1
|
Bae S, Kim JS. Potential of Mean Force for DNA Wrapping Around a Cationic Nanoparticle. J Chem Theory Comput 2021; 17:7952-7961. [PMID: 34792353 DOI: 10.1021/acs.jctc.1c00797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sharp bending and wrapping of DNA around proteins and nanoparticles (NPs) has been of extensive research interest. Here, we present the potential of mean force (PMF) for wrapping a DNA double helix around a cationic NP using coarse-grained models of a double-stranded DNA and a cationic NP. Starting from a NP wrapped around by DNA, the PMF was calculated along the distance between the center of the NP and one end of the DNA molecule. A relationship between the distance and the extent of DNA wrapping is used to calculate the PMF as a function of DNA wrapping around a NP. In particular, the PMF was compared for two DNA sequences of (AT)25/(AT)25 and (AC)25/(GT)25, for which the persistence lengths are different by ∼10 nm. The simulation results provide solid evidence of the thermodynamic preference for complex formation of a cationic NP with more flexible DNA over the less flexible DNA. Furthermore, we estimated the elastic energy of DNA bending, which was in good order-of-magnitude agreement with the theoretical prediction of elastic rods. This work suggests that the variation of sequence-dependent DNA flexibility can be utilized in DNA nanotechnologies, in which the position and dynamics of NPs are regulated on large-scale DNA structures, or the structural transformation of DNA is triggered by the sequence-dependent binding of NPs.
Collapse
Affiliation(s)
- Sehui Bae
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jun Soo Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Bates DA, Bates CE, Earl AS, Skousen C, Fetbrandt AN, Ritchie J, Bodily PM, Johnson SM. Proximal-end bias from in-vitro reconstituted nucleosomes and the result on downstream data analysis. PLoS One 2021; 16:e0258737. [PMID: 34673804 PMCID: PMC8530345 DOI: 10.1371/journal.pone.0258737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/05/2021] [Indexed: 11/18/2022] Open
Abstract
The most basic level of eukaryotic gene regulation is the presence or absence of nucleosomes on DNA regulatory elements. In an effort to elucidate in vivo nucleosome patterns, in vitro studies are frequently used. In vitro, short DNA fragments are more favorable for nucleosome formation, increasing the likelihood of nucleosome occupancy. This may in part result from the fact that nucleosomes prefer to form on the terminal ends of linear DNA. This phenomenon has the potential to bias in vitro reconstituted nucleosomes and skew results. If the ends of DNA fragments are known, the reads falling close to the ends are typically discarded. In this study we confirm the phenomenon of end bias of in vitro nucleosomes. We describe a method in which nearly identical libraries, with different known ends, are used to recover nucleosomes which form towards the terminal ends of fragmented DNA. Finally, we illustrate that although nucleosomes prefer to form on DNA ends, it does not appear to skew results or the interpretation thereof.
Collapse
Affiliation(s)
- David A. Bates
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Charles E. Bates
- Qubit Software LLC, Spanish Fork, Utah, United States of America
| | - Andrew S. Earl
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Colin Skousen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Ashley N. Fetbrandt
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Jordon Ritchie
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| | - Paul M. Bodily
- Computer Science Department, Idaho State University, Pocatello, Idaho, United States of America
| | - Steven M. Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, Utah, United States of America
| |
Collapse
|
3
|
Ensembles of Breathing Nucleosomes: A Computational Study. Biophys J 2019; 118:2297-2308. [PMID: 31882248 DOI: 10.1016/j.bpj.2019.11.3395] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/13/2022] Open
Abstract
About three-fourths of the human DNA molecules are wrapped into nucleosomes, protein spools with DNA. Nucleosomes are highly dynamic, transiently exposing their DNA through spontaneous unspooling. Recent experiments allowed to observe the DNA of an ensemble of such breathing nucleosomes through x-ray diffraction with contrast matching between the solvent and the protein core. In this study, we calculate such an ensemble through a Monte Carlo simulation of a coarse-grained nucleosome model with sequence-dependent DNA mechanics. Our analysis gives detailed insights into the sequence dependence of nucleosome breathing observed in the experiment and allows us to determine the adsorption energy of the DNA bound to the protein core as a function of the ionic strength. Moreover, we predict the breathing behavior of other potentially interesting sequences and compare the findings to earlier related experiments.
Collapse
|
4
|
Song Q, Ji Y, Li S, Wang X, He L. Adsorption Behavior of Polymer Chain with Different Topology Structure at the Polymer-Nanoparticle Interface. Polymers (Basel) 2018; 10:polym10060590. [PMID: 30966624 PMCID: PMC6404055 DOI: 10.3390/polym10060590] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/21/2018] [Accepted: 05/25/2018] [Indexed: 12/01/2022] Open
Abstract
The effect of the polymer chain topology structure on the adsorption behavior in the polymer-nanoparticle (NP) interface is investigated by employing coarse-grained molecular dynamics simulations in various polymer-NP interaction and chain stiffness. At a weak polymer-NP interaction, ring chain with a closed topology structure has a slight priority to occupy the interfacial region than linear chain. At a strong polymer-NP interaction, the “middle” adsorption mechanism dominates the polymer local packing in the interface. As the increase of chain stiffness, an interesting transition from ring to linear chain preferential adsorption behavior occurs. The semiflexible linear chain squeezes ring chain out of the interfacial region by forming a helical structure and wrapping tightly the surface of NP. In particular, this selective adsorption behavior becomes more dramatic for the case of rigid-like chain, in which 3D tangent conformation of linear chain is absolutely prior to the 2D plane orbital structure of ring chain. The local packing and competitive adsorption behavior of bidisperse matrix in polymer-NP interface can be explained based on the adsorption mechanism of monodisperse (pure ring or linear) case. These investigations may provide some insights into polymer-NP interfacial adsorption behavior and guide the design of high-performance nanocomposites.
Collapse
Affiliation(s)
- Qingliang Song
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| | - Yongyun Ji
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| | - Xianghong Wang
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| | - Linli He
- Department of Physics, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
5
|
Park S, Joo H, Kim JS. Directional rolling of positively charged nanoparticles along a flexibility gradient on long DNA molecules. SOFT MATTER 2018; 14:817-825. [PMID: 29308503 DOI: 10.1039/c7sm02016c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Directing the motion of molecules/colloids in any specific direction is of great interest in many applications of chemistry, physics, and biological sciences, where regulated positioning or transportation of materials is highly desired. Using Brownian dynamics simulations of coarse-grained models of a long, double-stranded DNA molecule and positively charged nanoparticles, we observed that the motion of a single nanoparticle bound to and wrapped by the DNA molecule can be directed along a gradient of DNA local flexibility. The flexibility gradient is constructed along a 0.8 kilobase-pair DNA molecule such that local persistence length decreases gradually from 50 nm to 40 nm, mimicking a gradual change in sequence-dependent flexibility. Nanoparticles roll over a long DNA molecule from less flexible regions towards more flexible ones as a result of the decreasing energetic cost of DNA bending and wrapping. In addition, the rolling becomes slightly accelerated as the positive charge of nanoparticles decreases due to a lower free energy barrier of DNA detachment from charged nanoparticle for processive rolling. This study suggests that the variation in DNA local flexibility can be utilized in constructing and manipulating supramolecular assemblies of DNA molecules and nanoparticles in structural DNA nanotechnology.
