1
|
Aguilar MR, Jover J, Ruiz E, Aragonès AC, Artés Vivancos JM. Single-Molecule Electrical Conductance in Z-form DNA:RNA. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408459. [PMID: 39696933 PMCID: PMC11798349 DOI: 10.1002/smll.202408459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/06/2024] [Indexed: 12/20/2024]
Abstract
Nucleic acids have emerged as new materials with promising applications in nanotechnology, molecular electronics, and biosensing, but their electronic properties, especially at the single-molecule level, are largely underexplored. The Z-form is an exotic left-handed helical oligonucleotide conformation that may be involved in critical biological processes such as the regulation of gene expression and epigenetic processes. In this work, the electrical conductance of individual Guanine Cytosine (GC)-rich DNA:RNA molecules is measured in physiological buffer and 2,2,2-Trifluoroethanol (TFE) solvent, corresponding to the natural (right-handed helix) A-form typical in DNA:RNA hybrids and the (left-handed) Z-form conformations, respectively. Single-molecule conductance measurements are performed using the Scanning Tunneling Microscopy (STM)-assisted break-junction method in the so-called "blinking" approach, recording the spontaneous formation of single-biomolecule junctions and performing statistical analysis of the signals. Circular Dichroism (CD) experiments and ab initio calculations are also done to rationalize the measured molecular conductivity with a simple structural and electronic model. These results show that the electrical conductivity of the Z-form is one order of magnitude lower than that of the more compact A-form. The longer molecular length and higher energy for the Highest Occupied Molecular Orbital (HOMO) of the Z-form account for the differences in single-molecule conductance observed experimentally.
Collapse
Affiliation(s)
- Mauricio R. Aguilar
- Departament de Química Inorgànica i Orgànica, Secció de Química InorgànicaUniversitat de BarcelonaDiagonal 645Barcelona08028Spain
- Institut de Química Teòrica i Computacional (IQTC)Diagonal 645Barcelona08028Spain
| | - Jesus Jover
- Departament de Química Inorgànica i Orgànica, Secció de Química InorgànicaUniversitat de BarcelonaDiagonal 645Barcelona08028Spain
- Institut de Química Teòrica i Computacional (IQTC)Diagonal 645Barcelona08028Spain
| | - Eliseo Ruiz
- Departament de Química Inorgànica i Orgànica, Secció de Química InorgànicaUniversitat de BarcelonaDiagonal 645Barcelona08028Spain
- Institut de Química Teòrica i Computacional (IQTC)Diagonal 645Barcelona08028Spain
| | - Albert C. Aragonès
- Institut de Química Teòrica i Computacional (IQTC)Diagonal 645Barcelona08028Spain
- Departament de Ciència de Materials i Química FísicaUniversitat de BarcelonaMarti i Franquès 1Barcelona08028Spain
| | - Juan M Artés Vivancos
- Department of ChemistryUniversity of Massachusetts LowellLowellMA01854USA
- Present address:
European Research Council Executive Agency (ERCEA)BrusselsBelgium
| |
Collapse
|
2
|
Wiesner M, Barciszewski J, Belter A, Sierakowski A, Drzazga A, Chmielewski MK. Low bias charge transport in DNA. Sci Rep 2024; 14:22405. [PMID: 39333344 PMCID: PMC11436907 DOI: 10.1038/s41598-024-74133-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024] Open
Abstract
The low-bias current-voltage technique was utilized to study charge transport in single-stranded DNA (ssDNA), assessing the method's effectiveness for future studies aimed at estimating the degree of mutation or DNA damage. In the paper, we showed that charge carrier transfer processes in ssDNA can be precisely monitored using low-bias currents. We used negative differential resistance and the Fowler-Nordheim model to differentiate the charge transport mechanisms observed in a device composed of gold electrode-thiol-ssDNA junctions. It was possible to distinguish the processes at the two junctions (Au/thiol and thiol/DNA) due to their distinct current-voltage characteristics. We observed positive charge carrier tunneling, which we attribute to oxidation and reduction processes in the nucleobases of the ssDNA. Our results suggest that even minor changes in DNA chains can be accurately detected using the described methodology.
