1
|
Avanzini F, Aslyamov T, Fodor É, Esposito M. Nonequilibrium thermodynamics of non-ideal reaction-diffusion systems: Implications for active self-organization. J Chem Phys 2024; 161:174108. [PMID: 39494792 DOI: 10.1063/5.0231520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
We develop a framework describing the dynamics and thermodynamics of open non-ideal reaction-diffusion systems, which embodies Flory-Huggins theories of mixtures and chemical reaction network theories. Our theory elucidates the mechanisms underpinning the emergence of self-organized dissipative structures in these systems. It evaluates the dissipation needed to sustain and control them, discriminating the contributions from each reaction and diffusion process with spatial resolution. It also reveals the role of the reaction network in powering and shaping these structures. We identify particular classes of networks in which diffusion processes always equilibrate within the structures, while dissipation occurs solely due to chemical reactions. The spatial configurations resulting from these processes can be derived by minimizing a kinetic potential, contrasting with the minimization of the thermodynamic free energy in passive systems. This framework opens the way to investigating the energetic cost of phenomena, such as liquid-liquid phase separation, coacervation, and the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Francesco Avanzini
- Department of Chemical Sciences, University of Padova, Via F. Marzolo, 1, I-35131 Padova, Italy
| | - Timur Aslyamov
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Étienne Fodor
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
2
|
Banani SF, Goychuk A, Natarajan P, Zheng MM, Dall’Agnese G, Henninger JE, Kardar M, Young RA, Chakraborty AK. Active RNA synthesis patterns nuclear condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.12.614958. [PMID: 39498261 PMCID: PMC11533426 DOI: 10.1101/2024.10.12.614958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Biomolecular condensates are membraneless compartments that organize biochemical processes in cells. In contrast to well-understood mechanisms describing how condensates form and dissolve, the principles underlying condensate patterning - including their size, number and spacing in the cell - remain largely unknown. We hypothesized that RNA, a key regulator of condensate formation and dissolution, influences condensate patterning. Using nucleolar fibrillar centers (FCs) as a model condensate, we found that inhibiting ribosomal RNA synthesis significantly alters the patterning of FCs. Physical theory and experimental observations support a model whereby active RNA synthesis generates a non-equilibrium state that arrests condensate coarsening and thus contributes to condensate patterning. Altering FC condensate patterning by expression of the FC component TCOF1 impairs ribosomal RNA processing, linking condensate patterning to biological function. These results reveal how non-equilibrium states driven by active chemical processes regulate condensate patterning, which is important for cellular biochemistry and function.
Collapse
Affiliation(s)
- Salman F. Banani
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Current Address: Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Andriy Goychuk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Pradeep Natarajan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ming M. Zheng
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Jonathan E. Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Richard A. Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Arup K. Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
3
|
Häfner G, Müller M. Reaction-Driven Diffusiophoresis of Liquid Condensates: Potential Mechanisms for Intracellular Organization. ACS NANO 2024; 18:16530-16544. [PMID: 38875706 PMCID: PMC11223496 DOI: 10.1021/acsnano.3c12842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/16/2024]
Abstract
The cellular environment, characterized by its intricate composition and spatial organization, hosts a variety of organelles, ranging from membrane-bound ones to membraneless structures that are formed through liquid-liquid phase separation. Cells show precise control over the position of such condensates. We demonstrate that organelle movement in external concentration gradients, diffusiophoresis, is distinct from the one of colloids because fluxes can remain finite inside the liquid-phase droplets and movement of the latter arises from incompressibility. Within cellular domains diffusiophoresis naturally arises from biochemical reactions that are driven by a chemical fuel and produce waste. Simulations and analytical arguments within a minimal model of reaction-driven phase separation reveal that the directed movement stems from two contributions: Fuel and waste are refilled or extracted at the boundary, resulting in concentration gradients, which (i) induce product fluxes via incompressibility and (ii) result in an asymmetric forward reaction in the droplet's surroundings (as well as asymmetric backward reaction inside the droplet), thereby shifting the droplet's position. We show that the former contribution dominates and sets the direction of the movement, toward or away from fuel source and waste sink, depending on the product molecules' affinity toward fuel and waste, respectively. The mechanism thus provides a simple means to organize condensates with different composition. Particle-based simulations and systems with more complex reaction cycles corroborate the robustness and universality of this mechanism.
Collapse
Affiliation(s)
- Gregor Häfner
- Georg-August
Universität Göttingen, Institut für Theoretische Physik, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Marcus Müller
- Georg-August
Universität Göttingen, Institut für Theoretische Physik, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Thwal S, Majumder S. Interplay of phase segregation and chemical reaction: Crossover and effect on growth laws. Phys Rev E 2024; 109:064131. [PMID: 39020944 DOI: 10.1103/physreve.109.064131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/23/2024] [Indexed: 07/20/2024]
Abstract
By combining the nonconserved spin-flip dynamics driving ferromagnetic ordering with the conserved Kawasaki-exchange dynamics driving phase segregation, we perform Monte Carlo simulations of the nearest-neighbor Ising model. This kind of mixed dynamics is found in a system consisting of a binary mixture of isomers, simultaneously undergoing a segregation and an interconversion reaction among themselves. Here, we study such a system following a quench from the high-temperature homogeneous phase to a temperature below the demixing transition. We monitor the growth of domains of both the winner; the isomer, which survives as the majority; and the loser, the isomer that perishes. Our results show a strong interplay of the two dynamics at early times, leading to a growth of the average domain size of both the winner and loser as ∼t^{1/7}, slower than a purely phase-segregating system. At later times, eventually the dynamics becomes reaction dominated and the winner exhibits a ∼t^{1/2} growth, expected for a system with purely nonconserved dynamics. On the other hand, the loser at first show a faster growth, albeit, slower than the winner, and then starts to decay before it almost vanishes. Further, we estimate the time τ_{s} marking the crossover from the early-time slow growth to the late-time reaction-dominated faster growth. As a function of the reaction probability p_{r}, we observe a power-law scaling τ_{s}∼p_{r}^{-x}, where x≈1.05, irrespective of the temperature. For a fixed value of p_{r} too, τ_{s} appears to be independent of the temperature.
Collapse
|
5
|
Thwal S, Majumder S. Segregation disrupts the Arrhenius behavior of an isomerization reaction. Phys Rev E 2024; 109:034119. [PMID: 38632815 DOI: 10.1103/physreve.109.034119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/22/2024] [Indexed: 04/19/2024]
Abstract
Coexistence of segregation and interconversion or isomerization reaction among molecular species leads to fascinating structure formation in the biological and chemical worlds. Using Monte Carlo simulations of the prototype Ising model, we explore the chemical kinetics of such a system consisting of a binary mixture of isomers. Our results reveal that even though the two concerned processes are individually Arrhenius in nature, the Arrhenius behavior of the isomerization reaction gets significantly disrupted due to an interplay of the nonconserved dynamics of the reaction and the conserved diffusive dynamics of segregation. The approach used here can be potentially adapted to understand reaction kinetics of more complex reactions.
Collapse
Affiliation(s)
- Shubham Thwal
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201313, India
| | - Suman Majumder
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Noida 201313, India
| |
Collapse
|
6
|
Jeong H, Gu J, Mwasame P, Patankar K, Yu D, Sing CE. Modeling the competition between phase separation and polymerization under explicit polydispersity. SOFT MATTER 2024; 20:681-692. [PMID: 38164983 DOI: 10.1039/d3sm01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The dynamics of phase separation for polymer blends is important in determining the final morphology and properties of polymer materials; in practical applications, this phase separation can be controlled by coupling to polymerization reaction kinetics via a process called 'polymerization-induced phase separation'. We develop a phase-field model for a polymer melt blend using a polymerizing Cahn-Hilliard (pCH) formalism to understand the fundamental processes underlying phase separation behavior of a mixture of two species independently undergoing linear step-growth polymerization. In our method, we explicitly model polydispersity in these systems to consider different molecular-weight components that will diffuse at different rates. We first show that this pCH model predicts results consistent with the Carothers predictions for step-growth polymerization kinetics, the Flory-Huggins theory of polymer mixing, and the classical predictions of spinodal decomposition in symmetric polymer blends. The model is then used to characterize (i) the competition between phase separation dynamics and polymerization kinetics, and (ii) the effect of unequal reaction rates between species. For large incompatibility between the species (i.e. high χ), our pCH model demonstrates that the strength for phase separation directly corresponds to the kinetics of phase separation. We find that increasing the reaction rate k̃, first induces faster phase separation but this trend reverses as we further increase k̃ due to the competition between molecular diffusion and polymerization. In this case, phase separation is delayed for faster polymerization rates due to the rapid accumulation of slow-moving, high molecular weight components.