Collapse
Affiliation(s)
- Suehyun Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea.
| | | | | |
Collapse
|
6
|
Niina T, Brandani GB, Tan C, Takada S. Sequence-dependent nucleosome sliding in rotation-coupled and uncoupled modes revealed by molecular simulations. PLoS Comput Biol 2017; 13:e1005880. [PMID: 29194442 PMCID: PMC5728581 DOI: 10.1371/journal.pcbi.1005880] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/13/2017] [Accepted: 11/11/2017] [Indexed: 12/12/2022] Open
Abstract
While nucleosome positioning on eukaryotic genome play important roles for genetic regulation, molecular mechanisms of nucleosome positioning and sliding along DNA are not well understood. Here we investigated thermally-activated spontaneous nucleosome sliding mechanisms developing and applying a coarse-grained molecular simulation method that incorporates both long-range electrostatic and short-range hydrogen-bond interactions between histone octamer and DNA. The simulations revealed two distinct sliding modes depending on the nucleosomal DNA sequence. A uniform DNA sequence showed frequent sliding with one base pair step in a rotation-coupled manner, akin to screw-like motions. On the contrary, a strong positioning sequence, the so-called 601 sequence, exhibits rare, abrupt transitions of five and ten base pair steps without rotation. Moreover, we evaluated the importance of hydrogen bond interactions on the sliding mode, finding that strong and weak bonds favor respectively the rotation-coupled and -uncoupled sliding movements.
Collapse
Affiliation(s)
- Toru Niina
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Giovanni B. Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Cheng Tan
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
- * E-mail:
| |
Collapse
|
7
|
Eslami-Mossallam B, Schiessel H, van Noort J. Nucleosome dynamics: Sequence matters. Adv Colloid Interface Sci 2016; 232:101-113. [PMID: 26896338 DOI: 10.1016/j.cis.2016.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/22/2016] [Accepted: 01/25/2016] [Indexed: 02/06/2023]
Abstract
About three quarter of all eukaryotic DNA is wrapped around protein cylinders, forming nucleosomes. Even though the histone proteins that make up the core of nucleosomes are highly conserved in evolution, nucleosomes can be very different from each other due to posttranslational modifications of the histones. Another crucial factor in making nucleosomes unique has so far been underappreciated: the sequence of their DNA. This review provides an overview of the experimental and theoretical progress that increasingly points to the importance of the nucleosomal base pair sequence. Specifically, we discuss the role of the underlying base pair sequence in nucleosome positioning, sliding, breathing, force-induced unwrapping, dissociation and partial assembly and also how the sequence can influence higher-order structures. A new view emerges: the physical properties of nucleosomes, especially their dynamical properties, are determined to a large extent by the mechanical properties of their DNA, which in turn depends on DNA sequence.
Collapse
|
8
|
He L, Dong Z, Zhang L. Selective adsorption behavior of polymer at the polymer-nanoparticle interface. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/polb.24085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Linli He
- Department of Physics; Wenzhou University; Wenzhou 325035 People's Republic of China
| | - Zhang Dong
- Department of Physics; Zhejiang University; Hangzhou 310027 People's Republic of China
| | - Linxi Zhang
- Department of Physics; Zhejiang University; Hangzhou 310027 People's Republic of China
| |
Collapse
|
9
|
Zhang D, Zhang L. Binding to semiflexible polymers: a novel method to control the structures of small numbers of building blocks. SOFT MATTER 2014; 10:7661-7668. [PMID: 25144601 DOI: 10.1039/c4sm00885e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Through the molecular dynamics simulation method, we demonstrate that long semi-flexible polymer chains can serve as an effective soft elastic medium for manipulating the ordered structures of small numbers of building blocks, which can be easily controlled by the chain bending stiffness. For two spherical particles in a polymer-particle mixture, three types of local organization are identified: monomer level tight particle bridging, direct contact aggregation, and dispersion. For small numbers of spherical particles in a polymer-particle mixture, the ordered structures of particles, such as spherical and linear particle aggregations, depend mainly on chain bending stiffness. For non-spherical building blocks, the relative orientations of neighboring building blocks are also strongly affected by chain bending stiffness. These results can help us to understand the complexity of the self-assembly of small numbers of building blocks in polymer-particle mixtures and the gene activity in living cells, as well as to construct novel materials in the nanotechnology field.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | | |
Collapse
|
10
|
Yu S, Larson RG. Monte-Carlo simulations of PAMAM dendrimer-DNA interactions. SOFT MATTER 2014; 10:5325-5336. [PMID: 24924736 DOI: 10.1039/c4sm00452c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We use Monte Carlo simulations to determine the influence of poly(amido amine) (PAMAM) dendrimer size and charge on its interactions with double-stranded DNA conformation and interaction strength. To achieve a compromise between simulation speed and molecular detail, we combine the coarse-grained DNA model of de Pablo et al. which resolves each DNA base using three beads - and thereby retains the double-helix structure - with a dendrimer model with resolution similar to that of the DNA. The resulting predictions of the effects of dendrimer generation, dendrimer surface charge density, and salt concentration on dendrimer-DNA complexes are in agreement with both experiments and all-atom MD simulations. The model predicts that DNA wraps a fully charged G5 or G6 dendrimer at low salt concentration (10 mM) similarly to a histone octamer, and for the G5 dendrimer, DNA super helices with both handednesses occur. At salt concentrations above 50 mM, or when a high fraction of dendrimer surface charges are neutralized by acetylation, DNA adheres but does not compactly wrap the dendrimer, in agreement with experimental findings. We are also able to simulate pairs of dendrimers binding to the same DNA strand. Thus, our mesoscale simulation not only elucidates dendrimer-DNA interactions, but also provides a methodology for efficiently simulating chromatin formation and other cationic macroion-DNA complexes.