Collapse
Affiliation(s)
- Maciej Wiesner
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, Poznan, 61-614, Poland.
| | - Jan Barciszewski
- NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, Poznan, 61-614, Poland
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Agnieszka Belter
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, 61-704, Poland
| | - Andrzej Sierakowski
- Sieć Badawcza Łukasiewicz - Instytut Mikroelektroniki i Fotoniki, al. Lotników 32/46, Warsaw, 02-668, Poland
| | - Adrian Drzazga
- Tespol Sp. z o.o. ul, Klecińska 125, Wrocław, 54-413, Poland
| | - Marcin K Chmielewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, 61-704, Poland.
- FutureSynthesis sp.z o.o. ul. Rubież 46B, Poznan, 61-612, Poland.
| |
Collapse
|
3
|
Wang K, Deng P, Lin H, Sun W, Shen J. DNA-Based Conductors: From Materials Design to Ultra-Scaled Electronics. SMALL METHODS 2024:e2400694. [PMID: 39049716 DOI: 10.1002/smtd.202400694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Photolithography has been the foundational fabrication paradigm in current high-performance electronics. However, due to the limitation in fabrication resolution, scaling beyond a 20-nm critical dimension for metal conductors presents a significant challenge for photolithography. Structural DNA nanotechnology emerges as a promising alternative to photolithography, allowing for the site-specific assembly of nano-materials at single-molecule resolution. Substantial progresses have been achieved in the ultra-scaled DNA-based conductors, exhibiting novel transport characteristics and small critical dimensions. This review highlights the structure-transport property relationship for various DNA-based conductors and their potential applications in quantum /semiconductor electronics, going beyond the conventional scope focusing mainly on the shape diversity of DNA-templated metals. Different material synthesis methods and their morphological impacts on the conductivities are discussed in detail, with particular emphasis on the conducting mechanisms, such as insulating, metallic conducting, quantum tunneling, and superconducting. Furthermore, the ionic gating effect of self-assembled DNA structures in electrolyte solutions is examined. This review also suggests potential solutions to address current challenges in DNA-based conductors, encouraging multi-disciplinary collaborations for the future development of this exciting area.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Pu Deng
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Huili Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
- Zhangjiang Laboratory, Shanghai, 201210, China
| | - Jie Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
4
|
Song Y, Gao Y, Fang H. Unexpected large charge transfer rate mediated by adenine in twisted DNA structure. Phys Rev E 2024; 109:064412. [PMID: 39020924 DOI: 10.1103/physreve.109.064412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/15/2024] [Indexed: 07/20/2024]
Abstract
DNA exhibits remarkable charge transfer ability, which is crucial for its biological functions and potential electronic applications. The charge transfer process in DNA is widely recognized as primarily mediated by guanine, while the contribution of other nucleobases is negligible. Using the tight-binding models in conjunction with first-principles calculations, we investigated the charge transfer behavior of homogeneous GC and AT pairs. We found that the charge transfer rate of adenine significantly changes. With overstretching, the charge transfer rate of adenine can even surpass that of guanine, by as much as five orders of magnitude at a twist angle of around 26°. Further analysis reveals that it is attributed to the turnover of the relative coupling strength between homogeneous GC and AT base pairs, which is caused by the symmetry exchange between the two highest occupied molecular orbitals of base pairs occurring at different twist angles. Given the high degree of flexibility of DNA in vivo and in vitro conditions, these findings prompt us to reconsider the mechanism of biological functions concerning the charge transfer in DNA molecules and further open the potential of DNA as a biomaterial for electronic applications.
Collapse
|
5
|
Kundu S, Simserides C. Charge transport in a double-stranded DNA: Effects of helical symmetry and long-range hopping. Phys Rev E 2024; 109:014401. [PMID: 38366456 DOI: 10.1103/physreve.109.014401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/07/2023] [Indexed: 02/18/2024]
Abstract
Within a tight-binding framework, we examine conformation-dependent charge transport properties of the DNA double-helix, including helical symmetry and the possibility of multiple charge conduction pathways. Using techniques based on the Green's function method, we inspect changes in the localization properties of DNA in the presence of long-range hopping, with varying disorder strength. We study three characteristic DNA sequences, two periodic and one random. We observe that, in all cases, due to disorder-induced delocalization, the localization length variation is similar. We also investigate the effect of backbone energetics on current-voltage (I-V) responses, using the Landauer-Büttiker formalism. We find that, in the presence of helical symmetry and long-range hopping, due to environmental effects, DNA can undergo a phase transition from semiconductor to insulator.