Collapse
Affiliation(s)
- Hyeonmin Jeong
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Junsi Gu
- Dow Chemical Company, Midland, MI, 48667, USA
| | | | | | - Decai Yu
- Dow Chemical Company, Midland, MI, 48667, USA
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
7
|
Kumar A, Safran SA. Fluctuations and Shape Dependence of Microphase Separation in Systems with Long-Range Interactions. PHYSICAL REVIEW LETTERS 2023; 131:258401. [PMID: 38181373 DOI: 10.1103/physrevlett.131.258401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 11/14/2023] [Indexed: 01/07/2024]
Abstract
The combination of phase separation and long-ranged, effective, Coulomb interactions results in microphase separation. We predict the sizes and shapes of such microdomains and uniquely their dependence on the macroscopic sample shape which also affects the effective interfacial tension of fluctuations of the lamellar phase. These are applied to equilibrium salt solutions and block copolymers. Nonequilibrium phase separation in the presence of chemical reactions (e.g., cellular condensates) is mapped to the Coulomb theory to which our predictions apply. In some cases, the effective interfacial tension can be ultralow.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Samuel A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
8
|
Weyer H, Brauns F, Frey E. Coarsening and wavelength selection far from equilibrium: A unifying framework based on singular perturbation theory. Phys Rev E 2023; 108:064202. [PMID: 38243507 DOI: 10.1103/physreve.108.064202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/29/2023] [Indexed: 01/21/2024]
Abstract
Intracellular protein patterns are described by (nearly) mass-conserving reaction-diffusion systems. While these patterns initially form out of a homogeneous steady state due to the well-understood Turing instability, no general theory exists for the dynamics of fully nonlinear patterns. We develop a unifying theory for nonlinear wavelength-selection dynamics in (nearly) mass-conserving two-component reaction-diffusion systems independent of the specific mathematical model chosen. Previous work has shown that these systems support an extremely broad band of stable wavelengths, but the mechanism by which a specific wavelength is selected has remained unclear. We show that an interrupted coarsening process selects the wavelength at the threshold to stability. Based on the physical intuition that coarsening is driven by competition for mass and interrupted by weak source terms that break strict mass conservation, we develop a singular perturbation theory for the stability of stationary patterns. The resulting closed-form analytical expressions enable us to quantitatively predict the coarsening dynamics and the final pattern wavelength. We find excellent agreement with numerical results throughout the diffusion- and reaction-limited regimes of the dynamics, including the crossover region. Further, we show how, in these limits, the two-component reaction-diffusion systems map to generalized Cahn-Hilliard and conserved Allen-Cahn dynamics, therefore providing a link to these two fundamental scalar field theories. The systematic understanding of the length-scale dynamics of fully nonlinear patterns in two-component systems provided here builds the basis to reveal the mechanisms underlying wavelength selection in multicomponent systems with potentially several conservation laws.
Collapse
Affiliation(s)
- Henrik Weyer
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - Fridtjof Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
- Max Planck School Matter to Life, Hofgartenstraße 8, D-80539 Munich, Germany
| |
Collapse
|
9
|
Osmanović D, Franco E. Chemical reaction motifs driving non-equilibrium behaviours in phase separating materials. J R Soc Interface 2023; 20:20230117. [PMID: 37907095 PMCID: PMC10618056 DOI: 10.1098/rsif.2023.0117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/11/2023] [Indexed: 11/02/2023] Open
Abstract
Chemical reactions that couple to systems that phase separate have been implicated in diverse contexts from biology to materials science. However, how a particular set of chemical reactions (chemical reaction network, CRN) would affect the behaviours of a phase separating system is difficult to fully predict theoretically. In this paper, we analyse a mean field theory coupling CRNs to a combined system of phase separating and non-phase separating materials and analyse how the properties of the CRNs affect different classes of non-equilibrium behaviour: microphase separation or temporally oscillating patterns. We examine the problem of achieving microphase separated condensates by statistical analysis of the Jacobians, of which the most important motifs are negative feedback of the phase separating component and combined inhibition/activation by the non-phase separating components. We then identify CRN motifs that are likely to yield microphase by examining randomly generated networks and parameters. Molecular sequestration of the phase separating motif is shown to be the most robust towards yielding microphase separation. Subsequently, we find that dynamics of the phase separating species is promoted most easily by inducing oscillations in the diffusive components coupled to the phase separating species. Our results provide guidance towards the design of CRNs that manage the formation, dissolution and organization of compartments.
Collapse
Affiliation(s)
- Dino Osmanović
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles 90095, CA, USA
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles 90095, CA, USA
- Department of Bioengineering, University of California, Los Angeles 90095, CA, USA
| |
Collapse
|
10
|
Häfner G, Müller M. Reaction-driven assembly: controlling changes in membrane topology by reaction cycles. SOFT MATTER 2023; 19:7281-7292. [PMID: 37605887 DOI: 10.1039/d3sm00876b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Chemical reaction cycles are prototypical examples how to drive systems out of equilibrium and introduce novel, life-like properties into soft-matter systems. We report simulations of amphiphilic molecules in aqueous solution. The molecule's head group is permanently hydrophilic, whereas the reaction cycle switches the molecule's tail from hydrophilic (precursor) to hydrophobic (amphiphile) and vice versa. The reaction cycle leads to an arrest in coalescence and results in uniform vesicle sizes that can be controlled by the reaction rate. Using a continuum description and particle-based simulation, we study the scaling of the vesicle size with the reaction rate. The chemically active vesicles are inflated by precursor, imparting tension onto the membrane and, for specific parameters, stabilize pores.
Collapse
Affiliation(s)
- Gregor Häfner
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
- Max Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany.
| |
Collapse
|
11
|
Aslyamov T, Avanzini F, Fodor É, Esposito M. Nonideal Reaction-Diffusion Systems: Multiple Routes to Instability. PHYSICAL REVIEW LETTERS 2023; 131:138301. [PMID: 37832019 DOI: 10.1103/physrevlett.131.138301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/30/2023] [Indexed: 10/15/2023]
Abstract
We develop a general classification of the nature of the instabilities yielding spatial organization in open nonideal reaction-diffusion systems, based on linear stability analysis. This encompasses dynamics where chemical species diffuse, interact with each other, and undergo chemical reactions driven out of equilibrium by external chemostats. We find analytically that these instabilities can be of two types: instabilities caused by intermolecular energetic interactions (E type), and instabilities caused by multimolecular out-of-equilibrium chemical reactions (R type). Furthermore, we identify a class of chemical reaction networks, containing unimolecular networks but also extending beyond them, that can only undergo E-type instabilities. We illustrate our analytical findings with numerical simulations on two reaction-diffusion models, each displaying one of the two types of instability and generating stable patterns.
Collapse
Affiliation(s)
- Timur Aslyamov
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Francesco Avanzini
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
- Department of Chemical Sciences, University of Padova, Via F. Marzolo, 1, I-35131 Padova, Italy
| | - Étienne Fodor
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
12
|
Caballero N, Kruse K, Giamarchi T. Phase separation on surfaces in the presence of matter exchange. Phys Rev E 2023; 108:L012801. [PMID: 37583133 DOI: 10.1103/physreve.108.l012801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/17/2023] [Indexed: 08/17/2023]
Abstract
We present a field theory to describe the composition of a surface spontaneously exchanging matter with its bulk environment. By only assuming matter conservation in the system, we show with extensive numerical simulations that, depending on the matter exchange rates, a complex patterned composition distribution emerges on the surface. For one-dimensional systems we show analytically and numerically that coarsening is arrested and as a consequence domains have a characteristic length scale. Our results show that the causes of heterogeneous lipid composition in cellular membranes may be justified in simple physical terms.
Collapse
Affiliation(s)
- Nirvana Caballero
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | - Karsten Kruse
- Department of Biochemistry, Department of Theoretical Physics, and NCCR Chemical Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Thierry Giamarchi
- Department of Quantum Matter Physics, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| |
Collapse
|
13
|
Demarchi L, Goychuk A, Maryshev I, Frey E. Enzyme-Enriched Condensates Show Self-Propulsion, Positioning, and Coexistence. PHYSICAL REVIEW LETTERS 2023; 130:128401. [PMID: 37027840 DOI: 10.1103/physrevlett.130.128401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 06/19/2023]
Abstract
Enzyme-enriched condensates can organize the spatial distribution of their substrates by catalyzing nonequilibrium reactions. Conversely, an inhomogeneous substrate distribution induces enzyme fluxes through substrate-enzyme interactions. We find that condensates move toward the center of a confining domain when this feedback is weak. Above a feedback threshold, they exhibit self-propulsion, leading to oscillatory dynamics. Moreover, catalysis-driven enzyme fluxes can lead to interrupted coarsening, resulting in equidistant condensate positioning, and to condensate division.
