 10.1103/physrevlett.119.215701] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Indexed: 06/07/2023]
Abstract
The convection or settling of matter in the deep Earth's interior is mostly constrained by density variations between the different reservoirs. Knowledge of the density contrast between solid and molten silicates is thus of prime importance to understand and model the dynamic behavior of the past and present Earth. SiO_{2} is the main constituent of Earth's mantle and is the reference model system for the behavior of silicate melts at high pressure. Here, we apply our recently developed x-ray absorption technique to the density of SiO_{2} glass up to 110 GPa, doubling the pressure range for such measurements. Our density data validate recent molecular dynamics simulations and are in good agreement with previous experimental studies conducted at lower pressure. Silica glass rapidly densifies up to 40 GPa, but the density trend then flattens to become asymptotic to the density of SiO_{2} minerals above 60 GPa. The density data present two discontinuities at ∼17 and ∼60 GPa that can be related to a silicon coordination increase from 4 to a mixed 5/6 coordination and from 5/6 to sixfold, respectively. SiO_{2} glass becomes denser than MgSiO_{3} glass at ∼40 GPa, and its density becomes identical to that of MgSiO_{3} glass above 80 GPa. Our results on SiO_{2} glass may suggest that a variation of SiO_{2} content in a basaltic or pyrolitic melt with pressure has at most a minor effect on the final melt density, and iron partitioning between the melts and residual solids is the predominant factor that controls melt buoyancy in the lowermost mantle.
Collapse
Affiliation(s)
| | - Wim J Malfait
- Laboratory for Building Energy Materials and Components, Swiss Federal Laboratories for Materials Science and Technology, Empa, 8600 Dübendorf, Switzerland
| | - Baptiste Journaux
- Institut des Géosciences de l'Environnement-UMR 5001, Université Grenoble Alpes CS 40700, 38 058 Grenoble Cedex 9, France
| | - Ines E Collings
- Laboratory of Crystallography, University of Bayreuth, Bayreuth D-95440, Germany
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - Eleanor S Jennings
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| | - Ingrid Blanchard
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| | | | - Alexander Kurnosov
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| | - Marine Cotte
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 8220, Laboratoire d'archéologie moléculaire et structurale (LAMS), 4 Place Jussieu 75005 Paris, France
| | - Thomas Dane
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - Manfred Burghammer
- European Synchrotron Radiation Facility, BP 220, Grenoble F-38043, France
| | - David C Rubie
- Bayerisches Geoinstitut, University of Bayreuth, Bayreuth D-95440, Germany
| |
Collapse
|
29
|
Gleason AE, Bolme CA, Lee HJ, Nagler B, Galtier E, Kraus RG, Sandberg R, Yang W, Langenhorst F, Mao WL. Time-resolved diffraction of shock-released SiO 2 and diaplectic glass formation. Nat Commun 2017; 8:1481. [PMID: 29133910 PMCID: PMC5684137 DOI: 10.1038/s41467-017-01791-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
Understanding how rock-forming minerals transform under shock loading is critical for modeling collisions between planetary bodies, interpreting the significance of shock features in minerals and for using them as diagnostic indicators of impact conditions, such as shock pressure. To date, our understanding of the formation processes experienced by shocked materials is based exclusively on ex situ analyses of recovered samples. Formation mechanisms and origins of commonly observed mesoscale material features, such as diaplectic (i.e., shocked) glass, remain therefore controversial and unresolvable. Here we show in situ pump-probe X-ray diffraction measurements on fused silica crystallizing to stishovite on shock compression and then converting to an amorphous phase on shock release in only 2.4 ns from 33.6 GPa. Recovered glass fragments suggest permanent densification. These observations of real-time diaplectic glass formation attest that it is a back-transformation product of stishovite with implications for revising traditional shock metamorphism stages. Our understanding of shock metamorphism and thus the collision of planetary bodies is limited by a dependence on ex situ analyses. Here, the authors perform in situ analysis on shocked-produced densified glass and show that estimates of impactor size based on traditional techniques are likely inflated.
