1
|
Moog M, Pietrucci F, Saitta AM. Carbon Dioxide under Earth Mantle Conditions: From a Molecular Liquid through a Reactive Fluid to Polymeric Regimes. J Phys Chem A 2021; 125:5863-5869. [PMID: 34228460 DOI: 10.1021/acs.jpca.1c01026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In both its gaseous and condensed forms, carbon dioxide has an ever-increasing impact on Earth's chemistry and human life and activities. However, many aspects of its high-pressure phase diagram remain unclear. In this work, we present a complete structural characterization of carbon dioxide fluids under geological conditions using extensive ab initio molecular dynamics simulations throughout a wide pressure and temperature range, corresponding to Earth's lower mantle. We identify and describe four different disordered regimes, including two polymeric forms and two molecular ones, all within the geothermal conditions of the lower mantle. At pressures below 40 GPa, we find that the molecular liquid becomes very reactive above 2000 K: the C-O double bond routinely breaks, resulting in small and transient chains composed of CO2 units and frequently leading to an exchange of oxygen atoms between molecules. At higher pressures, in addition to the polymeric fluid previously reported at 3000 K, we find a polymeric system with glass-like behavior at lower temperatures, suggesting a complex interplay between kinetics and stability.
Collapse
Affiliation(s)
- Mathieu Moog
- Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, 75252 Paris, France
| | - Fabio Pietrucci
- Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, 75252 Paris, France
| | - A Marco Saitta
- Muséum National d'Histoire Naturelle, Institut de Recherche pour le Développement, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Sorbonne Université, UMR CNRS 7590, 75252 Paris, France
| |
Collapse
|
2
|
Scelta D, Dziubek KF, Ende M, Miletich R, Mezouar M, Garbarino G, Bini R. Extending the Stability Field of Polymeric Carbon Dioxide Phase V beyond the Earth's Geotherm. PHYSICAL REVIEW LETTERS 2021; 126:065701. [PMID: 33635684 DOI: 10.1103/physrevlett.126.065701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/13/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
We present a study on the phase stability of dense carbon dioxide (CO_{2}) at extreme pressure-temperature conditions, up to 6200 K within the pressure range 37±9 to 106±17 GPa. The investigations of high-pressure high-temperature in situ x-ray diffraction patterns recorded from laser-heated CO_{2}, as densified in diamond-anvil cells, consistently reproduced the exclusive formation of polymeric tetragonal CO_{2}-V at any condition achieved in repetitive laser-heating cycles. Using well-considered experimental arrangements, which prevent reactions with metal components of the pressure cells, annealing through laser heating was extended individually up to approximately 40 min per cycle in order to keep track of upcoming instabilities and changes with time. The results clearly exclude any decomposition of CO_{2}-V into the elements as previously suggested. Alterations of the Bragg peak distribution on Debye-Scherrer rings indicate grain coarsening at temperatures >4000 K, giving a glimpse of the possible extension of the stability of the polymeric solid phase.
Collapse
Affiliation(s)
- Demetrio Scelta
- ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy and LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Kamil F Dziubek
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| | - Martin Ende
- Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria
| | - Ronald Miletich
- Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090 Wien, Austria
| | - Mohamed Mezouar
- European Synchrotron Radiation Facility, ESRF, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Gaston Garbarino
- European Synchrotron Radiation Facility, ESRF, 71 avenue des Martyrs, CS 40220, 38043 Grenoble Cedex 9, France
| | - Roberto Bini
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy; ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy; and Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
3
|
Wang Y, Xu M, Yang L, Yan B, Qin Q, Shao X, Zhang Y, Huang D, Lin X, Lv J, Zhang D, Gou H, Mao HK, Chen C, Ma Y. Pressure-stabilized divalent ozonide CaO 3 and its impact on Earth's oxygen cycles. Nat Commun 2020; 11:4702. [PMID: 32943627 PMCID: PMC7499259 DOI: 10.1038/s41467-020-18541-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
High pressure can drastically alter chemical bonding and produce exotic compounds that defy conventional wisdom. Especially significant are compounds pertaining to oxygen cycles inside Earth, which hold key to understanding major geological events that impact the environment essential to life on Earth. Here we report the discovery of pressure-stabilized divalent ozonide CaO3 crystal that exhibits intriguing bonding and oxidation states with profound geological implications. Our computational study identifies a crystalline phase of CaO3 by reaction of CaO and O2 at high pressure and high temperature conditions; ensuing experiments synthesize this rare compound under compression in a diamond anvil cell with laser heating. High-pressure x-ray diffraction data show that CaO3 crystal forms at 35 GPa and persists down to 20 GPa on decompression. Analysis of charge states reveals a formal oxidation state of -2 for ozone anions in CaO3. These findings unravel the ozonide chemistry at high pressure and offer insights for elucidating prominent seismic anomalies and oxygen cycles in Earth's interior. We further predict multiple reactions producing CaO3 by geologically abundant mineral precursors at various depths in Earth's mantle.
Collapse
Affiliation(s)
- Yanchao Wang
- State Key Lab of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun, 130012, China
| | - Meiling Xu
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Liuxiang Yang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
| | - Bingmin Yan
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
| | - Qin Qin
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
| | - Xuecheng Shao
- State Key Lab of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun, 130012, China
| | - Yunwei Zhang
- State Key Lab of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun, 130012, China
| | - Dajian Huang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
| | - Xiaohuan Lin
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
| | - Jian Lv
- State Key Lab of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun, 130012, China
| | - Dongzhou Zhang
- Hawai'i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China.