Collapse
Affiliation(s)
- Shi Yu
- Chemical Engineering Department, University of Michigan, Ann Arbor 48109, USA.
| | | |
Collapse
|
11
|
Chen YL, Lin YH, Chang JF, Lin PK. Dynamics and Conformation of Semiflexible Polymers in Strong Quasi-1D and -2D Confinement. Macromolecules 2014. [DOI: 10.1021/ma401923t] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yeng-Long Chen
- Institute
of Physics, Academia Sinica, Taipei, Taiwan
- Department
of Physics, National Taiwan University, Taipei, Taiwan
- Department
of Chemical Engineering, National Tsing-Hua University, Hsinchu, Taiwan
| | - Yu-Hui Lin
- Institute
of Physics, Academia Sinica, Taipei, Taiwan
| | | | - Po-keng Lin
- Institute
of Physics, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
12
|
Kumar S, Pattanayek SK, Pereira GG. Organization of polymer chains onto long, single-wall carbon nano-tubes: Effect of tube diameter and cooling method. J Chem Phys 2014; 140:024904. [DOI: 10.1063/1.4860976] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
13
|
Cao Q, Bachmann M. Electrostatic complexation of linear polyelectrolytes with soft spherical nanoparticles. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Nonspecific bridging-induced attraction drives clustering of DNA-binding proteins and genome organization. Proc Natl Acad Sci U S A 2013; 110:E3605-11. [PMID: 24003126 DOI: 10.1073/pnas.1302950110] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular dynamics simulations are used to model proteins that diffuse to DNA, bind, and dissociate; in the absence of any explicit interaction between proteins, or between templates, binding spontaneously induces local DNA compaction and protein aggregation. Small bivalent proteins form into rows [as on binding of the bacterial histone-like nucleoid-structuring protein (H-NS)], large proteins into quasi-spherical aggregates (as on nanoparticle binding), and cylinders with eight binding sites (representing octameric nucleosomal cores) into irregularly folded clusters (like those seen in nucleosomal strings). Binding of RNA polymerase II and a transcription factor (NFκB) to the appropriate sites on four human chromosomes generates protein clusters analogous to transcription factories, multiscale loops, and intrachromosomal contacts that mimic those found in vivo. We suggest that this emergent behavior of clustering is driven by an entropic bridging-induced attraction that minimizes bending and looping penalties in the template.
Collapse
|
15
|
Chen YL. Electro-entropic excluded volume effects on DNA looping and relaxation in nanochannels. BIOMICROFLUIDICS 2013; 7:54119. [PMID: 24255695 PMCID: PMC3820673 DOI: 10.1063/1.4826157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/07/2013] [Indexed: 05/14/2023]
Abstract
We investigate the fluctuation-relaxation dynamics of entropically restricted DNA molecules in square nanochannels ranging from 0.09 to 19.9 times the persistence length. In nanochannels smaller than the persistence length, the chain relaxation time is found to have cubic dependence on the channel size. It is found that the effective polymer width significantly alter the chain conformation and relaxation time in strong confinement. For thinner chains, looped chain configurations are found in channels with height comparable to the persistence length, with very slow relaxation compared to un-looped chains. Larger effective chain widths inhibit the formation of hairpin loops.
Collapse
Affiliation(s)
- Yeng-Long Chen
- Institute of Physics, Academia Sinica, Taipei, Taiwan ; Department of Chemical Engineering, National Tsing-Hua University, Hsinchu, Taiwan ; Department of Physics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
16
|
Yanao T, Yoshikawa K. Chiral selection in supercoiling and wrapping of DNA. POLYMER SCIENCE SERIES C 2012. [DOI: 10.1134/s1811238212070065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Garai A, Mani J, Chowdhury D. Footprint traversal by adenosine-triphosphate-dependent chromatin remodeler motor. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 85:041902. [PMID: 22680493 DOI: 10.1103/physreve.85.041902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Indexed: 06/01/2023]
Abstract
Adenosine-triphosphate (ATP)-dependent chromatin remodeling enzymes (CREs) are biomolecular motors in eukaryotic cells. These are driven by a chemical fuel, namely, ATP. CREs actively participate in many cellular processes that require accessibility of specific segments of DNA which are packaged as chromatin. The basic unit of chromatin is a nucleosome where 146 bp ∼ 50 nm of a double-stranded DNA (dsDNA) is wrapped around a spool formed by histone proteins. The helical path of histone-DNA contact on a nucleosome is also called "footprint." We investigate the mechanism of footprint traversal by a CRE that translocates along the dsDNA. Our two-state model of a CRE captures effectively two distinct chemical (or conformational) states in the mechanochemical cycle of each ATP-dependent CRE. We calculate the mean time of traversal. Our predictions on the ATP dependence of the mean traversal time can be tested by carrying out in vitro experiments on mononucleosomes.
Collapse
Affiliation(s)
- Ashok Garai
- Department of Physics, Indian Institute of Technology, Kanpur 208016, India
| | | | | |
Collapse
|
18
|
Flaus A. Principles and practice of nucleosome positioningin vitro. FRONTIERS IN LIFE SCIENCE 2011. [DOI: 10.1080/21553769.2012.702667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
19
|
Suzuki Y, Yoshikawa Y, Yoshimura SH, Yoshikawa K, Takeyasu K. Unraveling DNA dynamics using atomic force microscopy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2011; 3:574-88. [PMID: 21618449 DOI: 10.1002/wnan.150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The elucidation of structure-function relationships of biological samples has become important issue in post-genomic researches. In order to unveil the molecular mechanisms controlling gene regulations, it is essential to understand the interplay between fundamental DNA properties and the dynamics of the entire molecule. The wide range of applicability of atomic force microscopy (AFM) has allowed us to extract physicochemical properties of DNA and DNA-protein complexes, as well as to determine their topographical information. Here, we review how AFM techniques have been utilized to study DNA and DNA-protein complexes and what types of analyses have accelerated the understanding of the DNA dynamics. We begin by illustrating the application of AFM to investigate the fundamental feature of DNA molecules; topological transition of DNA, length dependent properties of DNA molecules, flexibility of double-stranded DNA, and capability of the formation of non-Watson-Crick base pairing. These properties of DNA are critical for the DNA folding and enzymatic reactions. The technical advancement in the time-resolution of AFM and sample preparation methods enabled visual analysis of DNA-protein interactions at sub-second time region. DNA tension-dependent enzymatic reaction and DNA looping dynamics by restriction enzymes were examined at a nanoscale in physiological environments. Contribution of physical properties of DNA to dynamics of nucleosomes and transition of the higher-order structure of reconstituted chromatin are also reviewed.