Collapse
Affiliation(s)
- Sourav Kundu
- Department of Physics, GITAM University, Bengaluru Campus, Bengaluru - 561203, Karnatak, India
| | - Constantinos Simserides
- National and Kapodistrian University of Athens, Department of Physics, Panepistimiopolis, Zografos, GR-15784, Athens, Greece
| |
Collapse
|
6
|
Umapathy VR, Natarajan PM, Swamikannu B. Review of the Role of Nanotechnology in Overcoming the Challenges Faced in Oral Cancer Diagnosis and Treatment. Molecules 2023; 28:5395. [PMID: 37513267 PMCID: PMC10385509 DOI: 10.3390/molecules28145395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Throughout the world, oral cancer is a common and aggressive malignancy with a high risk of morbidity, mortality, and recurrence. The importance of early detection in cancer prevention and disease treatment cannot be overstated. Conventional therapeutic strategies have minor difficulties but considerable side effects and unfavourable consequences in clinical applications. Hence, there is a requirement for effective ways for early detection and treatment of oral cancer. At present, numerous forms of nanoparticles have piqued researchers' interest as a potentially useful tool for diagnostic probes and medicinal devices. Because of their inherent physicochemical properties and customizable surface modification, they are able to circumvent some of restrictions and accomplish the intended diagnostic and therapeutic impact. Nanotechnology is a unique field that has revolutionised the industry and is paving the way for new treatments for oral cancer. It can help with a better diagnosis with less harmful substances and is setting current guidelines for treatment. The use of nanotechnology in cancer diagnosis, therapy, and care improves clinical practise dramatically. The different types of nanoparticles that have been developed for the diagnosis and therapy of oral cancers will be covered in this study. The difficulties and potential uses of nanoparticles in the treatment and diagnosis of oral cancer are then highlighted. In order to emphasise existing difficulties and potential remedies for oral cancer, a prospective view of the future is also provided.
Collapse
Affiliation(s)
- Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. M.G.R. Educational and Research Institute, Chennai 600107, Tamil Nadu, India
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Centre of Medical and Bio-Allied Health Sciences and Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Bhuminathan Swamikannu
- Department of Prosthodontics, Sree Balaji Dental College and Hospital, BIHER University, Pallikaranai, Chennai 600100, Tamil Nadu, India
| |
Collapse
|
7
|
Wang Y, Demir B, Mohammad H, Oren EE, Anantram MP. Computational study of the role of counterions and solvent dielectric in determining the conductance of B-DNA. Phys Rev E 2023; 107:044404. [PMID: 37198817 DOI: 10.1103/physreve.107.044404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/01/2023] [Indexed: 05/19/2023]
Abstract
DNA naturally exists in a solvent environment, comprising water and salt molecules such as sodium, potassium, magnesium, etc. Along with the sequence, the solvent conditions become a vital factor determining DNA structure and thus its conductance. Over the last two decades, researchers have measured DNA conductivity both in hydrated and almost dry (dehydrated) conditions. However, due to experimental limitations (the precise control of the environment), it is very difficult to analyze the conductance results in terms of individual contributions of the environment. Therefore, modeling studies can help us to gain a valuable understanding of various factors playing a role in charge transport phenomena. DNA naturally has negative charges located at the phosphate groups in the backbone, which provides both the connections between the base pairs and the structural support for the double helix. Positively charged ions such as the sodium ion (Na^{+}), one of the most commonly used counterions, balance the negative charges at the backbone. This modeling study investigates the role of counterions both with and without the solvent (water) environment in charge transport through double-stranded DNA. Our computational experiments show that in dry DNA, the presence of counterions affects electron transmission at the lowest unoccupied molecular orbital energies. However, in solution, the counterions have a negligible role in transmission. Using the polarizable continuum model calculations, we demonstrate that the transmission is significantly higher at both the highest occupied and lowest unoccupied molecular orbital energies in a water environment as opposed to in a dry one. Moreover, calculations also show that the energy levels of neighboring bases are more closely aligned to ease electron flow in the solution.