Collapse
Affiliation(s)
- A E Gleason
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA. .,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.
| | - C A Bolme
- Shock and Detonation Physics, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - H J Lee
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - B Nagler
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - E Galtier
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA
| | - R G Kraus
- Shock Physics, Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA, 94550, USA
| | - R Sandberg
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA
| | - W Yang
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China.,HPSynC, Carnegie Institution of Washington, Argonne, IL, 60439, USA
| | - F Langenhorst
- Institut für Geowissenschaften, Friedrich-Schiller-Universität Jena, D-07745, Jena, Germany
| | - W L Mao
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, 2575 Sand Hill Rd., Menlo Park, CA, 94025, USA.,Geological Sciences, Stanford University, 367 Panama St., Stanford, CA, 94305, USA
| |
Collapse
|
30
|
Prescher C, Prakapenka VB, Stefanski J, Jahn S, Skinner LB, Wang Y. Beyond sixfold coordinated Si in SiO 2 glass at ultrahigh pressures. Proc Natl Acad Sci U S A 2017; 114:10041-10046. [PMID: 28874582 PMCID: PMC5617297 DOI: 10.1073/pnas.1708882114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated the structure of SiO2 glass up to 172 GPa using high-energy X-ray diffraction. The combination of a multichannel collimator with diamond anvil cells enabled the measurement of structural changes in silica glass with total X-ray diffraction to previously unachievable pressures. We show that SiO2 first undergoes a change in Si-O coordination number from fourfold to sixfold between 15 and 50 GPa, in agreement with previous investigations. Above 50 GPa, the estimated coordination number continuously increases from 6 to 6.8 at 172 GPa. Si-O bond length shows first an increase due to the fourfold to sixfold coordination change and then a smaller linear decrease up to 172 GPa. We reconcile the changes in relation to the oxygen-packing fraction, showing that oxygen packing decreases at ultrahigh pressures to accommodate the higher than sixfold Si-O coordination. These results give experimental insight into the structural changes of silicate glasses as analogue materials for silicate melts at ultrahigh pressures.
Collapse
Affiliation(s)
- Clemens Prescher
- Institut für Geologie und Mineralogie, Universität zu Köln, 50674 Köln, Germany;
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637
| | - Johannes Stefanski
- Institut für Geologie und Mineralogie, Universität zu Köln, 50674 Köln, Germany
| | - Sandro Jahn
- Institut für Geologie und Mineralogie, Universität zu Köln, 50674 Köln, Germany
| | - Lawrie B Skinner
- X-Ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
- Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794-2100
| | - Yanbin Wang
- Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637
| |
Collapse
|
31
|
Cunsolo A. The terahertz dynamics of simplest fluids probed by inelastic X-ray scattering. INT REV PHYS CHEM 2017. [DOI: 10.1080/0144235x.2017.1331900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alessandro Cunsolo
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, USA
| |
Collapse
|
32
|
Polyamorphism in Yb-based metallic glass induced by pressure. Sci Rep 2017; 7:46762. [PMID: 28440339 PMCID: PMC5404262 DOI: 10.1038/srep46762] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 03/24/2017] [Indexed: 12/01/2022] Open
Abstract
The Yb62.5Zn15Mg17.5Cu5 metallic glass is investigated using synchrotron x-ray total scattering method up to 38.4 GPa. The polyamorphic transformation from low density to high density with a transition region between 14.1 and 25.2 GPa is observed, accompanying with a volume collapse reflected by a discontinuousness of isothermal bulk modulus. This collapse is caused by that distortional icosahedron short range order precedes to perfect icosahedron, which might link to Yb 4f electron delocalization upon compression, and match the result of in situ electrical resistance measurement under high pressure conditions. This discovery in Yb-based metallic glass, combined with the previous reports on other metallic glass systems, demonstrates that pressure induced polyamorphism is the general behavior for typical lanthanide based metallic glasses.