Collapse
Affiliation(s)
- Yuki Suzuki
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, Japan.
| | | | | | | | | |
Collapse
|
20
|
Chen YL, Lin PK, Chou CF. Generalized Force−Extension Relation for Wormlike Chains in Slit Confinement. Macromolecules 2010. [DOI: 10.1021/ma102268b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yeng-Long Chen
- Institute of Physics and Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Po-keng Lin
- Institute of Physics and Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 11529, Taiwan
| | - Chia-Fu Chou
- Institute of Physics and Research Center for Applied Sciences, Academia Sinica, Nangang, Taipei 11529, Taiwan
| |
Collapse
|
21
|
Higuchi Y, Sakaue T, Yoshikawa K. Torsional effect on the wrapping transition of a semiflexible polymer around a core as a model of nucleosome. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:031909. [PMID: 21230110 DOI: 10.1103/physreve.82.031909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Indexed: 05/30/2023]
Abstract
We investigated the effect of the torsional rigidity of a semiflexible chain on the wrapping transition around a spherical core, as a model of a nucleosome, the fundamental unit of chromatin. Through molecular dynamics simulation, we show that the torsional effect has a crucial effect on the chain wrapping around the core under the topological constraints. In particular, the torsional stress (i) induces the wrapping/unwrapping transition, and (ii) leads to a unique complex structure with an antagonistic wrapping direction which never appears without the topological constraints. We further examine the effect of the stretching stress for the nucleosome model in relation to the unique characteristic effect of the torsional stress on the manner of wrapping.
Collapse
Affiliation(s)
- Yuji Higuchi
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
22
|
Abstract
DNA sequence influences the position of nucleosomes and chromatin architecture. The extent to which underlying DNA sequence affects nucleosome positioning is currently a topic of considerable discussion and active experimentation. To contribute to the discussion, I will outline a few of the methods, data and arguments that I find compelling and believe will ultimately resolve the question of what positions nucleosomes. Basically, I will give a portrait of my current perspective on what influences the landscape of nucleosome positioning and chromatin architecture.
Collapse
Affiliation(s)
- Steven M Johnson
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.
| |
Collapse
|
23
|
Molecular dynamics of DNA and nucleosomes in solution studied by fast-scanning atomic force microscopy. Ultramicroscopy 2010; 110:682-8. [DOI: 10.1016/j.ultramic.2010.02.032] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Modern Atomic Force Microscopy and Its Application to the Study of Genome Architecture. SCANNING PROBE MICROSCOPY IN NANOSCIENCE AND NANOTECHNOLOGY 2010. [DOI: 10.1007/978-3-642-03535-7_20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
Abstract
Recent genome-wide nucleosome mappings along with bioinformatics studies have confirmed that the DNA sequence plays a more important role in the collective organization of nucleosomes in vivo than previously thought. Yet in living cells, this organization also results from the action of various external factors like DNA-binding proteins and chromatin remodelers. To decipher the code for intrinsic chromatin organization, there is thus a need for in vitro experiments to bridge the gap between computational models of nucleosome sequence preferences and in vivo nucleosome occupancy data. Here we combine atomic force microscopy in liquid and theoretical modeling to demonstrate that a major sequence signaling in vivo are high-energy barriers that locally inhibit nucleosome formation rather than favorable positioning motifs. We show that these genomic excluding-energy barriers condition the collective assembly of neighboring nucleosomes consistently with equilibrium statistical ordering principles. The analysis of two gene promoter regions in Saccharomyces cerevisiae and the human genome indicates that these genomic barriers direct the intrinsic nucleosome occupancy of regulatory sites, thereby contributing to gene expression regulation.
Collapse
|
26
|
Teif VB, Rippe K. Predicting nucleosome positions on the DNA: combining intrinsic sequence preferences and remodeler activities. Nucleic Acids Res 2009; 37:5641-55. [PMID: 19625488 PMCID: PMC2761276 DOI: 10.1093/nar/gkp610] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 07/03/2009] [Accepted: 07/06/2009] [Indexed: 01/09/2023] Open
Abstract
Nucleosome positions on the DNA are determined by the intrinsic affinities of histone proteins to a given DNA sequence and by the ATP-dependent activities of chromatin remodeling complexes that can translocate nucleosomes with respect to the DNA. Here, we report a theoretical approach that takes into account both contributions. In the theoretical analysis two types of experiments have been considered: in vitro experiments with a single reconstituted nucleosome and in vivo genome-scale mapping of nucleosome positions. The effect of chromatin remodelers was described by iteratively redistributing the nucleosomes according to certain rules until a new steady state was reached. Three major classes of remodeler activities were identified: (i) the establishment of a regular nucleosome spacing in the vicinity of a strong positioning signal acting as a boundary, (ii) the enrichment/depletion of nucleosomes through amplification of intrinsic DNA-sequence-encoded signals and (iii) the removal of nucleosomes from high-affinity binding sites. From an analysis of data for nucleosome positions in resting and activated human CD4(+) T cells [Schones et al., Cell 132, p. 887] it was concluded that the redistribution of a nucleosome map to a new state is greatly facilitated if the remodeler complex translocates the nucleosome with a preferred directionality.
Collapse
Affiliation(s)
- Vladimir B. Teif
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum and BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Kuprevich 5/2, 220141, Minsk, Belarus
| | - Karsten Rippe
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum and BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany and Institute of Bioorganic Chemistry, Belarus National Academy of Sciences, Kuprevich 5/2, 220141, Minsk, Belarus
| |
Collapse
|
27
|
|
28
|
Hizume K, Nakai T, Araki S, Prieto E, Yoshikawa K, Takeyasu K. Removal of histone tails from nucleosome dissects the physical mechanisms of salt-induced aggregation, linker histone H1-induced compaction, and 30-nm fiber formation of the nucleosome array. Ultramicroscopy 2009; 109:868-73. [PMID: 19328628 DOI: 10.1016/j.ultramic.2009.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
In order to reveal the roles of histone tails in the formation of higher-order chromatin structures, we employed atomic force microscopy (AFM), and an in vitro reconstitution system to examine the properties of reconstituted chromatin composed of tail-less histones and a long DNA (106-kb plasmid) template. The tail-less nucleosomes did not aggregate at high salt concentrations or with an excess amount of core histones, in contrast with the behavior of nucleosomal arrays composed of nucleosomes containing normal, N-terminal tails. Analysis of our nucleosome distributions reveals that the attractive interaction between tail-less nucleosomes is weakened. Addition of linker histone H1 into the tail-less nucleosomal array failed to promote the formation of 30nm chromatin fibers that are usually formed in the normal nucleosomal array. These results demonstrate that the attractive interaction between nucleosomes via histone tails plays a critical role in the formation of the uniform 30-nm chromatin fiber.