Collapse
Affiliation(s)
- Yiren Wang
- Deparment of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98105, USA
| | - Busra Demir
- Bionanodesign Laboratory, Department of Biomedical Engineering, and Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara 06510, Turkey
| | - Hashem Mohammad
- Department of Electrical Engineering, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait
| | - Ersin Emre Oren
- Bionanodesign Laboratory, Department of Biomedical Engineering, and Department of Materials Science & Nanotechnology Engineering, TOBB University of Economics and Technology, Ankara 06510, Turkey
| | - M P Anantram
- Deparment of Electrical and Computer Engineering, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
8
|
Chen X, Yan B, Yao G. Towards atom manufacturing with framework nucleic acids. NANOTECHNOLOGY 2023; 34:172002. [PMID: 36669170 DOI: 10.1088/1361-6528/acb4f2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Atom manufacturing has become a blooming frontier direction in the field of material and chemical science in recent years, focusing on the fabrication of functional materials and devices with individual atoms or with atomic precision. Framework nucleic acids (FNAs) refer to nanoscale nucleic acid framework structures with novel properties distinct from those of conventional nucleic acids. Due to their ability to be precisely positioned and assembled at the nanometer or even atomic scale, FNAs are ideal materials for atom manufacturing. They hold great promise for the bottom-up construction of electronic devices by precisely arranging and integrating building blocks with atomic or near-atomic precision. In this review, we summarize the progress of atom manufacturing based on FNAs. We begin by introducing the atomic-precision construction of FNAs and the intrinsic electrical properties of DNA molecules. Then, we describe various approaches for the fabrication of FNAs templated materials and devices, which are classified as conducting, insulating, or semiconducting based on their electrical properties. We highlight the role of FNAs in the fabrication of functional electronic devices with atomic precision, as well as the challenges and opportunities for atom manufacturing with FNAs.
Collapse
Affiliation(s)
- Xiaoliang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Bingjie Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
9
|
Lima RPA, Malyshev AV. Charge transfer mechanisms in DNA at finite temperatures: From quasiballistic to anomalous subdiffusive charge transfer. Phys Rev E 2022; 106:024414. [PMID: 36109995 DOI: 10.1103/physreve.106.024414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
We address various regimes of charge transfer in DNA within the framework of the Peyrard-Bishop-Holstein model and analyze them from the standpoint of the characteristic size and timescales of the electronic and vibrational subsystems. It is demonstrated that a polaron is an unstable configuration within a broad range of temperatures and therefore polaronic contribution to the charge transport is irrelevant. We put forward an alternative fluctuation-governed charge transfer mechanism and show that the charge transfer can be quasiballistic at low temperatures, diffusive or mixed at intermediate temperatures, and subdiffusive close to the DNA denaturation transition point. Dynamic fluctuations in the vibrational subsystem is the key ingredient of our proposed mechanism which allows for explanation of all charge transfer regimes at finite temperatures. In particular, we demonstrate that in the most relevant regime of high temperatures (above the aqueous environment freezing point), the electron dynamics is completely governed by relatively slow fluctuations of the mechanical subsystem. We argue also that our proposed analysis methods and mechanisms can be relevant for the charge transfer in other organic systems, such as conjugated polymers, molecular aggregates, α-helices, etc.
Collapse
Affiliation(s)
- R P A Lima
- GISC and GFTC, Instituto de Física, Universidade Federal de Alagoas, Maceió AL 57072-970, Brazil
| | - A V Malyshev
- GISC, Departamento de Física de Materiales, Universidad Complutense, E-28040 Madrid, Spain
- Ioffe Physical-Technical Institute, St-Petersburg, Russia
| |
Collapse
|
10
|
Oiwa NN, Li K, Cordeiro CE, Heermann DW. Prediction and comparative analysis of CTCF binding sites based on a first principle approach. Phys Biol 2022; 19. [PMID: 35290214 DOI: 10.1088/1478-3975/ac5dca] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/09/2022] [Indexed: 11/12/2022]
Abstract
We calculated the patterns for the CCCTC transcription factor (CTCF) binding sites across many genomes on a first principle approach. The validation of the first principle method was done on the human as well as on the mouse genome. The predicted human CTCF binding sites are consistent with the consensus sequence, ChIP-seq data for the K562 cell, nucleosome positions for IMR90 cell as well as the CTCF binding sites in the mouse HOXA gene. The analysis of Homo sapiens, Mus musculus, Sus scrofa, Capra hircus and Drosophila melanogaster whole genomes shows: binding sites are organized in cluster-like groups, where two consecutive sites obey a power-law with coefficient ranging from to 0.3292 0.0068 to 0.5409 0.0064; the distance between these groups varies from 18.08 0.52kbp to 42.1 2.0kbp. The genome of Aedes aegypti does not show a power law, but 19.9% of binding sites are 144 4 and 287 5bp distant of each other. We run negative tests, confirming the under-representation of CTCF binding sites in Caenorhabditis elegans, Plasmodium falciparum and Arabidopsis thaliana complete genomes.