Collapse
Affiliation(s)
- Leonardo Demarchi
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - Andriy Goychuk
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - Ivan Maryshev
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
- Max Planck School Matter to Life, Hofgartenstraße 8, D-80539 München, Germany
| |
Collapse
|
14
|
Li C, Li J, Zhang H, Yang Y. A systematic study on immiscible binary systems undergoing thermal/photo reversible chemical reactions. Phys Chem Chem Phys 2023; 25:1642-1648. [PMID: 36510818 DOI: 10.1039/d2cp04526e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this work, we systematically study an immiscible binary system undergoing thermal/photo reversible reactions in theory. For the thermal reaction case, no dissipative structures can be formed and only uniform equilibrium states are observed but the dynamical evolution to these trivial states witnesses a new type of sophisticated phase amplification phenomenon-temporary phase separation (TPS). Linear analysis and light-scattering calculations confirm that TPS is predominated either by spinodal decomposition or nucleation and growth mechanism, or by both successively. For the photo reaction case, steady dissipative patterns exist and are maintained by the external energy input of lights. Linear analysis together with simulations reveals that the characteristic wavelength (ξ) of these structures shortens as the input energy density increases and they obey the relation of ln ξ∝ 1/Tb with Tb the effective temperature of lights. The TPS phenomenon and length-scale dependency of dissipative patterns observed in this simple binary system might have rich implications for the non-equilibrium thermodynamics of biological systems.
Collapse
Affiliation(s)
- Changhao Li
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Jianfeng Li
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Hongdong Zhang
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Yuliang Yang
- The State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| |
Collapse
|
15
|
Kulkarni A, Vidal-Henriquez E, Zwicker D. Effective simulations of interacting active droplets. Sci Rep 2023; 13:733. [PMID: 36639416 PMCID: PMC9839783 DOI: 10.1038/s41598-023-27630-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023] Open
Abstract
Droplets form a cornerstone of the spatiotemporal organization of biomolecules in cells. These droplets are controlled using physical processes like chemical reactions and imposed gradients, which are costly to simulate using traditional approaches, like solving the Cahn-Hilliard equation. To overcome this challenge, we here present an alternative, efficient method. The main idea is to focus on the relevant degrees of freedom, like droplet positions and sizes. We derive dynamical equations for these quantities using approximate analytical solutions obtained from a sharp interface limit and linearized equations in the bulk phases. We verify our method against fully-resolved simulations and show that it can describe interacting droplets under the influence of chemical reactions and external gradients using only a fraction of the computational costs of traditional methods. Our method can be extended to include other processes in the future and will thus serve as a relevant platform for understanding the dynamics of droplets in cells.
Collapse
Affiliation(s)
- Ajinkya Kulkarni
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany
| | | | - David Zwicker
- Max Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, 37077, Göttingen, Germany.
| |
Collapse
|
16
|
Alston H, Parry AO, Voituriez R, Bertrand T. Intermittent attractive interactions lead to microphase separation in nonmotile active matter. Phys Rev E 2022; 106:034603. [PMID: 36266896 DOI: 10.1103/physreve.106.034603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Nonmotile active matter exhibits a wide range of nonequilibrium collective phenomena yet examples are crucially lacking in the literature. We present a microscopic model inspired by the bacteria Neisseria meningitidis in which diffusive agents feel intermittent attractive forces. Through a formal coarse-graining procedure, we show that this truly scalar model of active matter exhibits the time-reversal-symmetry breaking terms defining the Active Model B+ class. In particular, we confirm the presence of microphase separation by solving the kinetic equations numerically. We show that the switching rate controlling the interactions provides a regulation mechanism tuning the typical cluster size, e.g., in populations of bacteria interacting via type IV pili.
Collapse
Affiliation(s)
- Henry Alston
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2BZ, United Kingdom
| | - Andrew O Parry
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2BZ, United Kingdom
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, UMR 7600 CNRS/UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
- Laboratoire Jean Perrin, UMR 8237 CNRS/UPMC, 4 Place Jussieu, 75255 Paris Cedex, France
| | - Thibault Bertrand
- Department of Mathematics, Imperial College London, 180 Queen's Gate, London SW7 2BZ, United Kingdom
| |
Collapse
|
17
|
Zwicker D. The intertwined physics of active chemical reactions and phase separation. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Chemistry-mediated Ostwald ripening in carbon-rich C/O systems at extreme conditions. Nat Commun 2022; 13:1424. [PMID: 35301293 PMCID: PMC8931168 DOI: 10.1038/s41467-022-29024-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/21/2022] [Indexed: 11/08/2022] Open
Abstract
There is significant interest in establishing a capability for tailored synthesis of next-generation carbon-based nanomaterials due to their broad range of applications and high degree of tunability. High pressure (e.g., shockwave-driven) synthesis holds promise as an effective discovery method, but experimental challenges preclude elucidating the processes governing nanocarbon production from carbon-rich precursors that could otherwise guide efforts through the prohibitively expansive design space. Here we report findings from large scale atomistically-resolved simulations of carbon condensation from C/O mixtures subjected to extreme pressures and temperatures, made possible by machine-learned reactive interatomic potentials. We find that liquid nanocarbon formation follows classical growth kinetics driven by Ostwald ripening (i.e., growth of large clusters at the expense of shrinking small ones) and obeys dynamical scaling in a process mediated by carbon chemistry in the surrounding reactive fluid. The results provide direct insight into carbon condensation in a representative system and pave the way for its exploration in higher complexity organic materials. They also suggest that simulations using machine-learned interatomic potentials could eventually be employed as in-silico design tools for new nanomaterials. Modelling the growth of carbon nanoclusters in shock experiments is computationally demanding. Here the authors employ a machine-learned reactive interatomic model to perform large-scale simulations of nanocarbon formation from prototypical shocked C/O-containing precursor.
Collapse
|
19
|
Longo TJ, Anisimov MA. Phase transitions affected by natural and forceful molecular interconversion. J Chem Phys 2022; 156:084502. [DOI: 10.1063/5.0081180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
If a binary liquid mixture, composed of two alternative species with equal amounts, is quenched from a high temperature to a low temperature, below the critical point of demixing, then the mixture will phase separate through a process known as spinodal decomposition. However, if the two alternative species are allowed to interconvert, either naturally (e.g., the equilibrium interconversion of enantiomers) or forcefully (e.g., via an external source of energy or matter), then the process of phase separation may drastically change. In this case, depending on the nature of interconversion, two phenomena could be observed: either phase amplification, the growth of one phase at the expense of another stable phase, or microphase separation, the formation of nongrowing (steady-state) microphase domains. In this work, we phenomenologically generalize the Cahn–Hilliard theory of spinodal decomposition to include the molecular interconversion of species and describe the physical properties of systems undergoing either phase amplification or microphase separation. We apply the developed phenomenology to accurately describe the simulation results of three atomistic models that demonstrate phase amplification and/or microphase separation. We also discuss the application of our approach to phase transitions in polyamorphic liquids. Finally, we describe the effects of fluctuations of the order parameter in the critical region on phase amplification and microphase separation.
Collapse
Affiliation(s)
- Thomas J. Longo
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Mikhail A. Anisimov
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
20
|
Bley M, Hurtado PI, Dzubiella J, Moncho-Jordá A. Active interaction switching controls the dynamic heterogeneity of soft colloidal dispersions. SOFT MATTER 2022; 18:397-411. [PMID: 34904609 DOI: 10.1039/d1sm01507a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We employ Reactive Dynamical Density Functional Theory (R-DDFT) and Reactive Brownian Dynamics (R-BD) simulations to investigate the dynamics of a suspension of active soft Gaussian colloids with binary interaction switching, i.e., a one-component colloidal system in which every particle stochastically switches at predefined rates between two interaction states with different mobility. Using R-DDFT we extend a theory previously developed to access the dynamics of inhomogeneous liquids [Archer et al., Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2007, 75, 040501] to study the influence of the switching activity on the self and distinct part of the Van Hove function in bulk solution, and determine the corresponding mean squared displacement of the switching particles. Our results demonstrate that, even though the average diffusion coefficient is not affected by the switching activity, it significantly modifies the non-equilibrium dynamics and diffusion coefficients of the individual particles, leading to a crossover from short to long times, with a regime for intermediate times showing anomalous diffusion. In addition, the self-part of the van Hove function has a Gaussian form at short and long times, but becomes non-Gaussian at intermediates ones, having a crossover between short and large displacements. The corresponding self-intermediate scattering function shows the two-step relaxation patters typically observed in soft materials with heterogeneous dynamics such as glasses and gels. We also introduce a phenomenological Continuous Time Random Walk (CTRW) theory to understand the heterogeneous diffusion of this system. R-DDFT results are in excellent agreement with R-BD simulations and the analytical predictions of CTRW theory, thus confirming that R-DDFT constitutes a powerful method to investigate not only the structure and phase behavior, but also the dynamical properties of non-equilibrium active switching colloidal suspensions.