Collapse
Affiliation(s)
- Kohji Hizume
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Yoshida Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | |
Collapse
|
29
|
Khoo A, Iwaki T, Shew CY, Yoshikawa K. Preferential positioning of a nanoparticle bound to a polymer: Exact enumeration of a self-avoiding walk chain model. J Chem Phys 2009. [DOI: 10.1063/1.3216571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Yanao T, Yoshikawa K. Elastic origin of chiral selection in DNA wrapping. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2008; 77:021904. [PMID: 18352048 DOI: 10.1103/physreve.77.021904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Indexed: 05/26/2023]
Abstract
We investigated the mechanism that underlies the chiral selection on the direction of wrapping of DNA around a nucleosome core particle. A coarse-grained model for the formation of a nucleosome is introduced, in which DNA is treated as a semiflexible polymer and the histone core is modeled by a spherical particle. Asymmetric coupling between bending and twisting is incorporated into the model DNA, which is expected from the double-stranded helical structure of DNA. We show that the tendency of DNA to twist in a left-handed manner upon bending gives rise to the selective left-handed wrapping, provided that the size of the core particle is chosen appropriately. This result suggests the critical importance of the chiral asymmetry inherent in the bending-twisting elasticity of DNA as well as the size of the core in determining the handedness of wrapping in nucleosome formation.
Collapse
Affiliation(s)
- Tomohiro Yanao
- Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto, Japan
| | | |
Collapse
|
31
|
Hirano Y, Takahashi H, Kumeta M, Hizume K, Hirai Y, Otsuka S, Yoshimura SH, Takeyasu K. Nuclear architecture and chromatin dynamics revealed by atomic force microscopy in combination with biochemistry and cell biology. Pflugers Arch 2008; 456:139-53. [PMID: 18172599 DOI: 10.1007/s00424-007-0431-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/29/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
The recent technical development of atomic force microscopy (AFM) has made nano-biology of the nucleus an attractive and promising field. In this paper, we will review our current understanding of nuclear architecture and dynamics from the structural point of view. Especially, special emphases will be given to: (1) How to approach the nuclear architectures by means of new techniques using AFM, (2) the importance of the physical property of DNA in the construction of the higher-order structures, (3) the significance and implication of the linker and core histones and the nuclear matrix/scaffold proteins for the chromatin dynamics, (4) the nuclear proteins that contribute to the formation of the inner nuclear architecture. Spatio-temporal analyses using AFM, in combination with biochemical and cell biological approaches, will play important roles in the nano-biology of the nucleus, as most of nuclear structures and events occur in nanometer, piconewton and millisecond order. The new applications of AFM, such as recognition imaging, fast-scanning imaging, and a variety of modified cantilevers, are expected to be powerful techniques to reveal the nanostructure of the nucleus.
Collapse
Affiliation(s)
- Yasuhiro Hirano
- Kyoto University Graduate School of Biostudies, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sims HI, Lane JM, Ulyanova NP, Schnitzler GR. Human SWI/SNF drives sequence-directed repositioning of nucleosomes on C-myc promoter DNA minicircles. Biochemistry 2007; 46:11377-88. [PMID: 17877373 PMCID: PMC2526049 DOI: 10.1021/bi7008823] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human SWI/SNF (hSWI/SNF) ATP-dependent chromatin remodeling complex is a tumor suppressor and essential transcriptional coregulator. SWI/SNF complexes have been shown to alter nucleosome positions, and this activity is likely to be important for their functions. However, previous studies have largely been unable to determine the extent to which DNA sequence might control nucleosome repositioning by SWI/SNF complexes. Here, we employ a minicircle remodeling approach to provide the first evidence that hSWI/SNF moves nucleosomes in a sequence dependent manner, away from nucleosome positioning sequences favored during nucleosome assembly. This repositioning is unaffected by the presence of DNA nicks, and can occur on closed-circular DNAs in the absence of topoisomerases. We observed directed nucleosome movement on minicircles derived from the human SWI/SNF-regulated c-myc promoter, which may contribute to the previously observed "disruption" of two promoter nucleosomes during c-myc activation in vivo. Our results suggest a model wherein hSWI/SNF-directed nucleosome movement away from default positioning sequences results in sequence-specific regulatory effects.
Collapse
Affiliation(s)
- Hillel I. Sims
- The Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111
| | | | | | - Gavin R. Schnitzler
- The Department of Biochemistry, Tufts University Sackler School of Graduate Biomedical Sciences, Boston, MA 02111
- * Address correspondence to: Gavin R. Schnitzler, Ph.D., Assistant Professor of Biochemistry, Tufts University School of Medicine, 136 Harrison, Ave., Boston, MA 02111; Tel: (617) 636-2441; Fax: (617) 636-2409; e-mail:
| |
Collapse
|
33
|
Pisano S, Marchioni E, Galati A, Mechelli R, Savino M, Cacchione S. Telomeric Nucleosomes Are Intrinsically Mobile. J Mol Biol 2007; 369:1153-62. [PMID: 17498745 DOI: 10.1016/j.jmb.2007.04.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Revised: 03/15/2007] [Accepted: 04/10/2007] [Indexed: 11/26/2022]
Abstract
Nucleosomes are no longer considered only static basic units that package eukaryotic DNA but they emerge as dynamic players in all chromosomal processes. Regulatory proteins can gain access to recognition sequences hidden by the histone octamer through the action of ATP-dependent chromatin remodeling complexes that cause nucleosome sliding. In addition, it is known that nucleosomes are able to spontaneously reposition along the DNA due to intrinsic dynamic properties, but it is not clear yet to what extent sequence-dependent dynamic properties contribute to nucleosome repositioning. Here, we study mobility of nucleosomes formed on telomeric sequences as a function of temperature and ionic strength. We find that telomeric nucleosomes are highly intrinsically mobile under physiological conditions, whereas nucleosomes formed on an average DNA sequence mostly remain in the initial position. This indicates that DNA sequence affects not only the thermodynamic stability and the positioning of nucleosomes but also their dynamic properties. Moreover, our findings suggest that the high mobility of telomeric nucleosomes may be relevant to the dynamics of telomeric chromatin.