Collapse
Affiliation(s)
- Nestor Norio Oiwa
- Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, Baden-Württemberg, 69120, GERMANY
| | - Kunhe Li
- Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, 69117, GERMANY
| | - Claudette E Cordeiro
- Department of Physics, Universidade Federal Fluminense, Avenida Atlantica s/n, Gragoatal, Niteroi, Rio de Janeiro, 24220-900, BRAZIL
| | - Dieter W Heermann
- Theoretical Physics, Heidelberg University, Philosophenweg 19, Heidelberg, 69120, GERMANY
| |
Collapse
|
11
|
López A, Varela S, Medina E. Radiation modulated spin coupling in a double-stranded DNA model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:135301. [PMID: 34991081 DOI: 10.1088/1361-648x/ac48c1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The spin activity in macromolecules such as DNA and oligopeptides, in the context of the chiral induced spin selectivity has been proposed to be due to the atomic spin-orbit coupling (SOC) and the associated chiral symmetry of the structures. This coupling, associated with carbon, nitrogen and oxygen atoms in biological molecules, albeit small (meV), can be enhanced by the geometry, and strong local polarization effects such as hydrogen bonding. A novel way to manipulate the spin degree of freedom is by modifying the spectrum using a coupling to the appropriate electromagnetic radiation field. Here we use the Floquet formalism in order to show how the half filled band Hamiltonian for DNA, can be modulated by the radiation to produce up to a tenfold increase of the effective SOC once the intrinsic coupling is present. On the other hand, the chiral model, once incorporating the orbital angular momentum of electron motion on the helix, opens a gap for different helicity states (helicity splitting) that chooses spin polarization according to transport direction and chirality, without breaking time reversal symmetry. The observed effects are feasible in physically reasonable parameter ranges for the radiation field amplitude and frequency.
Collapse
Affiliation(s)
- Alexander López
- Departamento de Física, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, PO Box 09-01-5863, Guayaquil, Ecuador
| | - Solmar Varela
- Theoretical Condensed Matter Group, School of Chemical Sciences & Engineering, Yachay Tech University, 100119-Urcuquí, Ecuador
| | - Ernesto Medina
- Departamento de Física, Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito, Diego de Robles y Vía Interoceánica, Quito, 170901, Ecuador
| |
Collapse
|
12
|
Wang Y, Xie Y, Gao M, Zhang W, Liu L, Qu Y, Wang J, Hu C, Song Z, Wang Z. Electrical conductivity measurement of λDNA molecules by conductive atomic force microscopy. NANOTECHNOLOGY 2021; 33:055301. [PMID: 34134105 DOI: 10.1088/1361-6528/ac0be6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Conductive atomic force microscopy (C-AFM) is a powerful tool used in the microelectronics analysis by applying a certain bias voltage between the conducting probe and the sample and obtaining the electrical information of sample. In this work, the surface morphological information and current images of the lambda DNA (λDNA) molecules with different distributions were obtained by C-AFM. The 1 and 10 ngμl-1DNA solutions were dripped onto mica sheets for making randomly distributed DNA and DNA network samples, and another 1 ngμl-1DNA sample was placed in a DC electric field with a voltage of 2 V before being dried for stretching the DNA sample. The results show that the current flowing through DNA networks was significantly higher than the stretched and random distribution of DNA in the experiment. TheI-Vcurve of DNA networks was obtained by changing the bias voltage of C-AFM from -9 to 9 V. The currents flowing through stretched DNA at different pH values were studied. When the pH was 7, the current was the smallest, and the current was gradually increased as the solution became acidic or alkaline.