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, 20015, USA
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV, 89154, USA.
| | - Yanming Ma
- State Key Lab of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun, 130012, China.
- International Center of Future Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Cogollo-Olivo BH, Biswas S, Scandolo S, Montoya JA. Ab initio Determination of the Phase Diagram of CO_{2} at High Pressures and Temperatures. PHYSICAL REVIEW LETTERS 2020; 124:095701. [PMID: 32202852 DOI: 10.1103/physrevlett.124.095701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
The experimental study of the CO_{2} phase diagram is hampered by strong kinetic effects leading to wide regions of metastability and to large uncertainties in the location of some phase boundaries. Here, we determine CO_{2}'s thermodynamic phase boundaries by means of ab initio calculations of the Gibbs free energy of several solid phases of CO_{2} up to 50 Gigapascals. Temperature effects are included in the quasiharmonic approximation. Contrary to previous suggestions, we find that the boundary between molecular forms and the nonmolecular phase V has, indeed, a positive slope and starts at 21.5 GPa at T=0 K. A triple point between phase IV, V, and the liquid phase is found at 35 GPa and 1600 K, indicating a broader region of stability for the nonmolecular form than previously thought. The experimentally determined boundary line between CO_{2}-II and CO_{2}-IV phases is reproduced by our calculations, indicating that kinetic effects do not play a major role in that particular transition. Our results also show that CO_{2}-III is stabilized at high temperature and its stability region coincides with the P-T conditions where phase VII has been reported experimentally; instead, phase II is the most stable molecular phase at low temperatures, extending its region of stability to every P-T condition where phase III is reported experimentally.
Collapse
Affiliation(s)
- Beatriz H Cogollo-Olivo
- Universidad de Cartagena, Doctorado en Ciencias Físicas, 130001 Cartagena de Indias, Colombia
| | - Sananda Biswas
- Institut für Theoretische Physik, Goethe-Universität Frankfurt, 60438 Frankfurt am Main, Germany
| | - Sandro Scandolo
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| | - Javier A Montoya
- Universidad de Cartagena, Instituto de Matemáticas Aplicadas, 130001 Cartagena de Indias, Colombia
| |
Collapse
|
5
|
Huang L, Han Y, He X, Li J. Ab initio-enabled phase transition prediction of solid carbon dioxide at ultra-high temperatures. RSC Adv 2020; 10:236-243. [PMID: 35492555 PMCID: PMC9049158 DOI: 10.1039/c9ra06478h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/12/2019] [Indexed: 12/27/2022] Open
Abstract
Carbon dioxide is one of the fundamental chemical species on Earth, but its solid-phase behavior at high pressures is still far from well understood and some phases remain uncertain or unknown, which increases the challenge to predict its structures.
Collapse
Affiliation(s)
- Lei Huang
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education
- Department of Micro/Nano-Electronics
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Yanqiang Han
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education
- Department of Micro/Nano-Electronics
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai
- China
| | - Jinjin Li
- Key Laboratory for Thin Film and Microfabrication of Ministry of Education
- Department of Micro/Nano-Electronics
- Shanghai Jiao Tong University
- Shanghai 200240
- China
| |
Collapse
|
6
|
Wu CJ, Young DA, Sterne PA, Myint PC. Equation of state for a chemically dissociative, polyatomic system: Carbon dioxide. J Chem Phys 2019; 151:224505. [PMID: 31837667 DOI: 10.1063/1.5128127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A notorious challenge in high-pressure science is to develop an equation of state (EOS) that explicitly treats chemical reactions. For instance, many materials tend to dissociate at high pressures and temperatures where the chemical bonds that hold them together break down. We present an EOS for carbon dioxide (CO2) that allows for dissociation and captures the key material behavior in a wide range of pressure-temperature conditions. Carbon dioxide is an ideal prototype for the development of a wide-ranging EOS that allows for chemical-dissociation equilibria since it is one of the simplest polyatomic systems and because it is of great interest in planetary science and in the study of detonations. Here, we show that taking dissociation into account significantly improves the accuracy of the resulting EOS compared to other EOSs that either neglect chemistry completely or treat CO2 dissociation in a more rudimentary way.
Collapse
Affiliation(s)
- Christine J Wu
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - David A Young
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Philip A Sterne
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| | - Philip C Myint
- Physics Division, Lawrence Livermore National Laboratory, Livermore, California 94550, USA
| |
Collapse
|
7
|
Dziubek KF, Ende M, Scelta D, Bini R, Mezouar M, Garbarino G, Miletich R. Crystalline polymeric carbon dioxide stable at megabar pressures. Nat Commun 2018; 9:3148. [PMID: 30089845 PMCID: PMC6082874 DOI: 10.1038/s41467-018-05593-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 05/11/2018] [Indexed: 11/09/2022] Open
Abstract
Carbon dioxide is a widespread simple molecule in the Universe. In spite of its simplicity it has a very complex phase diagram, forming both amorphous and crystalline extended phases above 40 GPa. The stability range and nature of these phases are still debated, especially in view of their possible role within the deep carbon cycle. Here, we report static synchrotron X-ray diffraction and Raman high-pressure experiments in the megabar range providing evidence for the stability of the polymeric phase V at pressure-temperature conditions relevant to the Earth's lowermost mantle. The equation of state has been extended to 120 GPa and, contrary to earlier experimental findings, neither dissociation into diamond and ε-oxygen nor ionization was observed. Severe deviatoric stress and lattice deformation along with preferred orientation are removed on progressive annealing, thus suggesting CO2-V as the stable structure also above one megabar.