Collapse
Affiliation(s)
- Michael Bley
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany.
| | - Pablo I Hurtado
- Departamento de Electromagnetismo y Física de la Materia, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Institute Carlos I for Theoretical and Computational Physics, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain.
| | - Joachim Dzubiella
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany.
- Research Group for Simulations of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin, Germany
| | - Arturo Moncho-Jordá
- Institute Carlos I for Theoretical and Computational Physics, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain.
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| |
Collapse
|
21
|
Uralcan B, Longo TJ, Anisimov MA, Stillinger FH, Debenedetti PG. Interconversion-controlled liquid-liquid phase separation in a molecular chiral model. J Chem Phys 2021; 155:204502. [PMID: 34852466 DOI: 10.1063/5.0071988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Liquid-liquid phase separation of fluids exhibiting interconversion between alternative states has been proposed as an underlying mechanism for fluid polyamorphism and may be of relevance to the protein function and intracellular organization. However, molecular-level insight into the interplay between competing forces that can drive or restrict phase separation in interconverting fluids remains elusive. Here, we utilize an off-lattice model of enantiomers with tunable chiral interconversion and interaction properties to elucidate the physics underlying the stabilization and tunability of phase separation in fluids with interconverting states. We show that introducing an imbalance in the intermolecular forces between two enantiomers results in nonequilibrium, arrested phase separation into microdomains. We also find that in the equilibrium case, when all interaction forces are conservative, the growth of the phase domain is restricted only by the system size. In this case, we observe phase amplification, in which one of the two alternative phases grows at the expense of the other. These findings provide novel insights on how the interplay between dynamics and thermodynamics defines the equilibrium and steady-state morphologies of phase transitions in fluids with interconverting molecular or supramolecular states.
Collapse
Affiliation(s)
- Betul Uralcan
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Thomas J Longo
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Mikhail A Anisimov
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
22
|
Adachi K, Kawaguchi K. Surface wetting by kinetic control of liquid-liquid phase separation. Phys Rev E 2021; 104:L042801. [PMID: 34781488 DOI: 10.1103/physreve.104.l042801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Motivated by the observations of intracellular phase separations and the wetting of cell membranes by protein droplets, we study the nonequilibrium surface wetting by Monte Carlo simulations of a lattice gas model involving particle creation. We find that, even when complete wetting should occur in equilibrium, the fast creation of particles can hinder the surface wetting for a long time due to the bulk droplet formation. Performing molecular dynamics simulations, we show that this situation also holds in colloidal particle systems when the disorder density is sufficiently high. The results suggest an intracellular control mechanism of surface wetting by changing the speed of component synthesis.
Collapse
Affiliation(s)
- Kyosuke Adachi
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program, 2-1 Hirosawa, Wako 351-0198, Japan
| | - Kyogo Kawaguchi
- Nonequilibrium Physics of Living Matter RIKEN Hakubi Research Team, RIKEN Center for Biosystems Dynamics Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- RIKEN Cluster for Pioneering Research, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
- Universal Biology Institute, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Li YI, Cates ME. Hierarchical microphase separation in non-conserved active mixtures. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:119. [PMID: 34580768 PMCID: PMC8476393 DOI: 10.1140/epje/s10189-021-00113-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/18/2021] [Indexed: 05/09/2023]
Abstract
Non-equilibrium phase separating systems with reactions, such as biomolecular condensates and bacteria colonies, can break time-reversal symmetry (TRS) in two distinct ways. Firstly, the conservative and non-conservative sectors of the dynamics can be governed by incompatible free energies; when both sectors are present, this is the leading-order TRS violation, captured in its simplest form by 'Model AB'. Second, the diffusive dynamics can break TRS in its own right. This happens only at higher order in the gradient expansion (but is the leading behaviour without reactions present) and is captured by 'Active Model B+' (AMB+). Each of the two mechanisms can lead to microphase separation, by quite different routes. Here we introduce Model AB+, for which both mechanisms are simultaneously present, and show that for slow reaction rates the system can undergo a new type of hierarchical microphase separation, which we call 'bubbly microphase separation'. In this state, small droplets of one fluid are continuously created and absorbed into large droplets, whose length-scales are controlled by the competing reactive and diffusive dynamics.
Collapse
Affiliation(s)
- Yuting I Li
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd, Cambridge, CB3 0WA, UK.
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Rd, Cambridge, CB3 0WA, UK
| |
Collapse
|
24
|
Bley M, Dzubiella J, Moncho-Jordá A. Active binary switching of soft colloids: stability and structural properties. SOFT MATTER 2021; 17:7682-7696. [PMID: 34342324 DOI: 10.1039/d1sm00670c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We employ reactive dynamical density functional theory (R-DDFT) and reactive Brownian dynamics (R-BD) simulations to study the non-equilibrium structure and phase behavior of an active dispersion of soft Gaussian colloids with binary interaction switching, i.e., we consider a one-component colloidal system in which every particle can individually switch stochastically between two interaction states (here, sizes 'big' and 'small') at predefined rates. We consider the influence of switching activity on the inhomogeneous density profiles of the colloids confined by various external potentials, as well as on their pair structure and phase behavior in bulk solutions. For the latter, we extend the R-DDFT method to incorporate the Percus test-particle route. Our results demonstrate that switching activity strongly modifies the steady-state density profiles and structural (pair) correlations. In particular, the switching rate interpolates from a near-equilibrium binary colloidal mixture of two states at very low rates to a non-equilibrium, 'one-state liquid' at very high rates characterized by one, average interaction size. The latter limit can be described by an equivalent effective one-component (EOC) equilibrium system, for which the exact analytical expression for the effective pair potential is a diffusion-weighted superposition of the active systems' pair potentials. This leads to the interesting fact that under certain conditions an interacting switching system can behave like a non-interacting (ideal) gas in the limit of high switching rates. Moreover, for colloids that are unstable (i.e., demix) near equilibrium, we demonstrate that phase separation and micro-clustering in both confinement and bulk can be dynamically controlled by the switching rate, and vanish for high rates. All R-DDFT results are in excellent agreement with our R-BD simulations.
Collapse
Affiliation(s)
- Michael Bley
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
25
|
Petsev ND, Stillinger FH, Debenedetti PG. Effect of configuration-dependent multi-body forces on interconversion kinetics of a chiral tetramer model. J Chem Phys 2021; 155:084105. [PMID: 34470355 DOI: 10.1063/5.0060266] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We describe a reformulation of the four-site molecular model for chiral phenomena introduced by Latinwo et al. ["Molecular model for chirality phenomena," J. Chem. Phys. 145, 154503 (2016)]. The reformulation includes an additional eight-body force that arises from an explicit configuration-dependent term in the potential energy function, resulting in a coarse-grained energy-conserving force field for molecular dynamics simulations of chirality phenomena. In this model, the coarse-grained interaction energy between two tetramers depends on their respective chiralities and is controlled by a parameter λ, where λ < 0 favors local configurations involving tetramers of opposite chirality and λ > 0 gives energetic preference to configurations involving tetramers of the same chirality. We compute the autocorrelation function for a quantitative chirality metric and demonstrate that the multi-body force modifies the interconversion kinetics such that λ ≠ 0 increases the effective barrier for enantiomer inversion. Our simulations reveal that for λ > 0 and temperatures below a sharply defined threshold value, this effect is dramatic, giving rise to spontaneous chiral symmetry breaking and locking molecules into their chiral identity.
Collapse
Affiliation(s)
- Nikolai D Petsev
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
26
|
Shumovskyi NA, Longo TJ, Buldyrev SV, Anisimov MA. Phase amplification in spinodal decomposition of immiscible fluids with interconversion of species. Phys Rev E 2021; 103:L060101. [PMID: 34271768 DOI: 10.1103/physreve.103.l060101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/20/2021] [Indexed: 11/07/2022]
Abstract
A fluid composed of two molecular species may undergo phase segregation via spinodal decomposition. However, if the two molecular species can interconvert, e.g., change their chirality, then a phenomenon of phase amplification, which has not been studied so far to our best knowledge, emerges. As a result, eventually, one phase will completely eliminate the other one. We model this phenomenon on an Ising system which relaxes to equilibrium through a hybrid of Kawasaki-diffusion and Glauber-interconversion dynamics. By introducing a probability of Glauber-interconversion dynamics, we show that the particle conservation law is broken, thus resulting in phase amplification. We characterize the speed of phase amplification through scaling laws based on the probability of Glauber dynamics, system size, and distance to the critical temperature of demixing.