Collapse
Affiliation(s)
- Ying Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Ying Xie
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Mingyan Gao
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Wenxiao Zhang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Lanjiao Liu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Yingmin Qu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Jiajia Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Cuihua Hu
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zhengxun Song
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- Ministry of Education Key Laboratory for Cross-Scale Micro and Nano Manufacturing, Changchun University of Science and Technology, Changchun 130022, People's Republic of China
- JR3CN & IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| |
Collapse
|
13
|
Wang Q, Lin S, Liu X, Xu W, Xiao Y, Liang C, Ding L, Peeters FM. Photoluminescence and electronic transition behaviors of single-stranded DNA. Phys Rev E 2021; 104:034412. [PMID: 34654201 DOI: 10.1103/physreve.104.034412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/31/2021] [Indexed: 11/07/2022]
Abstract
Due to the potential application of DNA for biophysics and optoelectronics, the electronic energy states and transitions of this genetic material have attracted a great deal of attention recently. However, the fluorescence and corresponding physical process of DNA under optical excitation with photon energies below ultraviolet are still not fully clear. In this work, we experimentally investigate the photoluminescence (PL) properties of single-stranded DNA (ssDNA) samples under near-ultraviolet (NUV) and visible excitations (270∼440 nm). Based on the dependence of the PL peak wavelength (λ_{em}) upon the excitation wavelength (λ_{ex}), the PL behaviors of ssDNA can be approximately classified into two categories. In the relatively short excitation wavelength regime, λ_{em} is nearly constant due to exciton-like transitions associated with delocalized excitonic states and excimer states. In the relatively long excitation wavelength range, a linear relation of λ_{em}=Aλ_{ex}+B with A>0 or A<0 can be observed, which comes from electronic transitions related to coupled vibrational-electronic levels. Moreover, the transition channels in different excitation wavelength regimes and the effects of strand length and base type can be analyzed on the basis of these results. These important findings not only can give a general description of the electronic energy states and transitional behaviors of ssDNA samples under NUV and visible excitations, but also can be the basis for the application of DNA in nanoelectronics and optoelectronics.
Collapse
Affiliation(s)
- Qiujin Wang
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
| | - Shuo Lin
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
| | - Xuan Liu
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
| | - Wen Xu
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China.,Micro Optical Instruments Inc., 518118 Shenzhen, China.,Key Laboratory of Material Physics, Institute of Solid State Physics, Chinese Academy of Science, Hefei 230031, China
| | - Yiming Xiao
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
| | - Changneng Liang
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
| | - Lan Ding
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China
| | - F M Peeters
- School of Physics and Astronomy and Key Lab of Quantum Information of Yunnan Province, Yunnan University, Kunming 650091, China.,Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
| |
Collapse
|
14
|
He L, Zhang J, He C, Zhao B, Chen W, Patil SR. Effect of cytosine hydroxymethylation on DNA charge transport. Mol Cell Biochem 2021; 476:1599-1603. [PMID: 33405086 DOI: 10.1007/s11010-020-03957-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/15/2020] [Indexed: 10/22/2022]
Abstract
DNA hydroxymethylation plays a very important role in some biological processes, such as DNA methylation process. In addition, its presence can also cause some diseases. In this paper, the electrical properties of cytosine hydroxymethylated (Chm) DNA sequences are studied. The density functional theory (DFT) and Landauer-Büttiker framework are used to study the decoherence conductance and transmission of the Chm strands in different configurations, which provides a theoretical basis for the detection of Chm. The results show that the conductance of the hydroxymethylated DNA strand is smaller than that of the native and methylated strands. The length dependence of the Chm strands is also studied. With the length increasing, the conductance becomes larger. This study shows that DNA methylation can be detected electrically.
Collapse
Affiliation(s)
- Lijun He
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Jinsha Zhang
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Chengyun He
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Boyang Zhao
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Weizhong Chen
- The School of Optoelectronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Sunil R Patil
- Department of Physics, Institute of Science, Nagpur, 440008, India
| |
Collapse
|
15
|
Nakano K, Sawada T, Mori Y, Morita K, Ishimatsu R. Covalent Hyperbranched Polymer Self-Assemblies of Three-Way Junction DNA for Single-Molecule Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10166-10174. [PMID: 32787041 DOI: 10.1021/acs.langmuir.0c01621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A hyperbranched polymer (HBP) made of three-way junction (TWJ) DNAs is reported. Three types of 26-mer DNAs with 5'-ends modified with psoralen (PSN) were synthesized. All had self-complementary sequences starting from the 5'-end to the sixth base (AAGCTT), allowing intermolecular hybridization. The base sequences of the remaining 20-mer sites were designed so that upon hybridization, three strands had a TWJ structure with a mass of 25,000 that could be further grown by forming HBPs. PSN photochemically reacts to form interstrand cross-links that increase the polymer stability. Aggregates [(380 ± 44) nm and (65 ± 6) nm] detected with dynamic light scattering for TWJ-DNA solutions were also imaged by electron microscopy and atomic force microscopy, providing evidence of hyperbranched polymerization. The TWJ unit also polymerized on solid substrates such as Au and glass and formed self-assembled monolayers (SAMs). The HBP SAMs were integrated into commercial Pt-interdigitated electrode arrays. The DNA devices had current-voltage curves typical of metal-insulator-metal Schottky diodes; the effective barrier heights and the ideality factors were 0.52 ± 0.002 eV and 21 ± 3.2, respectively. The series resistances were (26 ± 3.3) × 106 Ω, which may provide insights into DNA electron transport. The DNA HBP enables stable electrical connections with probe electrodes and will be an important single-molecule platform.