Collapse
Affiliation(s)
- Sabrina Pisano
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | | | | | | | | | | |
Collapse
|
34
|
Li W, Dou SX, Xie P, Wang PY. Brownian dynamics simulation of the effect of histone modification on nucleosome structure. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:051915. [PMID: 17677106 DOI: 10.1103/physreve.75.051915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 03/21/2007] [Indexed: 05/16/2023]
Abstract
Using Brownian dynamics we simulate the effect of histone modification, such as phosphorylation, acetylation, and methylation, on nucleosome structure by varying the interaction force between DNA and the histone octamer. The simulation shows that the structural stability of nucleosome is very sensitive to the interaction force, and the DNA unwrapping from the modified histone octamer usually occurs turn by turn. Furthermore, the effects of temperature and DNA break as well as the competition between modified and normal histone octamers are investigated, with the simulation results being in agreement with the experimental observation that phosphorylated nucleosomes near DNA breaks are more easily depleted. Though the simulation study may only give a coarse grained view of the DNA unwrapping process for the modified histone octamer, it may provide insight into the mechanism of DNA repair.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | | | | | | |
Collapse
|
35
|
Angelescu DG, Linse P. Monte Carlo simulations of flexible polyelectrolytes inside viral capsids with dodecahedral charge distribution. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2007; 75:051905. [PMID: 17677096 DOI: 10.1103/physreve.75.051905] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Indexed: 05/16/2023]
Abstract
Structural properties of encapsidated flexible polyelectrolytes in viral capsids with dodecahedral charge distribution have been investigated by Monte Carlo simulations using a coarse-grained model. Several capsid charge distributions ranging from a homogeneous surface charge distribution (lambda=0) to a complete dodecahedral distribution (lambda=1) at constant total capsid charge and fixed radial location of the capsid charges have been considered. The radial and lateral organizations of the polyelectrolyte have been examined as a function of the polyelectrolyte length and capsid charge distribution. With short polyelectrolytes a single polyelectrolyte layer was formed at the inner capsid surface, whereas at increasing polyelectrolyte length also a uniform polyelectrolyte density inside the surface layer was established. At low lambda , the polyelectrolyte layer was laterally isotropic, but at lambda> or =0.05 a dodecahedral structure started to appear. At lambda=1 , the polyelectrolyte followed essentially a path along the edges of a dodecahedron. With sufficiently long chains, all edges were decorated with polyelectrolyte, facilitated by loop formation. For an undercharged capsid, the capsid counterions inside the capsid also adopted a dodecahedral distribution.
Collapse
|
36
|
Zinchenko AA, Sakaue T, Araki S, Yoshikawa K, Baigl D. Single-Chain Compaction of Long Duplex DNA by Cationic Nanoparticles: Modes of Interaction and Comparison with Chromatin. J Phys Chem B 2007; 111:3019-31. [PMID: 17388415 DOI: 10.1021/jp067926z] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The compaction of long duplex DNA by cationic nanoparticles (NP) used as a primary model of histone core particles has been investigated. We have systematically studied the effect of salt concentration, particle size, and particle charge by means of single-molecule observations-fluorescence microscopy (FM) and transmission electron microscopy (TEM)-and molecular dynamics (MD) simulations. We have found that the large-scale DNA compaction is progressive and proceeds through the formation of beads-on-a-string structures of various morphologies. The DNA adsorbed amount per particle depends weakly on NP concentration but increases significantly with an increase in particle size and is optimal at an intermediate salt concentration. Three different complexation mechanisms have been identified depending on the correlation between DNA and NPs in terms of geometry, chain rigidity, and electrostatic interactions: free DNA adsorption onto NP surface, DNA wrapping around NP, and NP collection on DNA chain.
Collapse
Affiliation(s)
- Anatoly A Zinchenko
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan. zinchenko@ urban.env.nagoya-u.ac.jp
| | | | | | | | | |
Collapse
|
37
|
Abstract
In this paper, a numerically detailed thermodynamic investigation of nucleosomal core particles is presented. The nonlinear Poisson-Boltzmann equation governs the electrostatic properties of both the DNA and histone protein. Brownian dynamics is used as the leading method, in combination with the analysis of the electrical features of the nucleosome. At elevated temperature, the structure of the nucleosome is destabilized by the decrease in electrical interactions of DNA-histone complexes, which can be explained with the EDL theory. Two obvious unwrapping transitions can be found, occurring within the temperature ranges 43-52 and 65-80 degrees C. The first transition is characterized by the melting of DNA terminal domains, and the feature of the second transition is the massive unwrapping of the DNA middle domain. It can be concluded that the nucleosomal DNA consists of two distinct structures, where the DNA terminal domains are less tightly bound to the histone than the DNA middle domain.
Collapse
Affiliation(s)
- Ji Feng
- College of Mechanical Science and Engineering, Jilin University, Changchun, China 130025. jifeng0203@ hotmail.com
| | | |
Collapse
|
38
|
Zinchenko AA, Luckel F, Yoshikawa K. Transcription of giant DNA complexed with cationic nanoparticles as a simple model of chromatin. Biophys J 2006; 92:1318-25. [PMID: 17142281 PMCID: PMC1783880 DOI: 10.1529/biophysj.106.094185] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We prepared complexes of giant double-stranded DNA with cationic nanoparticles of 10-40 nm in diameter as an artificial model of chromatin and characterized the properties of changes in their higher-order conformation. We measured the changes in transcriptional activity that accompanied the DNA conformational transitions. Complete inhibition was found at excess concentrations of nanoparticles. In contrast, at intermediate stages of DNA binding with nanoparticles, the transcription activity of DNA survived, and this strongly depended on the size of the nanoparticles. For large nanoparticles of 40 nm, a decrease in transcriptional activity can be caused by the addition of only a small amount of nanoparticles. On the other hand, there was almost no inhibition of DNA transcriptional activity with the addition of small nanoparticles (10 nm) until very high concentrations, even under conditions that induced DNA compaction as revealed by single-DNA observation. At higher concentrations of 10-nm nanoparticles, DNA transcription activity decreased abruptly until it was completely inhibited. These results are discussed in relation to the actual size of the histone core, together with the mechanism of switching of transcriptional activity in eukaryotic cells.
Collapse
Affiliation(s)
- Anatoly A Zinchenko
- Graduate School of Science, Department of Physics, Kyoto University, Sakyo-ku, Kyoto 608-8501, Japan.
| | | | | |
Collapse
|
39
|
Iwaki T, Saito T, Yoshikawa K. How are small ions involved in the compaction of DNA molecules? Colloids Surf B Biointerfaces 2006; 56:126-33. [PMID: 17254757 DOI: 10.1016/j.colsurfb.2006.10.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 10/21/2006] [Indexed: 11/21/2022]
Abstract
DNA is a genetic material found in all life on Earth. DNA is composed of four types of nucleotide subunits, and forms a double-helical one-dimensional polyelectrolyte chain. If we focus on the microscopic molecular structure, DNA is a rigid rod-like molecule. On the other hand, with coarse graining, a long-chain DNA exhibits fluctuating behavior over the whole molecule due to thermal fluctuation. Owe to its semiflexible nature, individual giant DNA molecule undergoes a large discrete transition in the higher-order structure. In this folding transition into a compact state, small ions in the solution have a critical effect, since DNA is highly charged. In the present article, we interpret the characteristic features of DNA compaction while paying special attention to the role of small ions, in relation to a variety of single-chain morphologies generated as a result of compaction.