Collapse
Affiliation(s)
| | - Thomas J Longo
- Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| | - Sergey V Buldyrev
- Department of Physics, Yeshiva University, New York, New York 10033, USA and Department of Physics, Boston University, Boston, Massachusetts 02215, USA
| | - Mikhail A Anisimov
- Department of Chemical and Biomolecular Engineering and Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
27
|
Heckel J, Batti F, Mathers RT, Walther A. Spinodal decomposition of chemically fueled polymer solutions. SOFT MATTER 2021; 17:5401-5409. [PMID: 33969370 DOI: 10.1039/d1sm00515d] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Out-of-equilibrium phase transitions driven by dissipation of chemical energy are a common mechanism for morphological organization and temporal programming in biology. Inspired by this, dissipative self-assembly utilizes chemical reaction networks (CRNs) that consume high-energy molecules (chemical fuels) to generate transient structures and functionality. While a wide range of chemical fuels and building blocks are now available for chemically fueled systems, so far little attention has been paid to the phase-separation process itself. Herein, we investigate the chemically fueled spinodal decomposition of poly(norbornene dicarboxylic acid) (PNDAc) solution, which is driven by a cyclic chemical reaction network. Our analysis encompasses both the molecular level in terms of the CRN, but also the phase separation process. We investigate the morphology of formed domains, as well as the kinetics and mechanism of domain growth, and develop a kinetic/thermodynamic hybrid model to not only rationalize the dependence of the system on fuel concentration and pH, but also open pathways towards predictive design of future fueled polymer systems.
Collapse
Affiliation(s)
- Jonas Heckel
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany and Freiburg Materials Research Center (FMF), University of Freiburg, Stefan-Meier-Str. 21, 79104 Freiburg, Germany and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Fabio Batti
- Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, 79104 Freiburg, Germany
| | - Robert T Mathers
- Department of Chemistry, Pennsylvania State University, New Kensington, PA 15068, USA.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany. and Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
28
|
Brauns F, Weyer H, Halatek J, Yoon J, Frey E. Wavelength Selection by Interrupted Coarsening in Reaction-Diffusion Systems. PHYSICAL REVIEW LETTERS 2021; 126:104101. [PMID: 33784126 DOI: 10.1103/physrevlett.126.104101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/19/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Wavelength selection in reaction-diffusion systems can be understood as a coarsening process that is interrupted by counteracting processes at certain wavelengths. We first show that coarsening in mass-conserving systems is driven by self-amplifying mass transport between neighboring high-density domains. We derive a general coarsening criterion and show that coarsening is generically uninterrupted in two-component systems that conserve mass. The theory is then generalized to study interrupted coarsening and anticoarsening due to weakly broken mass conservation, providing a general path to analyze wavelength selection in pattern formation far from equilibrium.
Collapse
Affiliation(s)
- Fridtjof Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - Henrik Weyer
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - Jacob Halatek
- Biological Computation Group, Microsoft Research, Cambridge CB1 2FB, United Kingdom
| | - Junghoon Yoon
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, D-80333 München, Germany
| |
Collapse
|
29
|
Singh AK, Chauhan A, Puri S, Singh A. Photo-induced bond breaking during phase separation kinetics of block copolymer melts: a dissipative particle dynamics study. SOFT MATTER 2021; 17:1802-1813. [PMID: 33399613 DOI: 10.1039/d0sm01664k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Using a dissipative particle dynamics (DPD) simulation method, we study the phase separation dynamics in block copolymer (BCP) melts in d = 3, subjected to external stimuli such as light. An initial homogeneous BCP melt is rapidly quenched to a temperature T < Tc, where Tc is the critical temperature. We then allow the system to undergo alternate light "on" and "off" cycles. An on-cycle breaks the stimuli-sensitive bonds connecting both the blocks A and B in the BCP melt, and during the off-cycle, the broken bonds recombine. By simulating the effect of light, we isolate scenarios where phase separation begins with the light off (set 1); the cooperative interactions within the system allow it to undergo microphase separation. When the phase separation starts with the light on (set 2), the system undergoes macrophase separation due to bond breaking. Here, we report the role of alternate cycles on domain morphology by varying the bond-breaking probability for both set 1 and set 2, respectively. We observe that the scaling functions depend upon the conditions mentioned above that change the time scale of the evolving morphologies in various cycles. However, in all the cases, the average domain size respects the power-law growth: R(t) ∼tφ at late times, where φ is the dynamic growth exponent. After a short-lived diffusive growth (φ∼ 1/3) at early times, φ illustrates a crossover from the viscous hydrodynamic (φ∼ 1) to the inertial hydrodynamic (φ∼ 2/3) regimes at late times.
Collapse
Affiliation(s)
- Ashish Kumar Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005, India.
| | - Avinash Chauhan
- Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005, India.
| | - Sanjay Puri
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Awaneesh Singh
- Department of Physics, Indian Institute of Technology (BHU), Varanasi-221005, India.
| |
Collapse
|
30
|
Gasior K, Forest MG, Gladfelter AS, Newby JM. Modeling the Mechanisms by Which Coexisting Biomolecular RNA-Protein Condensates Form. Bull Math Biol 2020; 82:153. [PMID: 33231755 DOI: 10.1007/s11538-020-00823-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 10/21/2020] [Indexed: 11/30/2022]
Abstract
Liquid-liquid phase separation is an emerging mechanism for intracellular organization. This work presents a mathematical model to examine molecular mechanisms that yield phase-separated droplets composed of different RNA-protein complexes. Using a Cahn-Hilliard diffuse interface model with a Flory-Huggins free energy scheme, we explore how multiple (here two, for simplicity) protein-RNA complexes (species) can establish a heterogeneous droplet field where droplets with single or multiple species phase separate and evolve during coarsening. We show that the complex-complex de-mixing energy tunes whether the complexes co-exist or form distinct droplets, while the transient binding kinetics dictate both the timescale of droplet formation and whether distinct species phase separate into droplets simultaneously or sequentially. For specific energetics and kinetics, a field of droplets driven by the formation of only one protein-RNA complex will emerge. Slowly, the other droplet species will accumulate inside the preformed droplets of the other species, allowing them to occupy the same droplet space. Alternatively, unfavorable species mixing creates a parasitic relationship: the slow-to-form protein-RNA complex will accumulate at the surface of a competing droplet species, siphoning off the free protein as it is released. Once this competing protein-RNA complex has sufficiently accumulated on the droplet surface, it can form a new droplet that is capable of sharing an interface with the first complex droplet but is not capable of mixing. These results give insights into a wide range of phase-separation scenarios and heterogeneous droplets that coexist but do not mix within the nucleus and the cytoplasm of cells.
Collapse
Affiliation(s)
- K Gasior
- Department of Mathematics, Florida State University, 1017 Academic Way, Tallahassee, FL, 32304, USA.,Department of Mathematics, University of North Carolina at Chapel Hill, 329 Phillips Hall CB #3250, Chapel Hill, NC, 27514, USA
| | - M G Forest
- Department of Mathematics, University of North Carolina at Chapel Hill, 329 Phillips Hall CB #3250, Chapel Hill, NC, 27514, USA.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 333 S Columbia Street, Chapel Hill, NC, 27514, USA.,Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, 1112 Murray Hall, CB #3050, Chapel Hill, NC, 27514, USA
| | - A S Gladfelter
- Department of Biology, University of North Carolina at Chapel Hill, Coker Hall CB #3280, 120 South Road, Chapel Hill, NC, 27514, USA.
| | - J M Newby
- Department of Mathematical and Statistical Sciences, CAB 632, University of Alberta, Edmonton, AB, T6G 2G1, Canada.
| |
Collapse
|
31
|
Moncho-Jordá A, Dzubiella J. Controlling the Microstructure and Phase Behavior of Confined Soft Colloids by Active Interaction Switching. PHYSICAL REVIEW LETTERS 2020; 125:078001. [PMID: 32857575 DOI: 10.1103/physrevlett.125.078001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
We explore the microstructure and phase behavior of confined soft colloids which can actively switch their interactions at a predefined kinetic rate. For this, we employ a reactive dynamical density-functional theory and study the effect of a two-state switching of the size of colloids interacting with a Gaussian pair potential in the nonequilibrium steady state. The switching rate interpolates between a near-equilibrium binary mixture at low rates and a nonequilibrium monodisperse liquid for large rates, strongly affecting the one-body density profiles, adsorption, and pressure at confining walls. Importantly, we show that sufficiently fast switching impedes the phase separation of an (in equilibrium) unstable liquid, allowing the control of the degree of mixing and condensation and local microstructuring in a cellular confinement by tuning the switching rate.