Collapse
Affiliation(s)
- Kamil F Dziubek
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019, Sesto Fiorentino, Firenze, Italy.
| | - Martin Ende
- Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090, Wien, Austria
| | - Demetrio Scelta
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019, Sesto Fiorentino, Firenze, Italy.,ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Roberto Bini
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019, Sesto Fiorentino, Firenze, Italy.,ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy.,Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze, Via della Lastruccia 3, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Mohamed Mezouar
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043, Grenoble Cedex 9, France
| | - Gaston Garbarino
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS 40220, 38043, Grenoble Cedex 9, France
| | - Ronald Miletich
- Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, A-1090, Wien, Austria
| |
Collapse
|
8
|
Shen G, Mao HK. High-pressure studies with x-rays using diamond anvil cells. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:016101. [PMID: 27873767 DOI: 10.1088/1361-6633/80/1/016101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pressure profoundly alters all states of matter. The symbiotic development of ultrahigh-pressure diamond anvil cells, to compress samples to sustainable multi-megabar pressures; and synchrotron x-ray techniques, to probe materials' properties in situ, has enabled the exploration of rich high-pressure (HP) science. In this article, we first introduce the essential concept of diamond anvil cell technology, together with recent developments and its integration with other extreme environments. We then provide an overview of the latest developments in HP synchrotron techniques, their applications, and current problems, followed by a discussion of HP scientific studies using x-rays in the key multidisciplinary fields. These HP studies include: HP x-ray emission spectroscopy, which provides information on the filled electronic states of HP samples; HP x-ray Raman spectroscopy, which probes the HP chemical bonding changes of light elements; HP electronic inelastic x-ray scattering spectroscopy, which accesses high energy electronic phenomena, including electronic band structure, Fermi surface, excitons, plasmons, and their dispersions; HP resonant inelastic x-ray scattering spectroscopy, which probes shallow core excitations, multiplet structures, and spin-resolved electronic structure; HP nuclear resonant x-ray spectroscopy, which provides phonon densities of state and time-resolved Mössbauer information; HP x-ray imaging, which provides information on hierarchical structures, dynamic processes, and internal strains; HP x-ray diffraction, which determines the fundamental structures and densities of single-crystal, polycrystalline, nanocrystalline, and non-crystalline materials; and HP radial x-ray diffraction, which yields deviatoric, elastic and rheological information. Integrating these tools with hydrostatic or uniaxial pressure media, laser and resistive heating, and cryogenic cooling, has enabled investigations of the structural, vibrational, electronic, and magnetic properties of materials over a wide range of pressure-temperature conditions.
Collapse
Affiliation(s)
- Guoyin Shen
- Geophysical Laboratory, Carnegie Institution of Washington, Washington DC, USA
| | | |
Collapse
|
9
|
Plašienka D, Martoňák R, Tosatti E. Creating new layered structures at high pressures: SiS 2. Sci Rep 2016; 6:37694. [PMID: 27886243 PMCID: PMC5123579 DOI: 10.1038/srep37694] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/03/2016] [Indexed: 12/30/2022] Open
Abstract
Old and novel layered structures are attracting increasing attention for their physical, electronic, and frictional properties. SiS2, isoelectronic to SiO2, CO2 and CS2, is a material whose phases known experimentally up to 6 GPa exhibit 1D chain-like, 2D layered and 3D tetrahedral structures. We present highly predictive ab initio calculations combined with evolutionary structure search and molecular dynamics simulations of the structural and electronic evolution of SiS2 up to 100 GPa. A highly stable CdI2-type layered structure, which is octahedrally coordinated with space group surprisingly appears between 4 and up to at least 100 GPa. The tetrahedral-octahedral switch is naturally expected upon compression, unlike the layered character realized here by edge-sharing SiS6 octahedral units connecting within but not among sheets. The predicted phase is semiconducting with an indirect band gap of about 2 eV at 10 GPa, decreasing under pressure until metallization around 40 GPa. The robustness of the layered phase suggests possible recovery at ambient pressure, where calculated phonon spectra indicate dynamical stability. Even a single monolayer is found to be dynamically stable in isolation, suggesting that it could possibly be sheared or exfoliated from bulk -SiS2.
Collapse
Affiliation(s)
- Dušan Plašienka
- Department of Experimental Physics, Comenius University, Mlynská Dolina F2, 842 48 Bratislava, Slovakia
| | - Roman Martoňák
- Department of Experimental Physics, Comenius University, Mlynská Dolina F2, 842 48 Bratislava, Slovakia
| | - Erio Tosatti
- International School for Advanced Studies (SISSA) and CNR-IOM Democritos, Via Bonomea 265, 34136 Trieste, Italy.,The Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34151 Trieste, Italy
| |
Collapse
|
10
|
Santamaría-Pérez D, McGuire C, Makhluf A, Kavner A, Chuliá-Jordán R, Pellicer-Porres J, Martinez-García D, Doran A, Kunz M, Rodríguez-Hernández P, Muñoz A. Exploring the Chemical Reactivity between Carbon Dioxide and Three Transition Metals (Au, Pt, and Re) at High-Pressure, High-Temperature Conditions. Inorg Chem 2016; 55:10793-10799. [PMID: 27709926 DOI: 10.1021/acs.inorgchem.6b01858] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of carbon dioxide, CO2, as oxidizing agent at high pressures and temperatures is evaluated by studying its chemical reactivity with three transition metals: Au, Pt, and Re. We report systematic X-ray diffraction measurements up to 48 GPa and 2400 K using synchrotron radiation and laser-heating diamond-anvil cells. No evidence of reaction was found in Au and Pt samples in this pressure-temperature range. In the Re + CO2 system, however, a strongly-driven redox reaction occurs at P > 8 GPa and T > 1500 K, and orthorhombic β-ReO2 is formed. This rhenium oxide phase is stable at least up to 48 GPa and 2400 K and was recovered at ambient conditions. Raman spectroscopy data confirm graphite as a reaction product. Ab-initio total-energy structural and compressibility data of the β-ReO2 phase shows an excellent agreement with experiments, altogether accurately confirming CO2 reduction P-T conditions in the presence of rhenium metal and the β-ReO2 equation of state.