Collapse
|
33
|
Elastic Anomaly and Polyamorphic Transition in (La, Ce)-based Bulk Metallic Glass under Pressure. Sci Rep 2017; 7:724. [PMID: 28389659 PMCID: PMC5429654 DOI: 10.1038/s41598-017-00737-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
Pressure-induced polyamorphism in Ce-based metallic glass has attracted significant interest in condensed matter physics. In this paper, we discover that in association with the polyamorphism of La32Ce32Al16Ni5Cu15 bulk metallic glass, the acoustic velocities, measured up to 12.3 GPa using ultrasonic interferometry, exhibit velocity minima at 1.8 GPa for P wave and 3.2 GPa for S wave. The low and high density amorphous states are distinguished by their distinct pressure derivatives of the bulk and shear moduli. The elasticity, permanent densification, and polyamorphic transition are interpreted by the topological rearrangement of solute-centered clusters in medium-range order (MRO) mediated by the 4f electron delocalization of Ce under pressure. The precisely measured acoustic wave travel times which were used to derive the velocities and densities provided unprecedented data to document the evolution of the bulk and shear elastic moduli associated with a polyamorphic transition in La32Ce32Al16Ni5Cu15 bulk metallic glass and can shed new light on the mechanisms of polyamorphism and structural evolution in metallic glasses under pressure.
Collapse
|
34
|
Playford HY, Tucker MG, Bull CL. Neutron total scattering of crystalline materials in the gigapascal regime. J Appl Crystallogr 2017. [DOI: 10.1107/s1600576716018173] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Neutron total scattering of disordered crystalline materials provides direct experimental access to the local (short-range) structure. The ways in which this local structure agrees (or disagrees) with the long-range crystal structure can provide important insight into structure–property relationships. High-pressure neutron diffraction using a Paris–Edinburgh (P–E) pressure cell allows experimenters to explore the ways in which materials are affected by pressure, can reveal new synthetic routes to novel functional materials and has important applications in many areas, including geology, engineering and planetary science. However, the combination of these two experimental techniques poses unique challenges for both data collection and analysis. In this paper it is shown that, with only minor modifications to the standard P–E press setup, high-quality total scattering data can be obtained from crystalline materials in the gigapascal pressure regime on the PEARL diffractometer at ISIS. The quality of the data is assessed through the calculation of coordination numbers and the use of reverse Monte Carlo refinements. The time required to collect data of sufficient quality for detailed analysis is assessed and is found to be of the order of 8 h for a quartz sample. Finally, data from the perovskite LaCo0.35Mn0.65O3 are presented and reveal that PEARL total scattering data offer the potential of extracting local structural information from complex materials at high pressure.
Collapse
|
35
|
Shojaee SA, Qi Y, Wang YQ, Mehner A, Lucca DA. Ion irradiation induced structural modifications and increase in elastic modulus of silica based thin films. Sci Rep 2017; 7:40100. [PMID: 28071696 PMCID: PMC5223171 DOI: 10.1038/srep40100] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/30/2016] [Indexed: 11/12/2022] Open
Abstract
Ion irradiation is an alternative to heat treatment for transforming organic-inorganic thin films to a ceramic state. One major shortcoming in previous studies of ion-irradiated films is the assumption that constituent phases in ion-irradiated and heat-treated films are identical and that the ion irradiation effect is limited to changes in composition. In this study, we investigate the effects of ion irradiation on both the composition and structure of constituent phases and use the results to explain the measured elastic modulus of the films. The results indicated that the microstructure of the irradiated films consisted of carbon clusters within a silica matrix. It was found that carbon was present in a non-graphitic sp2-bonded configuration. It was also observed that ion irradiation caused a decrease in the Si-O-Si bond angle of silica, similar to the effects of applied pressure. A phase transformation from tetrahedrally bonded to octahedrally bonded silica was also observed. The results indicated the incorporation of carbon within the silica network. A combination of the decrease in Si-O-Si bond angle and an increase in the carbon incorporation within the silica network was found to be responsible for the increase in the elastic modulus of the films.