Collapse
Affiliation(s)
- Arturo Moncho-Jordá
- Departamento de Física Aplicada, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain
| | - Joachim Dzubiella
- Applied Theoretical Physics-Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Straße 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS @ FIT-Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
32
|
Michieletto D, Colì D, Marenduzzo D, Orlandini E. Nonequilibrium Theory of Epigenomic Microphase Separation in the Cell Nucleus. PHYSICAL REVIEW LETTERS 2019; 123:228101. [PMID: 31868408 DOI: 10.1103/physrevlett.123.228101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Understanding the spatial organization of the genome in the cell nucleus is one of the current grand challenges in biophysics. Certain biochemical-or epigenetic-marks that are deposited along the genome are thought to play an important, yet poorly understood, role in determining genome organization and cell identity. The physical principles underlying the interplay between epigenetic dynamics and genome folding remain elusive. Here we propose and study a theory that assumes a coupling between epigenetic mark and genome densities, and which can be applied at the scale of the whole nucleus. We show that equilibrium models are not compatible with experiments and a qualitative agreement is recovered by accounting for nonequilibrium processes that can stabilize microphase separated epigenomic domains. We finally discuss the potential biophysical origin of these terms.
Collapse
Affiliation(s)
- Davide Michieletto
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom
- Centre for Mathematical Biology, and Department of Mathematical Sciences, University of Bath, North Rd, Bath BA2 7AY, United Kingdom
| | - Davide Colì
- Dipartimento di Fisica e Astronomia and Sezione INFN, Università degli Studi di Padova, I-35131 Padova, Italy
| | - Davide Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Enzo Orlandini
- Dipartimento di Fisica e Astronomia and Sezione INFN, Università degli Studi di Padova, I-35131 Padova, Italy
| |
Collapse
|
33
|
Schaefer C, Paquay S, McLeish TCB. Morphology formation in binary mixtures upon gradual destabilisation. SOFT MATTER 2019; 15:8450-8458. [PMID: 31490530 DOI: 10.1039/c9sm01344j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spontaneous liquid-liquid phase separation is commonly understood in terms of phenomenological mean-field theories. These theories correctly predict the structural features of the fluid at sufficiently long time scales and wavelengths. However, these conditions are not met in various examples in biology and materials science where the mixture is slowly destabilised, and phase separation is strongly affected by critical thermal fluctuations. We propose a mechanism of pretransitional structuring of a mixture that approaches the miscibility gap and predict scaling relations that describe how the characteristic feature size of the emerging morphology decreases with an increasing quench rate. These predictions quantitatively agree with our kinetic Monte Carlo and molecular dynamics simulations of a phase-separating binary mixture, as well as with previously reported experimental observations. We discuss how these predictions are affected by non-conserved order parameters (e.g., due to chemical reactions or alignment of liquid-crystalline molecules), hydrodynamics and active transport.
Collapse
Affiliation(s)
- Charley Schaefer
- Department of Physics, University of York, Heslington, York, YO10 5DD, UK.
| | | | | |
Collapse
|
34
|
Weber CA, Zwicker D, Jülicher F, Lee CF. Physics of active emulsions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:064601. [PMID: 30731446 DOI: 10.1088/1361-6633/ab052b] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phase separating systems that are maintained away from thermodynamic equilibrium via molecular processes represent a class of active systems, which we call active emulsions. These systems are driven by external energy input, for example provided by an external fuel reservoir. The external energy input gives rise to novel phenomena that are not present in passive systems. For instance, concentration gradients can spatially organise emulsions and cause novel droplet size distributions. Another example are active droplets that are subject to chemical reactions such that their nucleation and size can be controlled, and they can divide spontaneously. In this review, we discuss the physics of phase separation and emulsions and show how the concepts that govern such phenomena can be extended to capture the physics of active emulsions. This physics is relevant to the spatial organisation of the biochemistry in living cells, for the development of novel applications in chemical engineering and models for the origin of life.
Collapse
Affiliation(s)
- Christoph A Weber
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany. Center for Systems Biology Dresden, CSBD, Dresden, Germany. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| | | | | | | |
Collapse
|
35
|
Gasior K, Zhao J, McLaughlin G, Forest MG, Gladfelter AS, Newby J. Partial demixing of RNA-protein complexes leads to intradroplet patterning in phase-separated biological condensates. Phys Rev E 2019; 99:012411. [PMID: 30780260 DOI: 10.1103/physreve.99.012411] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Indexed: 12/18/2022]
Abstract
An emerging mechanism for intracellular organization is liquid-liquid phase separation (LLPS). Found in both the nucleus and the cytoplasm, liquidlike droplets condense to create compartments that are thought to promote and inhibit specific biochemistry. In this work, a multiphase, Cahn-Hilliard diffuse interface model is used to examine RNA-protein interactions driving LLPS. We create a bivalent system that allows for two different species of protein-RNA complexes and model the competition that arises for a shared binding partner, free protein. With this system we demonstrate that the binding and unbinding of distinct RNA-protein complexes leads to diverse spatial pattern formation and dynamics within droplets. Both the initial formation and transient behavior of spatial patterning are subject to the exchange of free proteins between RNA-protein complexes. This study illustrates that spatiotemporal heterogeneity can emerge within phase-separated biological condensates with simple binding reactions and competition. Intradroplet patterning may influence droplet composition and, subsequently, cellular organization on a larger scale.
Collapse
Affiliation(s)
- Kelsey Gasior
- University of North Carolina at Chapel Hill Department of Biology, Coker Hall CB #3280, 120 South Road, Chapel Hill, North Carolina 27514, USA
| | - Jia Zhao
- Utah State University, Department of Mathematics & Statistics, Logan, Utah 84322, USA
| | - Grace McLaughlin
- University of North Carolina at Chapel Hill Department of Biology, Coker Hall CB #3280, 120 South Road, Chapel Hill, North Carolina 27514, USA
| | - M Gregory Forest
- University of North Carolina at Chapel Hill Department of Mathematics, 329 Phillips Hall CB #3250, Chapel Hill, North Carolina 27514, USA.,University of North Carolina at Chapel Hill & North Carolina State University Joint Department of Biomedical Engineering, 333 S Columbia Street, Chapel Hill, North Carolina 27514, USA.,University of North Carolina at Chapel Hill Department of Applied Physical Sciences, 1112 Murray Hall, CB#3050, Chapel Hill, North Carolina 27514, USA
| | - Amy S Gladfelter
- University of North Carolina at Chapel Hill Department of Biology, Coker Hall CB #3280, 120 South Road, Chapel Hill, North Carolina 27514, USA
| | - Jay Newby
- Department of Mathematical and Statistical Sciences, CAB 632, University of Alberta, Edmonton, AB, Canada T6G 2G1
| |
Collapse
|
36
|
Paulaitis M, Agarwal K, Nana-Sinkam P. Dynamic Scaling of Exosome Sizes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9387-9393. [PMID: 29542322 PMCID: PMC6092198 DOI: 10.1021/acs.langmuir.7b04080] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A model is proposed for characterizing exosome size distributions based on dynamic scaling of domain growth on the limiting membrane of multivesicular bodies in the established exosome biogenesis pathway. The scaling exponent in this model captures the asymmetry of exosome size distributions, which are notably right-skewed to larger vesicles, independent of the minimum detectable vesicle size. Analyses of exosome size distributions obtained by cryogenic transmission electron microscopy imaging and nanoparticle tracking show, respectively, that the scaling exponent is sensitive to the state of the cell source for exosomes in cell culture supernatants and can distinguish exosome size distributions in serum samples taken from cancer patients relative to those from healthy donors. Finally, we comment on mechanistic differences between our dynamic scaling model and random fragmentation models used to describe size distributions of synthetic vesicles.