Collapse
Affiliation(s)
- David Santamaría-Pérez
- Earth, Planetary and Space Sciences Department, University of California Los Angeles , Los Angeles, California 951567, United States.,Departamento de Física Aplicada-ICMUV, Universidad de Valencia , Valencia 46100, Spain
| | - Chris McGuire
- Earth, Planetary and Space Sciences Department, University of California Los Angeles , Los Angeles, California 951567, United States
| | - Adam Makhluf
- Earth, Planetary and Space Sciences Department, University of California Los Angeles , Los Angeles, California 951567, United States
| | - Abby Kavner
- Earth, Planetary and Space Sciences Department, University of California Los Angeles , Los Angeles, California 951567, United States
| | - Raquel Chuliá-Jordán
- Departamento de Física Aplicada-ICMUV, Universidad de Valencia , Valencia 46100, Spain
| | - Julio Pellicer-Porres
- Departamento de Física Aplicada-ICMUV, Universidad de Valencia , Valencia 46100, Spain
| | | | - Andrew Doran
- Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Martin Kunz
- Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Plácida Rodríguez-Hernández
- Departamento de Física, Instituto Univ. de Materiales y Nanotecnología, Universidad de La Laguna , La Laguna, Tenerife, 38206 Spain
| | - Alfonso Muñoz
- Departamento de Física, Instituto Univ. de Materiales y Nanotecnología, Universidad de La Laguna , La Laguna, Tenerife, 38206 Spain
| |
Collapse
|
11
|
Abstract
Structural polymorphism in dense carbon dioxide (CO2) has attracted significant attention in high-pressure physics and chemistry for the past two decades. Here, we have performed high-pressure experiments and first-principles theoretical calculations to investigate the stability, structure, and dynamical properties of dense CO2 We found evidence that CO2-V with the 4-coordinated extended structure can be quenched to ambient pressure below 200 K-the melting temperature of CO2-I. CO2-V is a fully coordinated structure formed from a molecular solid at high pressure and recovered at ambient pressure. Apart from confirming the metastability of CO2-V (I-42d) at ambient pressure at low temperature, results of ab initio molecular dynamics and metadynamics (MD) simulations provided insights into the transformation processes and structural relationship from the molecular to the extended phases. In addition, the simulation also predicted a phase V'(Pna21) in the stability region of CO2-V with a diffraction pattern similar to that previously assigned to the CO2-V (P212121) structure. Both CO2-V and -V' are predicted to be recoverable and hard with a Vicker hardness of ∼20 GPa. Significantly, MD simulations found that the CO2 in phase IV exhibits large-amplitude bending motions at finite temperatures and high pressures. This finding helps to explain the discrepancy between earlier predicted static structures and experiments. MD simulations clearly indicate temperature effects are critical to understanding the high-pressure behaviors of dense CO2 structures-highlighting the significance of chemical kinetics associated with the transformations.
Collapse
|
12
|
Kalugina YN, Buryak IA, Ajili Y, Vigasin AA, Jaidane NE, Hochlaf M. Explicit correlation treatment of the potential energy surface of CO2 dimer. J Chem Phys 2014; 140:234310. [DOI: 10.1063/1.4882900] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Li J, Sode O, Voth GA, Hirata S. A solid–solid phase transition in carbon dioxide at high pressures and intermediate temperatures. Nat Commun 2013; 4:2647. [DOI: 10.1038/ncomms3647] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/19/2013] [Indexed: 11/09/2022] Open
|
14
|
Pérez-Sánchez G, González-Salgado D, Piñeiro MM, Vega C. Fluid-solid equilibrium of carbon dioxide as obtained from computer simulations of several popular potential models: the role of the quadrupole. J Chem Phys 2013; 138:084506. [PMID: 23464159 DOI: 10.1063/1.4792443] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this work the solid-fluid equilibrium for carbon dioxide (CO2) has been evaluated using Monte Carlo simulations. In particular the melting curve of the solid phase denoted as I, or dry ice, was computed for pressures up to 1000 MPa. Four different models, widely used in computer simulations of CO2 were considered in the calculations. All of them are rigid non-polarizable models consisting of three Lennard-Jones interaction sites located on the positions of the atoms of the molecule, plus three partial charges. It will be shown that although these models predict similar vapor-liquid equilibria their predictions for the fluid-solid equilibria are quite different. Thus the prediction of the entire phase diagram is a severe test for any potential model. It has been found that the Transferable Potentials for Phase Equilibria (TraPPE) model yields the best description of the triple point properties and melting curve of carbon dioxide. It is shown that the ability of a certain model to predict the melting curve of carbon dioxide is related to the value of the quadrupole moment of the model. Models with low quadrupole moment tend to yield melting temperatures too low, whereas the model with the highest quadrupole moment yields the best predictions. That reinforces the idea that not only is the quadrupole needed to provide a reasonable description of the properties in the fluid phase, but also it is absolutely necessary to describe the properties of the solid phase.