Collapse
Affiliation(s)
- Takafumi Iwaki
- Okayama Institute for Quantum Physics, Kyoyama 1-9-1, Okayama-shi, Okayama 700-0015, Japan
| | | | | |
Collapse
|
40
|
Zinchenko AA, Chen N. Compaction of DNA on nanoscale three-dimensional templates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2006; 18:R453-R480. [PMID: 21690831 DOI: 10.1088/0953-8984/18/28/r01] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
There exist several important in vivo examples, where a DNA chain is compacted on interacting with nanoscale objects such as proteins, thereby forming complexes with a well defined molecular architecture. One of the well known manifestations of such a natural organization of a semi-flexible DNA chain on nanoscale objects is hierarchical DNA molecule assembly into a chromosome, which is mediated by cationic histone proteins at the first stages of compaction. The biological importance of this and other natural nanostructural organizations of the DNA molecule has inspired many theoretical and numerical studies to gain physical insight into this problem. On the other hand, the experimental model systems containing DNA and nanoobjects, which are important to extend our knowledge beyond natural systems, were almost unavailable until the last decade. Accelerating progress in nanoscale chemistry and materials science has brought about various nanoscale three-dimensional structures such as dendrimers, nanoparticles, and nanotubes, and thus has provided a basis for the next important step in creating novel DNA-containing nanostructures, modelling of natural DNA compaction, and verification of accumulated theoretical predictions on the interaction between DNA and nanoscale templates. This review is written to highlight this early stage of nano-inspired progress and it is focused on physico-chemical and biophysical experimental investigations as well as theoretical and numerical studies dedicated to the compaction of DNA on nanoscale three-dimensional templates.
Collapse
Affiliation(s)
- Anatoly A Zinchenko
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
41
|
Pisano S, Pascucci E, Cacchione S, De Santis P, Savino M. AFM imaging and theoretical modeling studies of sequence-dependent nucleosome positioning. Biophys Chem 2006; 124:81-9. [PMID: 16824667 DOI: 10.1016/j.bpc.2006.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 05/11/2006] [Accepted: 05/11/2006] [Indexed: 11/19/2022]
Abstract
Telomeric chromatin has different features with respect to bulk chromatin, since nucleosomal repeat along the chain is unusually short. We studied the role of telomeric DNA sequences on nucleosomal spacing in a model system. Nucleosomal arrays, assembled on a 1500-bp-long human telomeric DNA and on a DNA fragment containing 8 copies of the 601 strong nucleosome positioning sequence, have been studied at the single molecule level, by atomic force microscopy imaging. Random nucleosome positioning was found in the case of human telomeric DNA. On the contrary, nucleosome positioning on 601 DNA is characterized by preferential positions of nucleosome dyad axis each 200 bp. The AFM-derived nucleosome organization is in satisfactory agreement with that predicted by theoretical modeling, based on sequence-dependent DNA curvature and flexibility. The reported results show that DNA sequence has a main role, not only in mononucleosome thermodynamic stability, but also in the organization of nucleosomal arrays.
Collapse
Affiliation(s)
- Sabrina Pisano
- Dipartimento di Genetica e Biologia Molecolare, Università di Roma I La Sapienza, P.le Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | |
Collapse
|
42
|
Li W, Dou SX, Xie P, Wang PY. Brownian dynamics simulation of directional sliding of histone octamers caused by DNA bending. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:051909. [PMID: 16802969 DOI: 10.1103/physreve.73.051909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2005] [Indexed: 05/10/2023]
Abstract
Chromatin-remodeling complexes such as SWI/SNF and RSC of yeast can perturb the structure of nucleosomes in an ATP-dependent manner. Experimental results prove that this chromatin remodeling process involves DNA bending. We simulate the effect of DNA bending, caused by chromatin-remodeling complexes, on directional sliding of histone octamers by Brownian dynamics simulation. The simulation results show that, after a DNA loop being generated at the side of a nucleosome, the histone octamer slides towards this DNA loop until the loop disappears. The DNA loop size is an important factor affecting the process of directional sliding of the histone octamer.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
43
|
Sarraguça JMG, Pais AACC. Polyelectrolytes in solutions with multivalent salt. Effects of flexibility and contour length. Phys Chem Chem Phys 2006; 8:4233-41. [PMID: 16971992 DOI: 10.1039/b606087k] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It has been experimentally observed that trivalent ions are capable of promoting compaction of semi-flexible polyelectrolyte chains. In this work we perform Monte Carlo simulations on single chain model systems with varying chain size and stiffness and evaluate the action of multivalent salt on the chain conformation. It is observed that longer chains tend to achieve relatively more compact conformations than shorter ones, and the dimensions of the collapsed structures do not significantly vary with contour length. The influence of contour length and intrinsic stiffness in the process of ion condensation is studied by analysis of the ion-ion nearest-neighbor distribution. The general trend is an increase of the degree of ion condensation as the chain length increases, in accordance with experimental evidence. A decreased importance of end-effects and, especially, larger volume charge densities are responsible for such behavior. The influence of chain stiffness is nontrivial, and depends on salt concentration. The results emphasize the complex nature of ion-correlation phenomena in flexible or semi-flexible chains and call for the development of more sophisticated analytical theories.
Collapse
Affiliation(s)
- J M G Sarraguça
- Departamento de Química, Universidade de Coimbra, 3004-535, Coimbra, Portugal
| | | |
Collapse
|
44
|
Hizume K, Yoshimura SH, Takeyasu K. Linker histone H1 per se can induce three-dimensional folding of chromatin fiber. Biochemistry 2005; 44:12978-89. [PMID: 16185066 DOI: 10.1021/bi050623v] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Higher-order architectures of chromosomes play important roles in the regulation of genome functions. To understand the molecular mechanism of genome packing, an in vitro chromatin reconstitution method and a single-molecule imaging technique (atomic force microscopy) were combined. In 50 mM NaCl, well-stretched beads-on-a-string chromatin fiber was observed. However, in 100 mM NaCl, salt-induced interaction between nucleosomes caused partial aggregation. Addition of histone H1 promoted a further folding of the fiber into thicker fibers 20-30 nm in width. Micrococcal nuclease digestion of these thicker fibers produced an approximately 170 bp fragment of nucleosomal DNA, which was approximately 20 bp longer than in the absence of histone H1 ( approximately 150 bp), indicating that H1 is correctly placed at the linker region. The width of the fiber depended on the ionic strength. Widths of 20 nm in 50 mM NaCl became 30 nm as the ionic strength was changed to 100 mM. On the basis of these results, a flexible model of chromatin fiber formation was proposed, where the mode of the fiber compaction changes depending both on salt environment and linker histone H1. The biological significance of this property of the chromatin architecture will be apparent in the closed segments ( approximately 100 kb) between SAR/MAR regions.