Collapse
Affiliation(s)
- Michael Paulaitis
- The Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231, United States, Ohio State University, Columbus, Ohio 43210, United States
- William G. Lowrie Department of Chemical & Biomolecular Engineering, Ohio State University, Columbus, Ohio 43210, United States
- Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, Ohio 43210, United States
- Corresponding Author: . Phone: (410) 206-1652
| | - Kitty Agarwal
- Nanoscale Science and Engineering Center for Affordable Nanoengineering of Polymeric Biomedical Devices, Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry, Ohio State University, Columbus, Ohio 43210, United States
| | - Patrick Nana-Sinkam
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, Ohio 43210, United States
- Division of Medical Oncology, James Comprehensive Cancer Center, Ohio State University, Columbus, Ohio 43210, United States
- Division of Pulmonary Disease and Critical Care Medicine, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
37
|
Zakine R, Fournier JB, van Wijland F. Field-Embedded Particles Driven by Active Flips. PHYSICAL REVIEW LETTERS 2018; 121:028001. [PMID: 30085741 DOI: 10.1103/physrevlett.121.028001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Systems of independent active particles embedded into a fluctuating environment are relevant to many areas of soft-matter science. We use a minimal model of noninteracting spin-carrying Brownian particles in a Gaussian field and show that activity-driven spin dynamics leads to patterned order. We find that the competition between mediated interactions and active noise alone can yield such diverse behaviors as phase transitions and microphase separation, from lamellar up to hexagonal ordering of clusters of opposite magnetization. These rest on complex multibody interactions. We find regimes of stationary patterns, but also dynamical regimes of relentless birth and growth of lumps of magnetization opposite of the surrounding one. Our approach combines Monte Carlo simulations with analytical methods based on dynamical density functional approaches.
Collapse
Affiliation(s)
- Ruben Zakine
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Diderot, USPC, UMR 7057 CNRS, F-75205 Paris, France
| | - Jean-Baptiste Fournier
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Diderot, USPC, UMR 7057 CNRS, F-75205 Paris, France
| | - Frédéric van Wijland
- Laboratoire Matière et Systèmes Complexes (MSC), Université Paris Diderot, USPC, UMR 7057 CNRS, F-75205 Paris, France
| |
Collapse
|
38
|
Berry J, Brangwynne CP, Haataja M. Physical principles of intracellular organization via active and passive phase transitions. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:046601. [PMID: 29313527 DOI: 10.1088/1361-6633/aaa61e] [Citation(s) in RCA: 262] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Exciting recent developments suggest that phase transitions represent an important and ubiquitous mechanism underlying intracellular organization. We describe key experimental findings in this area of study, as well as the application of classical theoretical approaches for quantitatively understanding these data. We also discuss the way in which equilibrium thermodynamic driving forces may interface with the fundamentally out-of-equilibrium nature of living cells. In particular, time and/or space-dependent concentration profiles may modulate the phase behavior of biomolecules in living cells. We suggest future directions for both theoretical and experimental work that will shed light on the way in which biological activity modulates the assembly, properties, and function of viscoelastic states of living matter.
Collapse
Affiliation(s)
- Joel Berry
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, United States of America. Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, United States of America
| | | | | |
Collapse
|
39
|
Lin YH, Forman-Kay JD, Chan HS. Theories for Sequence-Dependent Phase Behaviors of Biomolecular Condensates. Biochemistry 2018; 57:2499-2508. [PMID: 29509422 DOI: 10.1021/acs.biochem.8b00058] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Liquid-liquid phase separation and related condensation processes of intrinsically disordered proteins (IDPs), proteins with intrinsically disordered regions, and nucleic acids underpin various condensed-liquid droplets or gel-like assemblies in the cellular environment. Collectively referred to as condensates, these bodies provide spatial/temporal compartmentalization, often serving as hubs for regulated biomolecular interactions. Examples include certain extracellular materials, transcription complexes, and membraneless organelles such as germ and stress granules and the nucleolus. They are critically important to cellular function; thus misregulation of their assembly is implicated in many diseases. Biomolecular condensates are complex entities. Our understanding of their inner workings is only in its infancy. Nonetheless, insights into basic biophysical principles of their assembly can be gained by applying analytical theories to elucidate how IDP phase behaviors are governed by the properties of the multivalent, solvent-mediated interactions entailed by the proteins' amino acid sequences. Here we briefly review the background of the pertinent polymer theories and outline the approximations that enable a tractable theoretical account of the dependence of IDP phase behaviors on the charge pattern of the IDP sequence. Of relevance to the homeostatic assembly of compositionally and functionally distinct condensates in the cellular context, theory indicates that the propensity for populations of different IDP sequences to mix or demix upon phase separation is affected by the similarity or dissimilarity of the sequence charge patterns. We also explore prospects of extending analytical theories to account for dynamic aspects of biomolecular condensates and to incorporate effects of cation-π, π-π, and temperature-dependent hydrophobic interactions on IDP phase properties.
Collapse
Affiliation(s)
- Yi-Hsuan Lin
- Molecular Medicine , The Hospital for Sick Children , Toronto , Ontario , Canada
| | - Julie D Forman-Kay
- Molecular Medicine , The Hospital for Sick Children , Toronto , Ontario , Canada
| | | |
Collapse
|
40
|
Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease. Science 2018; 357:357/6357/eaaf4382. [PMID: 28935776 DOI: 10.1126/science.aaf4382] [Citation(s) in RCA: 2390] [Impact Index Per Article: 341.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phase transitions are ubiquitous in nonliving matter, and recent discoveries have shown that they also play a key role within living cells. Intracellular liquid-liquid phase separation is thought to drive the formation of condensed liquid-like droplets of protein, RNA, and other biomolecules, which form in the absence of a delimiting membrane. Recent studies have elucidated many aspects of the molecular interactions underlying the formation of these remarkable and ubiquitous droplets and the way in which such interactions dictate their material properties, composition, and phase behavior. Here, we review these exciting developments and highlight key remaining challenges, particularly the ability of liquid condensates to both facilitate and respond to biological function and how their metastability may underlie devastating protein aggregation diseases.
Collapse
Affiliation(s)
- Yongdae Shin
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
41
|
A Chemo-Mechanical Model of Diffusion in Reactive Systems. ENTROPY 2018; 20:e20020140. [PMID: 33265231 PMCID: PMC7512634 DOI: 10.3390/e20020140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 11/22/2022]
Abstract
The functional properties of multi-component materials are often determined by a rearrangement of their different phases and by chemical reactions of their components. In this contribution, a material model is presented which enables computational simulations and structural optimization of solid multi-component systems. Typical Systems of this kind are anodes in batteries, reactive polymer blends and propellants. The physical processes which are assumed to contribute to the microstructural evolution are: (i) particle exchange and mechanical deformation; (ii) spinodal decomposition and phase coarsening; (iii) chemical reactions between the components; and (iv) energetic forces associated with the elastic field of the solid. To illustrate the capability of the deduced coupled field model, three-dimensional Non-Uniform Rational Basis Spline (NURBS) based finite element simulations of such multi-component structures are presented.
Collapse
|
42
|
Schaefer C. Structuring of Fluid Adlayers upon Ongoing Unimolecular Adsorption. PHYSICAL REVIEW LETTERS 2018; 120:036001. [PMID: 29400489 DOI: 10.1103/physrevlett.120.036001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Fluids with spatial density variations of single or mixed molecules play a key role in biophysics, soft matter, and materials science. The fluid structures usually form via spinodal decomposition or nucleation following an instantaneous destabilization of the initially disordered fluid. However, in practice, an instantaneous quench is often not viable, and the rate of destabilization may be gradual rather than instantaneous. In this work we show that the commonly used phenomenological descriptions of fluid structuring are inadequate under these conditions. We come to that conclusion in the context of surface catalysis, where we employ kinetic Monte Carlo simulations to describe the unimolecular adsorption of gaseous molecules onto a metal surface. The adsorbates diffuse at the surface and, as a consequence of lateral interactions and due to an ongoing increase of the surface coverage, phase separate into coexisting low- and high-density regions. The typical size of these regions turns out to depend much more strongly on the rate of adsorption than predicted from recently reported phenomenological models. We discuss how this finding contributes to the fundamental understanding of the crossover from liquid-liquid to liquid-solid demixing of solution-cast polymer blends.
Collapse
Affiliation(s)
- C Schaefer
- Department of Physics, Durham University, South Road DH1 3LE, United Kingdom
| |
Collapse
|
43
|
Hugouvieux V, Kob W. Structuring polymer gels via catalytic reactions. SOFT MATTER 2017; 13:8706-8716. [PMID: 29130096 DOI: 10.1039/c7sm01814b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We use computer simulations to investigate how a catalytic reaction in a polymer sol can induce the formation of a polymer gel. To this aim we consider a solution of homopolymers in which freely-diffusing catalysts convert the originally repulsive A monomers into attractive B ones. We find that at low temperatures this reaction transforms the polymer solution into a physical gel that has a remarkably regular mesostructure in the form of a cluster phase, absent in the usual homopolymer gels obtained by a quench in temperature. We investigate how this microstructuring depends on catalyst concentration, temperature, and polymer density and show that the dynamics for its formation can be understood in a semi-quantitative manner using the interaction potentials between the particles as input. The structuring of the copolymers and the AB sequences resulting from the reactions can be discussed in the context of the phase behaviour of correlated random copolymers. The location of the spinodal line as found in our simulations is consistent with analytical predictions. Finally, we show that the observed structuring depends not only on the chemical distribution of the A and B monomers but also on the mode of formation of this distribution.