Collapse
Affiliation(s)
- G Pérez-Sánchez
- Departamento de Física Aplicada, Universidade de Vigo, 36310 Vigo, Spain
| | | | | | | |
Collapse
|
15
|
Do H, Wheatley RJ. Density of States Partitioning Method for Calculating the Free Energy of Solids. J Chem Theory Comput 2012; 9:165-71. [DOI: 10.1021/ct3007056] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Hainam Do
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Richard J. Wheatley
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
16
|
Abstract
We present ab initio calculations of the phase diagram of liquid CO(2) and its melting curve over a wide range of pressure and temperature conditions, including those relevant to the Earth. Several distinct liquid phases are predicted up to 200 GPa and 10,000 K based on their structural and electronic characteristics. We provide evidence for a first-order liquid-liquid phase transition with a critical point near 48 GPa and 3,200 K that intersects the mantle geotherm; a liquid-liquid-solid triple point is predicted near 45 GPa and 1,850 K. Unlike known first-order transitions between thermodynamically stable liquids, the coexistence of molecular and polymeric CO(2) phases predicted here is not accompanied by metallization. The absence of an electrical anomaly would be unique among known liquid-liquid transitions. Furthermore, the previously suggested phase separation of CO(2) into its constituent elements at lower mantle conditions is examined by evaluating their Gibbs free energies. We find that liquid CO(2) does not decompose into carbon and oxygen up to at least 200 GPa and 10,000 K.
Collapse
Affiliation(s)
- Brian Boates
- Lawrence Livermore National Laboratory, Livermore, CA 94550; and
- Department of Physics, Dalhousie University, Halifax, NS, Canada B3H 3J5
| | | | - Stanimir A. Bonev
- Lawrence Livermore National Laboratory, Livermore, CA 94550; and
- Department of Physics, Dalhousie University, Halifax, NS, Canada B3H 3J5
| |
Collapse
|
17
|
Spivak A, Litvin Y, Ovsyannikov S, Dubrovinskaia N, Dubrovinsky L. Stability and breakdown of Ca13CO3 melt associated with formation of 13C-diamond in static high pressure experiments up to 43GPa and 3900K. J SOLID STATE CHEM 2012. [DOI: 10.1016/j.jssc.2012.02.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Santoro M. Optical Spectroscopy at High Pressure. SCOTTISH GRADUATE SERIES 2012:111-129. [DOI: 10.1201/b12304-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
19
|
Datchi F, Mallick B, Salamat A, Ninet S. Structure of polymeric carbon dioxide CO2-V. PHYSICAL REVIEW LETTERS 2012; 108:125701. [PMID: 22540597 DOI: 10.1103/physrevlett.108.125701] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Indexed: 05/31/2023]
Abstract
The structure of polymeric carbon dioxide (CO2-V) has been solved using synchrotron x-ray powder diffraction, and its evolution followed from 8 to 65 GPa. We compare the experimental results obtained for a 100% CO2 sample and a 1 mol % CO2/He sample. The latter allows us to produce the polymer in a pure form and study its compressibility under hydrostatic conditions. The high quality of the x-ray data enables us to solve the structure directly from experiments. The latter is isomorphic to the β-cristobalite phase of SiO2 with the space group I42d. Carbon and oxygen atoms are arranged in CO4 tetrahedral units linked by oxygen atoms at the corners. The bulk modulus determined under hydrostatic conditions, B0=136(10) GPa, is much smaller than previously reported. The comparison of our experimental findings with theoretical calculations performed in the present and previous studies shows that density functional theory very well describes polymeric CO2.
Collapse
Affiliation(s)
- Frédéric Datchi
- IMPMC, UPMC/Paris 6, CNRS, 4 place Jussieu, F-75252 Paris Cedex 05, France
| | | | | | | |
Collapse
|
20
|
Partially collapsed cristobalite structure in the non molecular phase V in CO2. Proc Natl Acad Sci U S A 2012; 109:5176-9. [PMID: 22431594 DOI: 10.1073/pnas.1118791109] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Non molecular CO(2) has been an important subject of study in high pressure physics and chemistry for the past decade opening up a unique area of carbon chemistry. The phase diagram of CO(2) includes several non molecular phases above 30 GPa. Among these, the first discovered was CO(2)-V which appeared silica-like. Theoretical studies suggested that the structure of CO(2)-V is related to that of β-cristobalite with tetrahedral carbon coordination similar to silicon in SiO(2), but reported experimental structural studies have been controversial. We have investigated CO(2)-V obtained from molecular CO(2) at 40-50 GPa and T > 1500 K using synchrotron X-ray diffraction, optical spectroscopy, and computer simulations. The structure refined by the Rietveld method is a partially collapsed variant of SiO(2) β-cristobalite, space group I42d, in which the CO(4) tetrahedra are tilted by 38.4° about the c-axis. The existence of CO(4) tetrahedra (average O-C-O angle of 109.5°) is thus confirmed. The results add to the knowledge of carbon chemistry with mineral phases similar to SiO(2) and potential implications for Earth and planetary interiors.