Collapse
Affiliation(s)
- S A Shojaee
- School of Mechanical and Aerospace Engineering, 218 Engineering North, Oklahoma State University, Stillwater, OK 74078, USA
| | - Y Qi
- School of Mechanical and Aerospace Engineering, 218 Engineering North, Oklahoma State University, Stillwater, OK 74078, USA
| | - Y Q Wang
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - A Mehner
- Stiftung Institut für Werkstofftechnik, Badgasteiner Str. 3, 28359 Bremen, Germany
| | - D A Lucca
- School of Mechanical and Aerospace Engineering, 218 Engineering North, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
36
|
Shen G, Mao HK. High-pressure studies with x-rays using diamond anvil cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:016101. [PMID: 27873767 DOI: 10.1088/1361-6633/80/1/016101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.
Collapse
Affiliation(s)
- Guoyin Shen
- Geophysical Laboratory, Carnegie Institution of Washington, Washington DC, USA
| | | |
Collapse
|
37
|
Masuno A, Nishiyama N, Sato F, Kitamura N, Taniguchi T, Inoue H. Higher refractive index and lower wavelength dispersion of SiO 2 glass by structural ordering evolution via densification at a higher temperature. RSC Adv 2016. [DOI: 10.1039/c5ra25106k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Silica glasses permanently densified at high temperatures show unexpected increase of both the refractive index and the Abbe number. Glasses densified at a higher temperature underwent homogeneous evolution of their intermediate structural ordering.
Collapse
Affiliation(s)
- A. Masuno
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| | - N. Nishiyama
- Deutsches Elektronen-Synchrotron (DESY)
- 22607 Hamburg
- Germany
- PRESTO
- Japan Science and Technology Agency
| | - F. Sato
- Nippon Electric Glass Co., Ltd
- Shiga 520-8639
- Japan
| | - N. Kitamura
- National Institute of Advanced Industrial Science and Technology
- Osaka 563-8577
- Japan
| | - T. Taniguchi
- National Institute for Materials Science
- Tsukuba 305-0044
- Japan
| | - H. Inoue
- Institute of Industrial Science
- The University of Tokyo
- Tokyo 153-8505
- Japan
| |
Collapse
|
38
|
Izvekov S, Rice BM. A new parameter-free soft-core potential for silica and its application to simulation of silica anomalies. J Chem Phys 2015; 143:244506. [DOI: 10.1063/1.4937394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sergei Izvekov
- Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
| | - Betsy M. Rice
- Weapons and Materials Research Directorate, U.S. Army Research Laboratory, Aberdeen Proving Ground, Maryland 21005, USA
| |
Collapse
|
39
|
Structure and Properties of Silica Glass Densified in Cold Compression and Hot Compression. Sci Rep 2015; 5:15343. [PMID: 26469314 PMCID: PMC4606793 DOI: 10.1038/srep15343] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/23/2015] [Indexed: 11/16/2022] Open
Abstract
Silica glass has been shown in numerous studies to possess significant capacity for permanent densification under pressure at different temperatures to form high density amorphous (HDA) silica. However, it is unknown to what extent the processes leading to irreversible densification of silica glass in cold-compression at room temperature and in hot-compression (e.g., near glass transition temperature) are common in nature. In this work, a hot-compression technique was used to quench silica glass from high temperature (1100 °C) and high pressure (up to 8 GPa) conditions, which leads to density increase of ~25% and Young’s modulus increase of ~71% relative to that of pristine silica glass at ambient conditions. Our experiments and molecular dynamics (MD) simulations provide solid evidences that the intermediate-range order of the hot-compressed HDA silica is distinct from that of the counterpart cold-compressed at room temperature. This explains the much higher thermal and mechanical stability of the former than the latter upon heating and compression as revealed in our in-situ Brillouin light scattering (BLS) experiments. Our studies demonstrate the limitation of the resulting density as a structural indicator of polyamorphism, and point out the importance of temperature during compression in order to fundamentally understand HDA silica.