Collapse
Affiliation(s)
- Virginie Hugouvieux
- SPO, INRA, Montpellier SupAgro, University of Montpellier, 34060 Montpellier, France.
| | | |
Collapse
|
44
|
Grafke T, Cates ME, Vanden-Eijnden E. Spatiotemporal Self-Organization of Fluctuating Bacterial Colonies. PHYSICAL REVIEW LETTERS 2017; 119:188003. [PMID: 29219541 DOI: 10.1103/physrevlett.119.188003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Indexed: 06/07/2023]
Abstract
We model an enclosed system of bacteria, whose motility-induced phase separation is coupled to slow population dynamics. Without noise, the system shows both static phase separation and a limit cycle, in which a rising global population causes a dense bacterial colony to form, which then declines by local cell death, before dispersing to reinitiate the cycle. Adding fluctuations, we find that static colonies are now metastable, moving between spatial locations via rare and strongly nonequilibrium pathways, whereas the limit cycle becomes almost periodic such that after each redispersion event the next colony forms in a random location. These results, which hint at some aspects of the biofilm-planktonic life cycle, can be explained by combining tools from large deviation theory with a bifurcation analysis in which the global population density plays the role of control parameter.
Collapse
Affiliation(s)
- Tobias Grafke
- Courant Institute, New York University, 251 Mercer Street, New York, New York 10012, USA
| | - Michael E Cates
- DAMTP, Centre for Mathematical Sciences, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Eric Vanden-Eijnden
- Courant Institute, New York University, 251 Mercer Street, New York, New York 10012, USA
| |
Collapse
|
45
|
Riesch C, Radons G, Magerle R. Scaling properties of ageing orientation fluctuations in stripe phases. Interface Focus 2017; 7:20160146. [PMID: 28630676 PMCID: PMC5474038 DOI: 10.1098/rsfs.2016.0146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigate the non-equilibrium dynamics of an ordered stripe-forming system free of topological defects. In particular, we study the ageing and the coarsening of orientation fluctuations parallel and perpendicular to the stripes via computer simulations based on a minimal phase-field model (model B with Coulomb interactions). Under the influence of noise, the stripe orientation field develops fluctuations parallel to the stripes, with the dominant modulation length λ*∥ increasing with time t as λ*∥ ∼ t1/4 and the correlation length perpendicular to the stripes ξ⊥θ increasing as ξ⊥θ ∼ t1/2. We explain these anisotropic coarsening dynamics with an analytic theory based on the linear elastic model for stripe displacements first introduced by Landau and Peierls. We thus obtain the scaling forms and the scaling exponents characterizing the correlation functions and the structure factor of the stripe orientation field. Our results reveal how the coarsening of orientation fluctuations prevents a periodically modulated phase free of topological defects from reaching equilibrium.
Collapse
Affiliation(s)
- Christian Riesch
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Günter Radons
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| | - Robert Magerle
- Institut für Physik, Technische Universität Chemnitz, 09107 Chemnitz, Germany
| |
Collapse
|
46
|
Guo YQ, Pan JX, Sun MN, Zhang JJ. Phase transition of a symmetric diblock copolymer induced by nanorods with different surface chemistry. J Chem Phys 2017; 146:024902. [PMID: 28088151 DOI: 10.1063/1.4973560] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We investigate the phase transition of a symmetric diblock copolymer induced by nanorods with different surface chemistry. The results demonstrate that the system occurs the phase transition from a disordered structure to ordered parallel lamellae and then to the tilted layered structure as the number of rods increases. The dynamic evolution of the domain size and the order parameter of the microstructure are also examined. Furthermore, the influence of rod property, rod-phase interaction, rod-rod interaction, rod length, and polymerization degree on the behavior of the polymer system is also investigated systematically. Moreover, longer amphiphilic nanorods tend to make the polymer system form the hexagonal structure. It transforms into a perpendicular lamellar structure as the polymerization degree increases. Our simulations provide an efficient method for determining how to obtain the ordered structure on the nanometer scales and design the functional materials with optical, electronic, and magnetic properties.
Collapse
Affiliation(s)
- Yu-Qi Guo
- School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
| | - Jun-Xing Pan
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Min-Na Sun
- School of Chemistry and Materials Science, Shanxi Normal University, Linfen 041004, China
| | - Jin-Jun Zhang
- School of Physics and Information Engineering, Shanxi Normal University, Linfen 041004, China
| |
Collapse
|
47
|
Zhang Y, Li W, Wu R, Wang W. PU/PMMA composites synthesized by reaction-induced phase separation: a general approach to achieve a shape memory effect. RSC Adv 2017. [DOI: 10.1039/c7ra05206e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report a study on the triple-shape memory polymer composition of polyurethane/polymethyl methacrylate (PU/PMMA) synthesized using reaction-induced phase separation.
Collapse
Affiliation(s)
- Yufen Zhang
- Key Laboratory of Oil and Gas Fine Chemicals
- College of Chemistry and Chemical Engineering
- Urumqi 830046
- China
| | - Weiwei Li
- Key Laboratory of Oil and Gas Fine Chemicals
- College of Chemistry and Chemical Engineering
- Urumqi 830046
- China
| | - Ronglan Wu
- Key Laboratory of Oil and Gas Fine Chemicals
- College of Chemistry and Chemical Engineering
- Urumqi 830046
- China
| | - Wei Wang
- Key Laboratory of Oil and Gas Fine Chemicals
- College of Chemistry and Chemical Engineering
- Urumqi 830046
- China
- Department of Chemistry and Centre for Pharmacy
| |
Collapse
|
48
|
Luneville L, Mallick K, Pontikis V, Simeone D. Patterning in systems driven by nonlocal external forces. Phys Rev E 2016; 94:052126. [PMID: 27967002 DOI: 10.1103/physreve.94.052126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Indexed: 11/07/2022]
Abstract
This work focuses on systems displaying domain patterns resulting from competing external and internal dynamics. To this end, we introduce a Lyapunov functional capable of describing the steady states of systems subject to external forces, by adding nonlocal terms to the Landau Ginzburg free energy of the system. Thereby, we extend the existing methodology treating long-range order interactions, to the case of external nonlocal forces. By studying the quadratic term of this Lyapunov functional, we compute the phase diagram in the temperature versus external field and we determine all possible modulated phases (domain patterns) as a function of the external forces and the temperature. Finally, we investigate patterning in chemical reactive mixtures and binary mixtures under irradiation, and we show that the last case opens the path toward micro-structural engineering of materials.
Collapse
Affiliation(s)
- L Luneville
- DEN-Service dÉtudes et de Recherche en Mathématique Appliquée, LRC CARMEN CEA-CNRS-ECP/SPMS, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - K Mallick
- CEA/DRF/IPhT, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - V Pontikis
- CEA/DRF/IRAMIS/LSI, CEA, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| | - D Simeone
- DEN-Service de Recherches Métallurgiques Appliquées, LRC CARMEN CEA-CNRS-ECP/SPMS, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
| |
Collapse
|
49
|
Schaefer C, Michels JJ, van der Schoot P. Structuring of Thin-Film Polymer Mixtures upon Solvent Evaporation. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00537] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- C. Schaefer
- Dutch Polymer
Institute, P.O. Box 902, 5600 AX Eindhoven, The Netherlands
- Theory
of Polymers and Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - J. J. Michels
- Holst Centre/TNO, High Tech Campus 31, 5656 AE Eindhoven, The Netherlands
- Max Planck
Institute
für Polymerforschung, Ackermannweg
10, 55128 Mainz, Germany
| | - P. van der Schoot
- Institute
for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
- Theory
of Polymers and Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
50
|
Tran-Cong-Miyata Q, Nakanishi H. Phase separation of polymer mixtures driven by photochemical reactions: current status and perspectives. POLYM INT 2016. [DOI: 10.1002/pi.5243] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Qui Tran-Cong-Miyata
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology; Matsugasaki Sakyo-ku 606-8585 Japan
| | - Hideyuki Nakanishi
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology; Matsugasaki Sakyo-ku 606-8585 Japan
| |
Collapse
|