Collapse
|
21
|
Silicon carbonate phase formed from carbon dioxide and silica under pressure. Proc Natl Acad Sci U S A 2011; 108:7689-92. [PMID: 21518903 DOI: 10.1073/pnas.1019691108] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The discovery of nonmolecular carbon dioxide under high-pressure conditions shows that there are remarkable analogies between this important substance and other group IV oxides. A natural and long-standing question is whether compounds between CO(2) and SiO(2) are possible. Under ambient conditions, CO(2) and SiO(2) are thermodynamically stable and do not react with each other. We show that reactions occur at high pressures indicating that silica can behave in a manner similar to ionic metal oxides that form carbonates at room pressure. A silicon carbonate phase was synthesized by reacting silicalite, a microporous SiO(2) zeolite, and molecular CO(2) that fills the pores, in diamond anvil cells at 18-26 GPa and 600-980 K; the compound was then temperature quenched. The material was characterized by Raman and IR spectroscopy, and synchrotron X-ray diffraction. The experiments reveal unique oxide chemistry at high pressures and the potential for synthesis of a class of previously uncharacterized materials. There are also potential implications for CO(2) segregation in planetary interiors and for CO(2) storage.
Collapse
|
22
|
Quesada Cabrera R, Sella A, Bailey E, Leynaud O, McMillan P. High-pressure synthesis and structural behavior of sodium orthonitrate Na3NO4. J SOLID STATE CHEM 2011. [DOI: 10.1016/j.jssc.2011.02.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Boates B, Hamel S, Schwegler E, Bonev SA. Structural and optical properties of liquid CO2 for pressures up to 1 TPa. J Chem Phys 2011; 134:064504. [DOI: 10.1063/1.3549593] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
24
|
Wang C, Zhang P. Thermophysical properties of liquid carbon dioxide under shock compressions: Quantum molecular dynamic simulations. J Chem Phys 2010; 133:134503. [DOI: 10.1063/1.3491834] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
25
|
Seto Y, Nishio-Hamane D, Nagai T, Sata N, Fujino K. Synchrotron X-ray diffraction study for crystal structure of solid carbon dioxide CO2-V. ACTA ACUST UNITED AC 2010. [DOI: 10.1088/1742-6596/215/1/012015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
26
|
Santoro M. Non-Molecular Carbon Dioxide at High Pressure. NATO SCIENCE FOR PEACE AND SECURITY SERIES B: PHYSICS AND BIOPHYSICS 2010:251-260. [DOI: 10.1007/978-90-481-9258-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
27
|
Sun J, Klug DD, Martonák R, Montoya JA, Lee MS, Scandolo S, Tosatti E. High-pressure polymeric phases of carbon dioxide. Proc Natl Acad Sci U S A 2009; 106:6077-81. [PMID: 19332796 PMCID: PMC2669398 DOI: 10.1073/pnas.0812624106] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Indexed: 11/18/2022] Open
Abstract
Understanding the structural transformations of solid CO(2) from a molecular solid characterized by weak intermolecular bonding to a 3-dimensional network solid at high pressure has challenged researchers for the past decade. We employ the recently developed metadynamics method combined with ab initio calculations to provide fundamental insight into recent experimental reports on carbon dioxide in the 60-80 GPa pressure region. Pressure-induced polymeric phases and their transformation mechanisms are found. Metadynamics simulations starting from the CO(2)-II (P4(2)/mnm) at 60 GPa and 600 K proceed via an intermediate, partially polymerized phase, and finally yield a fully tetrahedral, layered structure (P-4m2). Based on the agreement between calculated and experimental Raman and X-ray patterns, the recently identified phase VI [Iota V, et al. (2007) Sixfold coordinated carbon dioxide VI. Nature Mat 6:34-38], assumed to be disordered stishovite-like, is instead interpreted as the result of an incomplete transformation of the molecular phase into a final layered structure. In addition, an alpha-cristobalite-like structure (P4(1)2(1)2), is predicted to be formed from CO(2)-III (Cmca) via an intermediate Pbca structure at 80 GPa and low temperatures (<300 K). Defects in the crystals are frequently observed in the calculations at 300 K whereas at 500 to 700 K, CO(2)-III transforms to an amorphous form, consistent with experiment [Santoro M, et al. (2006) Amorphous silica-like carbon dioxide. Nature 441:857-860], but the simulation yields additional structural details for this disordered solid.
Collapse
Affiliation(s)
- Jian Sun
- Steacie Institute for Molecular Sciences, National Research Council of Canada, Ottawa, K1A 0R6, Canada.
| | | | | | | | | | | | | |
Collapse
|
28
|
Montoya JA, Rousseau R, Santoro M, Gorelli F, Scandolo S. Mixed threefold and fourfold carbon coordination in compressed CO2. PHYSICAL REVIEW LETTERS 2008; 100:163002. [PMID: 18518195 DOI: 10.1103/physrevlett.100.163002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2007] [Indexed: 05/26/2023]
Abstract
Carbon dioxide (CO2) has been recently reported to possess an amorphous form, named "carbonia," structurally similar to other group-IV oxide glasses. By combining ab initio constant pressure molecular dynamics, density-functional perturbation theory, and experimental IR spectra, we show that carbonia, and possibly also phase VI, is not SiO2-like, and that instead it is partially tetrahedral containing also a sizable amount of carbon in threefold coordination, but no sixfold octahedral coordination. Enthalpic considerations suggest that carbonia is a metastable intermediate state of the transformation of molecular CO2 into fully tetrahedral phases.