Collapse
|
40
|
Ultrafast visualization of crystallization and grain growth in shock-compressed SiO2. Nat Commun 2015; 6:8191. [PMID: 26337754 PMCID: PMC4569796 DOI: 10.1038/ncomms9191] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022] Open
Abstract
Pressure- and temperature-induced phase transitions have been studied for more than a century but very little is known about the non-equilibrium processes by which the atoms rearrange. Shock compression generates a nearly instantaneous propagating high-pressure/temperature condition while in situ X-ray diffraction (XRD) probes the time-dependent atomic arrangement. Here we present in situ pump–probe XRD measurements on shock-compressed fused silica, revealing an amorphous to crystalline high-pressure stishovite phase transition. Using the size broadening of the diffraction peaks, the growth of nanocrystalline stishovite grains is resolved on the nanosecond timescale just after shock compression. At applied pressures above 18 GPa the nuclueation of stishovite appears to be kinetically limited to 1.4±0.4 ns. The functional form of this grain growth suggests homogeneous nucleation and attachment as the growth mechanism. These are the first observations of crystalline grain growth in the shock front between low- and high-pressure states via XRD. Pressure- and temperature-induced phase transitions have long been studied, but little is known about the processes by which the atoms rearrange. Here, the authors present in situ measurements on shock compressed fused silica, revealing an amorphous to crystalline high pressure stishovite phase transition.
Collapse
|
41
|
Pacaud F, Micoulaut M. Thermodynamic precursors, liquid-liquid transitions, dynamic and topological anomalies in densified liquid germania. J Chem Phys 2015; 143:064502. [DOI: 10.1063/1.4927707] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
42
|
Zhu M, Wang JQ, Perepezko JH, Yu L. Possible existence of two amorphous phases of d-mannitol related by a first-order transition. J Chem Phys 2015; 142:244504. [DOI: 10.1063/1.4922543] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Men Zhu
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | - Jun-Qiang Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - John H. Perepezko
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Lian Yu
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| |
Collapse
|
43
|
Salmon PS, Zeidler A. Networks under pressure: the development of in situ high-pressure neutron diffraction for glassy and liquid materials. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:133201. [PMID: 25743915 DOI: 10.1088/0953-8984/27/13/133201] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The pressure-driven collapse in the structure of network-forming materials will be considered in the gigapascal (GPa) regime, where the development of in situ high-pressure neutron diffraction has enabled this technique to obtain new structural information. The improvements to the neutron diffraction methodology are discussed, and the complementary nature of the results is illustrated by considering the pressure-driven structural transformations for several key network-forming materials that have also been investigated by using other experimental techniques such as x-ray diffraction, inelastic x-ray scattering, x-ray absorption spectroscopy and Raman spectroscopy. A starting point is provided by the pressure-driven network collapse of the prototypical network-forming oxide glasses B2O3, SiO2 and GeO2. Here, the combined results help to show that the coordination number of network-forming structural motifs in a wide range of glassy and liquid oxide materials can be rationalised in terms of the oxygen-packing fraction over an extensive pressure and temperature range. The pressure-driven network collapse of the prototypical chalcogenide glass GeSe2 is also considered where, as for the case of glassy GeO2, site-specific structural information is now available from the method of in situ high-pressure neutron diffraction with isotope substitution. The application of in situ high-pressure neutron diffraction to other structurally disordered network-forming materials is also summarised. In all of this work a key theme concerns the rich diversity in the mechanisms of network collapse, which drive the changes in physico-chemical properties of these materials. A more complete picture of the mechanisms is provided by molecular dynamics simulations using theoretical schemes that give a good account of the experimental results.