Collapse
Affiliation(s)
- Kohji Hizume
- Laboratory of Plasma Membrane and Nuclear Signaling, Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | | | | |
Collapse
|
45
|
Bagatella-Flores N, Schiessel H, Gelbart WM. Statics and Dynamics of Polymer-Wrapped Colloids. J Phys Chem B 2005; 109:21305-12. [PMID: 16853763 DOI: 10.1021/jp053023e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We study the complex between a colloidal particle and a semiflexible polymer chain that "wraps" around it. Via molecular dynamics simulation we investigate statistical and dynamical properties of this system. First we establish the dependence of wrapped chain length on absorption energy and chain persistence length and obtain the distribution of wrapped-sphere positions. Then we study the length and position distributions of thermally excited loop defects. Finally we consider the repositioning dynamics of the colloid, focusing on the case where the chain stays wrapped onto the complex. Specifically we determine the mean square displacement of the central monomer of the wrapped chain and the resulting diffusion coefficient of the chain as a function of its persistence length, absorption energy, chain length, and size of the sphere. We argue that both statics and dynamics of these complexes can be mainly understood by energetic arguments, whereas entropic contributions from the chain configurations play only a minor role.
Collapse
Affiliation(s)
- N Bagatella-Flores
- Facultad de Física e Inteligencia Artificial, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | | |
Collapse
|
46
|
Li W, Dou SX, Wang PY. The histone octamer influences the wrapping direction of DNA on it: Brownian dynamics simulation of the nucleosome chirality. J Theor Biol 2005; 235:365-72. [PMID: 15882698 DOI: 10.1016/j.jtbi.2005.01.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Revised: 01/21/2005] [Accepted: 01/25/2005] [Indexed: 11/25/2022]
Abstract
In eukaryote nucleosome, DNA wraps around a histone octamer in a left-handed way. We study the process of chirality formation of nucleosome with Brownian dynamics simulation. We model the histone octamer with a quantitatively adjustable chirality: left-handed, right-handed or non-chiral, and simulate the dynamical wrapping process of a DNA molecule on it. We find that the chirality of a nucleosome formed is strongly dependent on that of the histone octamer, and different chiralities of the histone octamer induce its different rotation directions in the wrapping process of DNA. In addition, a very weak chirality of the histone octamer is quite enough for sustaining the correct chirality of the nucleosome formed. We also show that the chirality of a nucleosome may be broken at elevated temperature.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Soft Matter Physics, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080, China
| | | | | |
Collapse
|
47
|
Cerdà JJ, Sintes T, Chakrabarti A. Excluded Volume Effects on Polymer Chains Confined to Spherical Surfaces. Macromolecules 2005. [DOI: 10.1021/ma048989n] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Juan J. Cerdà
- Departament de Fısica. Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain, and Department of Physics, Kansas State University, Cardwell Hall, Manhattan, Kansas 66506-2601
| | - Tomás Sintes
- Departament de Fısica. Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain, and Department of Physics, Kansas State University, Cardwell Hall, Manhattan, Kansas 66506-2601
| | - Amitabha Chakrabarti
- Departament de Fısica. Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain, and Department of Physics, Kansas State University, Cardwell Hall, Manhattan, Kansas 66506-2601
| |
Collapse
|
48
|
Li W, Dou SX, Wang PY. Brownian dynamics simulation of nucleosome formation and disruption under stretching. J Theor Biol 2004; 230:375-83. [PMID: 15321707 DOI: 10.1016/j.jtbi.2004.03.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2003] [Revised: 03/09/2004] [Accepted: 05/27/2004] [Indexed: 11/24/2022]
Abstract
Using a Brownian dynamics simulation, we numerically studied the interaction of DNA with histone and proposed an octamer-rotation model to describe the process of nucleosome formation. Nucleosome disruption under stretching was also simulated. The theoretical curves of extension versus time as well as of force versus extension are consistent with previous experimental results.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080
| | | | | |
Collapse
|
49
|
Sakaue T, Löwen H. Unwrapping of DNA-protein complexes under external stretching. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2004; 70:021801. [PMID: 15447507 DOI: 10.1103/physreve.70.021801] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Indexed: 05/24/2023]
Abstract
A DNA-protein complex modeled by a semiflexible chain and an attractive spherical core is studied in the situation when an external stretching force is acting on one end monomer of the chain while the other end monomer is kept fixed in space. Without a stretching force, the chain is wrapped around the core. By applying an external stretching force, unwrapping of the complex is induced. We study the statics and dynamics of the unwrapping process by computer simulations and simple phenomenological theory. We find two different scenarios depending on the chain stiffness: For a flexible chain, the extension of the complex scales linearly with the external force applied. The sphere-chain complex is disordered; i.e., there is no clear winding of the chain around the sphere. For a stiff chain, on the other hand, the complex structure is ordered, which is reminiscent of nucleosome. There is a clear winding number, and the unwrapping process under external stretching is discontinuous with jumps of the distance-force curve. This is associated with discrete unwinding processes of the complex. Our predictions are of relevance for experiments, which measure force-extension curves of DNA-protein complexes, such as nucleosome, using optical tweezers.
Collapse
Affiliation(s)
- Takahiro Sakaue
- Department of Physics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | |
Collapse
|
50
|
Flaus A, Owen-Hughes T. Dynamic properties of nucleosomes during thermal and ATP-driven mobilization. Mol Cell Biol 2003; 23:7767-79. [PMID: 14560021 PMCID: PMC207611 DOI: 10.1128/mcb.23.21.7767-7779.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fundamental subunit of chromatin, the nucleosome, is not a static entity but can move along DNA via either thermal or enzyme-driven movements. Here we have monitored the movements of nucleosomes following deposition at well-defined locations on mouse mammary tumor virus promoter DNA. We found that the sites to which nucleosomes are deposited during chromatin assembly differ from those favored during thermal equilibration. Taking advantage of this, we were able to track the movement of nucleosomes over 156 bp and found that this proceeds via intermediate positions spaced between 46 and 62 bp. The remodeling enzyme ISWI was found to direct the movement of nucleosomes to sites related to those observed during thermal mobilization. In contrast, nucleosome mobilization driven by the SWI/SNF and RSC complexes were found to drive nucleosomes towards sites up to 51 bp beyond DNA ends, with little respect for the sites favored during thermal repositioning. The dynamic properties of nucleosomes we describe are likely to influence their role in gene regulation.
Collapse
Affiliation(s)
- Andrew Flaus
- Division of Gene Regulation and Expression, The Wellcome Trust Biocentre, University of Dundee, Dundee DD1 5EH, United Kingdom
| | | |
Collapse
|