Collapse
Affiliation(s)
- Javier A Montoya
- International School for Advanced Studies (SISSA), Trieste, Italy
| | | | | | | | | |
Collapse
|
29
|
Grochala W, Hoffmann R, Feng J, Ashcroft NW. The Chemical Imagination at Work inVery Tight Places. Angew Chem Int Ed Engl 2007; 46:3620-42. [PMID: 17477335 DOI: 10.1002/anie.200602485] [Citation(s) in RCA: 262] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Diamond-anvil-cell and shock-wave technologies now permit the study of matter under multimegabar pressure (that is, of several hundred GPa). The properties of matter in this pressure regime differ drastically from those known at 1 atm (about 10(5) Pa). Just how different chemistry is at high pressure and what role chemical intuition for bonding and structure can have in understanding matter at high pressure will be explored in this account. We will discuss in detail an overlapping hierarchy of responses to increased density: a) squeezing out van der Waals space (for molecular crystals); b) increasing coordination; c) decreasing the length of covalent bonds and the size of anions; and d) in an extreme regime, moving electrons off atoms and generating new modes of correlation. Examples of the startling chemistry and physics that emerge under such extreme conditions will alternate in this account with qualitative chemical ideas about the bonding involved.
Collapse
Affiliation(s)
- Wojciech Grochala
- ICM and Department of Chemistry, Warsaw University, Warsaw 02-106, Poland.
| | | | | | | |
Collapse
|
30
|
Grochala W, Hoffmann R, Feng J, Ashcroft N. Chemie unter höchsten Drücken: eine Herausforderung für die chemische Intuition. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200602485] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
31
|
Schettino V, Bini R. Constraining molecules at the closest approach: chemistry at high pressure. Chem Soc Rev 2007; 36:869-80. [PMID: 17534474 DOI: 10.1039/b515964b] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The purpose of this tutorial review is to illustrate the effects that the application of high pressures can have on chemical reactions involving highly compressible molecular materials. The essentials of the high-pressure technology (generation and in situ control of high pressures) are described with particular attention to the versatile diamond anvil cell (DAC) apparatus. The general effects of pressure on chemical equilibrium, reaction rate and reaction mechanism are discussed. The motivation for application of high-pressure methods (in the 1-300 MPa range) to chemical synthesis and in biochemistry are illustrated focusing the attention on environmental effects and with an excursus on developing biotechnological applications. The peculiarities and the unexpected outcomes of chemical reactions occurring at very high pressures (>or=300 MPa) are discussed considering the extraordinary results obtained in polymerization and amorphization of simple molecules and of unsaturated hydrocarbons. The possible connection of the high temperature-high pressure thresholds for chemical reactions with microscopic counterparts (intermolecular distances, molecular orientations) is also discussed.
Collapse
Affiliation(s)
- Vincenzo Schettino
- LENS, European Laboratory for Non-linear Spectroscopy and INFM, Via Carrara 1, I-50019, Sesto Fiorentino, Firenze, Italy
| | | |
Collapse
|
32
|
Santoro M, Lin JF, Mao HK, Hemley RJ. In situ high P-T Raman spectroscopy and laser heating of carbon dioxide. J Chem Phys 2006; 121:2780-7. [PMID: 15281882 DOI: 10.1063/1.1758936] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In situ high P-T Raman spectra of solid CO(2) up to 67 GPa and 1,660 K have been measured, using a micro-optical spectroscopy system coupled with a Nd:YLF laser heating system in diamond anvil cells. A metallic foil was employed to efficiently absorb the incoming Nd:YLF laser and heat the sample. The average sample temperature was accurately determined by detailed balance from the anti-Stokes/Stokes ratio, and was compared to the temperature of the absorber determined by fitting the thermal radiation spectrum to the Planck radiation law. The transformation temperature threshold and the transformation dynamics from the molecular phases III and II to the polymeric phase V, previously investigated only by means of temperature quench experiments, was determined at different pressures. The P-T range of the transformation, between 640 and 1,100 K in the 33-65 GPa pressure interval, was assessed to be a kinetic barrier rather than a phase boundary. These findings lead to a new interpretation of the high P-T phase diagram of carbon dioxide. Furthermore, our approach opens a new way to perform quantitative in situ Raman measurements under extremely high pressures and temperatures, providing unique information about phase relations and structural and thermodynamic properties of materials under these conditions.
Collapse
Affiliation(s)
- Mario Santoro
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015, USA.
| | | | | | | |
Collapse
|
33
|
Abstract
A review of experimental and theoretical studies performed over the past three decades on high pressure chemistry of solid CO2, at 0-80 GPa and 40-3000 K, is presented. Emphasis is placed on the recently discovered non-molecular covalent crystalline phase V, and its glassy counterpart a-CO2, along with other molecular phases, whose interpretation is crucial for determining the reaction path to non-molecular CO2. The matter is still under debate, and many open issues are outlined, such as the true reaction mechanism for forming phase V. Finally, we propose arguments to stimulate possible future research in a more extended P-T range. This work is a tutorial review and should be of general interest both for solid state chemistry and condensed matter physics communities.