Collapse
|
44
|
Drewitt JWE, Jahn S, Sanloup C, de Grouchy C, Garbarino G, Hennet L. Development of chemical and topological structure in aluminosilicate liquids and glasses at high pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:105103. [PMID: 25662518 DOI: 10.1088/0953-8984/27/10/105103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The high pressure structure of liquid and glassy anorthite (CaAl(2)Si(2)O(8)) and calcium aluminate (CaAl(2)O(4)) glass was measured by using in situ synchrotron x-ray diffraction in a diamond anvil cell up to 32.4(2) GPa. The results, combined with ab initio molecular dynamics and classical molecular dynamics simulations using a polarizable ion model, reveal a continuous increase in Al coordination by oxygen, with 5-fold coordinated Al dominating at 15 GPa and a preponderance of 6-fold coordinated Al at higher pressures. The development of a peak in the measured total structure factors at 3.1 Å(-1) is interpreted as a signature of changes in topological order. During compression, cation-centred polyhedra develop edge- and face- sharing networks. Above 10 GPa, following the pressure-induced breakdown of the network structure, the anions adopt a structure similar to a random close packing of hard spheres.
Collapse
Affiliation(s)
- James W E Drewitt
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ, UK. Centre for Science at Extreme Conditions, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3JZ, UK
| | | | | | | | | | | |
Collapse
|
45
|
Zhang X, Yao J, Jiang X, Fu Y, Lin Z, Zhang G, Wu Y. K3LaTe2O9: a new alkali-rare earth tellurate with face-sharing TeO6 octahedra. Dalton Trans 2015; 44:15576-82. [DOI: 10.1039/c5dt02255j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
K3LaTe2O9, a rare quaternary alkali-lanthanide tellurate with face-sharing TeO6 octahedra.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Beijing Center for Crystal Research and Development
- Key Laboratory of Functional Crystals and Laser Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Jiyong Yao
- Beijing Center for Crystal Research and Development
- Key Laboratory of Functional Crystals and Laser Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Xingxing Jiang
- Beijing Center for Crystal Research and Development
- Key Laboratory of Functional Crystals and Laser Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Ying Fu
- Beijing Center for Crystal Research and Development
- Key Laboratory of Functional Crystals and Laser Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Zheshuai Lin
- Beijing Center for Crystal Research and Development
- Key Laboratory of Functional Crystals and Laser Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Guochun Zhang
- Beijing Center for Crystal Research and Development
- Key Laboratory of Functional Crystals and Laser Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| | - Yicheng Wu
- Beijing Center for Crystal Research and Development
- Key Laboratory of Functional Crystals and Laser Technology
- Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Beijing 100190
| |
Collapse
|
46
|
Deschamps T, Margueritat J, Martinet C, Mermet A, Champagnon B. Elastic moduli of permanently densified silica glasses. Sci Rep 2014; 4:7193. [PMID: 25431218 PMCID: PMC4246209 DOI: 10.1038/srep07193] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022] Open
Abstract
Modelling the mechanical response of silica glass is still challenging, due to the lack of knowledge concerning the elastic properties of intermediate states of densification. An extensive Brillouin Light Scattering study on permanently densified silica glasses after cold compression in diamond anvil cell has been carried out, in order to deduce the elastic properties of such glasses and to provide new insights concerning the densification process. From sound velocity measurements, we derive phenomenological laws linking the elastic moduli of silica glass as a function of its densification ratio. The found elastic moduli are in excellent agreement with the sparse data extracted from literature, and we show that they do not depend on the thermodynamic path taken during densification (room temperature or heating). We also demonstrate that the longitudinal sound velocity exhibits an anomalous behavior, displaying a minimum for a densification ratio of 5%, and highlight the fact that this anomaly has to be distinguished from the compressibility anomaly of a-SiO2 in the elastic domain.
Collapse
Affiliation(s)
- T Deschamps
- ILM, UMR5306 University Lyon 1-CNRS, University of Lyon, 69622 Villeurbanne cedex, France
| | - J Margueritat
- ILM, UMR5306 University Lyon 1-CNRS, University of Lyon, 69622 Villeurbanne cedex, France
| | - C Martinet
- ILM, UMR5306 University Lyon 1-CNRS, University of Lyon, 69622 Villeurbanne cedex, France
| | - A Mermet
- ILM, UMR5306 University Lyon 1-CNRS, University of Lyon, 69622 Villeurbanne cedex, France
| | - B Champagnon
- ILM, UMR5306 University Lyon 1-CNRS, University of Lyon, 69622 Villeurbanne cedex, France
| |
Collapse
|
47
|
Zeidler A, Wezka K, Rowlands RF, Whittaker DAJ, Salmon PS, Polidori A, Drewitt JWE, Klotz S, Fischer HE, Wilding MC, Bull CL, Tucker MG, Wilson M. High-pressure transformation of SiO₂ glass from a tetrahedral to an octahedral network: a joint approach using neutron diffraction and molecular dynamics. PHYSICAL REVIEW LETTERS 2014; 113:135501. [PMID: 25302900 DOI: 10.1103/physrevlett.113.135501] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Indexed: 06/04/2023]
Abstract
A combination of in situ high-pressure neutron diffraction at pressures up to 17.5(5) GPa and molecular dynamics simulations employing a many-body interatomic potential model is used to investigate the structure of cold-compressed silica glass. The simulations give a good account of the neutron diffraction results and of existing x-ray diffraction results at pressures up to ~60 GPa. On the basis of the molecular dynamics results, an atomistic model for densification is proposed in which rings are "zipped" by a pairing of five- and/or sixfold coordinated Si sites. The model gives an accurate description for the dependence of the mean primitive ring size ⟨n⟩ on the mean Si-O coordination number, thereby linking a parameter that is sensitive to ordering on multiple length scales to a readily measurable parameter that describes the local coordination environment.
Collapse
Affiliation(s)
- Anita Zeidler
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Kamil Wezka
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Ruth F Rowlands
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | | | - Philip S Salmon
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - Annalisa Polidori
- Department of Physics, University of Bath, Bath BA2 7AY, United Kingdom
| | - James W E Drewitt
- Centre for Science at Extreme Conditions, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
| | - Stefan Klotz
- IMPMC, CNRS UMR 7590, Université Pierre et Marie Curie, 75252 Paris, France
| | - Henry E Fischer
- Institut Laue Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble, France
| | - Martin C Wilding
- IMPS, Aberystwyth University, Aberystwyth SY23 3BZ, United Kingdom
| | - Craig L Bull
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
| | - Matthew G Tucker
- ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, United Kingdom
| | - Mark Wilson
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
48
|
Brittle to ductile transition in densified silica glass. Sci Rep 2014; 4:5035. [PMID: 24849328 PMCID: PMC4030258 DOI: 10.1038/srep05035] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 05/02/2014] [Indexed: 11/30/2022] Open
Abstract
Current understanding of the brittleness of glass is limited by our poor understanding and control over the microscopic structure. In this study, we used a pressure quenching route to tune the structure of silica glass in a controllable manner, and observed a systematic increase in ductility in samples quenched under increasingly higher pressure. The brittle to ductile transition in densified silica glass can be attributed to the critical role of 5-fold Si coordination defects (bonded to 5 O neighbors) in facilitating shear deformation and in dissipating energy by converting back to the 4-fold coordination state during deformation. As an archetypal glass former and one of the most abundant minerals in the Earth's crest, a fundamental understanding of the microscopic structure underpinning the ductility of silica glass will not only pave the way toward rational design of strong glasses, but also advance our knowledge of the geological processes in the Earth's interior.