Collapse
Affiliation(s)
- M Santoro
- European Laboratory for Non-linear Spectroscopy and INFM, Via N. Carrara 1, I-50019 Sesto Fiorentino, Florence, Italy.
| | | |
Collapse
|
34
|
|
35
|
Santoro M, Gorelli FA, Bini R, Ruocco G, Scandolo S, Crichton WA. Amorphous silica-like carbon dioxide. Nature 2006; 441:857-60. [PMID: 16778885 DOI: 10.1038/nature04879] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 05/09/2006] [Indexed: 11/09/2022]
Abstract
Among the group IV elements, only carbon forms stable double bonds with oxygen at ambient conditions. At variance with silica and germania, the non-molecular single-bonded crystalline form of carbon dioxide, phase V, only exists at high pressure. The amorphous forms of silica (a-SiO2) and germania (a-GeO2) are well known at ambient conditions; however, the amorphous, non-molecular form of CO2 has so far been described only as a result of first-principles simulations. Here we report the synthesis of an amorphous, silica-like form of carbon dioxide, a-CO2, which we call 'a-carbonia'. The compression of the molecular phase III of CO2 between 40 and 48 GPa at room temperature initiated the transformation to the non-molecular amorphous phase. Infrared spectra measured at temperatures up to 680 K show the progressive formation of C-O single bonds and the simultaneous disappearance of all molecular signatures. Furthermore, state-of-the-art Raman and synchrotron X-ray diffraction measurements on temperature-quenched samples confirm the amorphous character of the material. Comparison with vibrational and diffraction data for a-SiO2 and a-GeO2, as well as with the structure factor calculated for the a-CO2 sample obtained by first-principles molecular dynamics, shows that a-CO2 is structurally homologous to the other group IV dioxide glasses. We therefore conclude that the class of archetypal network-forming disordered systems, including a-SiO2, a-GeO2 and water, must be extended to include a-CO2.
Collapse
Affiliation(s)
- Mario Santoro
- LENS, European Laboratory for Non-linear Spectroscopy and INFM, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy.
| | | | | | | | | | | |
Collapse
|
36
|
Tassone F, Chiarotti GL, Rousseau R, Scandolo S, Tosatti E. Dimerization of CO2 at High Pressure and Temperature. Chemphyschem 2005; 6:1752-6. [PMID: 16144001 DOI: 10.1002/cphc.200400618] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Francesco Tassone
- International School For Advanced Studies (ISAS/SISSA), Via Beirut 4, 34014 Trieste, Italy
| | | | | | | | | |
Collapse
|
37
|
Scott HP, Hemley RJ, Mao HK, Herschbach DR, Fried LE, Howard WM, Bastea S. Generation of methane in the Earth's mantle: in situ high pressure-temperature measurements of carbonate reduction. Proc Natl Acad Sci U S A 2004; 101:14023-6. [PMID: 15381767 PMCID: PMC521091 DOI: 10.1073/pnas.0405930101] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We present in situ observations of hydrocarbon formation via carbonate reduction at upper mantle pressures and temperatures. Methane was formed from FeO, CaCO(3)-calcite, and water at pressures between 5 and 11 GPa and temperatures ranging from 500 degrees C to 1,500 degrees C. The results are shown to be consistent with multiphase thermodynamic calculations based on the statistical mechanics of soft particle mixtures. The study demonstrates the existence of abiogenic pathways for the formation of hydrocarbons in the Earth's interior and suggests that the hydrocarbon budget of the bulk Earth may be larger than conventionally assumed.
Collapse
Affiliation(s)
- Henry P Scott
- Department of Physics and Astronomy, Indiana University, South Bend, IN 46634, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Brazhkin VV, Lyapin AG. Metastable high-pressure phases of low-Z compounds: creation of a new chemistry or a prompt for old principles? NATURE MATERIALS 2004; 3:497-500. [PMID: 15286747 DOI: 10.1038/nmat1186] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent experiments demonstrate that high pressure is a powerful tool for the synthesis of new unusual inorganic polymers consisting of low-Z elements. However, experience within organic chemistry, for example, polyethylene, provides evidence that polymeric phases with high thermal stability can be potentially synthesised by conventional chemical techniques without applying high pressure.
Collapse
Affiliation(s)
- V V Brazhkin
- Institute for High Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow region, 142190, Russia.
| | | |
Collapse
|
39
|
McMillan PF. New materials from high-pressure experiments. NATURE MATERIALS 2002; 1:19-25. [PMID: 12618843 DOI: 10.1038/nmat716] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Accepted: 08/01/2002] [Indexed: 05/24/2023]
Abstract
High-pressure synthesis on an industrial scale is applied to obtain synthetic diamonds and cubic boron nitride (c-BN), which are the superhard abrasives of choice for cutting and shaping hard metals and ceramics. Recently, high-pressure science has undergone a renaissance, with novel techniques and instrumentation permitting entirely new classes of high-pressure experiments. For example, superconducting behaviour was previously known for only a few elements and compounds. Under high-pressure conditions, the 'superconducting periodic table' now extends to all classes of the elements, including condensed rare gases, and ionic compounds such as CsI. Another surprising result is the newly discovered solid-state chemistry of light-element 'gas' molecules such as CO2, N2 and N2O. These react to give polymerized covalently bonded or ionic mineral structures under conditions of high pressure and temperature: the new solids are potentially recoverable to ambient conditions. Here we examine innovations in high-pressure research that might be harnessed to develop new materials for technological applications.
Collapse
Affiliation(s)
- Paul F McMillan
- Department of Chemistry, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| |
Collapse
|