Collapse
|
49
|
Zeng Q, Kono Y, Lin Y, Zeng Z, Wang J, Sinogeikin SV, Park C, Meng Y, Yang W, Mao HK, Mao WL. Universal fractional noncubic power law for density of metallic glasses. PHYSICAL REVIEW LETTERS 2014; 112:185502. [PMID: 24856706 DOI: 10.1103/physrevlett.112.185502] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Indexed: 06/03/2023]
Abstract
As a fundamental property of a material, density is controlled by the interatomic distances and the packing of microscopic constituents. The most prominent atomistic feature in a metallic glass (MG) that can be measured is its principal diffraction peak position (q1) observable by x-ray, electron, or neutron diffraction, which is closely associated with the average interatomic distance in the first shell. Density (and volume) would naturally be expected to vary under compression in proportion to the cube of the one-dimensional interatomic distance. However, by using high pressure as a clean tuning parameter and high-resolution in situ techniques developed specifically for probing the density of amorphous materials, we surprisingly found that the density of a MG varies with the 5/2 power of q1, instead of the expected cubic relationship. Further studies of MGs of different compositions repeatedly produced the same fractional power law of 5/2 in all three MGs we investigated, suggesting a universal feature in MG.
Collapse
Affiliation(s)
- Qiaoshi Zeng
- Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA and Photon Science and Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA and HPSynC, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA and Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Road, Pudong, Shanghai 201203, People's Republic of China
| | - Yoshio Kono
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Yu Lin
- Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA
| | - Zhidan Zeng
- Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA and Photon Science and Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA and HPSynC, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA and Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Road, Pudong, Shanghai 201203, People's Republic of China
| | - Junyue Wang
- HPSynC, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA and Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Road, Pudong, Shanghai 201203, People's Republic of China
| | - Stanislav V Sinogeikin
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Changyong Park
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Yue Meng
- HPCAT, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA
| | - Wenge Yang
- HPSynC, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA and Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Road, Pudong, Shanghai 201203, People's Republic of China
| | - Ho-Kwang Mao
- HPSynC, Geophysical Laboratory, Carnegie Institution of Washington, 9700 South Cass Avenue, Argonne, Illinois 60439, USA and Center for High Pressure Science and Technology Advanced Research (HPSTAR), 1690 Cailun Road, Pudong, Shanghai 201203, People's Republic of China
| | - Wendy L Mao
- Geological and Environmental Sciences, Stanford University, Stanford, California 94305, USA and Photon Science and Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| |
Collapse
|
50
|
Hong X, Newville M, Duffy TS, Sutton SR, Rivers ML. X-ray absorption spectroscopy of GeO2 glass to 64 GPa. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:035104. [PMID: 24285424 DOI: 10.1088/0953-8984/26/3/035104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The structural behavior of GeO2 glass has been investigated up to 64 GPa using results from x-ray absorption spectroscopy in a diamond anvil cell combined with previously reported density measurements. The difference between the nearest Ge-O distances of glassy and rutile-type GeO2 disappears at the Ge-O distance maximum at 20 GPa, indicating completion of the tetrahedral-octahedral transition in GeO2 glass. The mean-square displacement σ(2) of the Ge-O distance in the first Ge-O shell increases progressively to a maximum at 10 GPa, followed by a substantial reduction at higher pressures. The octahedral glass is, as expected, less dense and has a higher compressibility than the corresponding crystalline phase, but the differences in Ge-O distance and density between the glass and the crystals are gradually eliminated over the 20-40 GPa pressure range. Above 40 GPa, GeO2 forms a dense octahedral glass with a compressibility similar to that of the corresponding crystalline phase (α-PbO2 type). The EXAFS and XANES spectra show evidence for subtle changes in the dense glass continuing to occur at these high pressures. The Ge-O bond distance shows little change between 45-64 GPa, and this may reflect a balance between bond shortening and a gradual coordination number increase with compression. The density of the glass is similar to that of the α-PbO2-type phase, but the Ge-O distance is longer and is close to that in the higher-coordination pyrite-type phase which is stable above ∼60 GPa. The density data provide evidence for a possible discontinuity and change in compressibility at 40-45 GPa, but there are no major changes in the corresponding EXAFS spectra. A pyrite-type local structural model for the glass can provide a reasonable fitting to the XAFS spectra at 64 GPa.
Collapse
Affiliation(s)
- Xinguo Hong
- Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | | | |
Collapse
|