Collapse
Affiliation(s)
- Koji Nakano
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University. Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takafumi Sawada
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University. Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshifumi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University. Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Kohei Morita
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University. Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| | - Ryoichi Ishimatsu
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University. Motooka 744, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Horoszko CP, Jena PV, Roxbury D, Rotkin SV, Heller DA. Optical Voltammetry of Polymer-Encapsulated Single-Walled Carbon Nanotubes. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2019; 123:24200-24208. [PMID: 32690989 PMCID: PMC7371339 DOI: 10.1021/acs.jpcc.9b07626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The semiconducting single-walled carbon nanotube (SWCNT), noncovalently wrapped by a polymeric monolayer, is a nanoscale semiconductor-electrolyte interface under investigation for sensing, photonics, and photovoltaic applications. SWCNT complexes are routinely observed to sensitize various electrochemical/redox phenomena, even in the absence of an external field. While the photoluminescence response to gate voltage depends on the redox potential of the nanotube, analogous optical voltammetry of functionalized carbon nanotubes could be conducted in suspension without applying voltage but by varying the solution conditions as well as the chemistry of the encapsulating polymer. Steady-state photoluminescence, absorbance, and in situ measurements of O2/H2O reactivity show correlation with the pH/pK a-dependent reactivity of π-rich coatings. The nanotube emission responses suggest that the presence of photogenerated potential may explain the observed coating electrochemical reactivity. This work finds that electronic and chemical interactions of the nanotube with the encapsulating polymer may play a critical role in applications that depend on radiative recombination, such as optical sensing.
Collapse
Affiliation(s)
- Christopher P. Horoszko
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Weill Graduate School of Medical Sciences, Cornell University, New York, New York 10065, United States
| | - Prakrit V. Jena
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
| | - Daniel Roxbury
- Department of Chemical Engineering, University of Rhode Island, Kingston, Rhode Island 02881, United States
| | - Slava V. Rotkin
- Materials Research Institute and Department of Engineering Science and Mechanics, Pennsylvania State University, Millennium Science Complex, University Park, Pennsylvania 16802, United States
| | - Daniel A. Heller
- Memorial Sloan Kettering Cancer Center, New York, New York 10065, United States
- Weill Cornell Medicine, Cornell University, New York, New York 10065, United States
| |
Collapse
|
17
|
Collier TP, Portnoi ME. Double-Gated Nanohelix as a Novel Tunable Binary Superlattice. NANOSCALE RESEARCH LETTERS 2019; 14:257. [PMID: 31448386 PMCID: PMC6709081 DOI: 10.1186/s11671-019-3069-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
We theoretically investigate the problem of an electron confined to a nanohelix between two parallel gates modelled as charged wires. The double-gated nanohelix system is a binary superlattice with properties highly sensitive to the gate voltages. In particular, the band structure exhibits energy band crossings for certain combinations of gate voltages, which could lead to quasi-relativistic Dirac-like phenomena. Our analysis for optical transitions induced by linearly and circularly polarized light suggests that a double-gated nanohelix can be used for versatile optoelectronic applications.
Collapse
Affiliation(s)
- Thomas P. Collier
- School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL United Kingdom
| | - Mikhail E. Portnoi
- School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL United Kingdom
- ITMO University, St. Petersburg, 197101 Russia
| |
Collapse
|
18
|
Latychevskaia T, Escher C, Andregg W, Andregg M, Fink HW. Direct visualization of charge transport in suspended (or free-standing) DNA strands by low-energy electron microscopy. Sci Rep 2019; 9:8889. [PMID: 31222124 PMCID: PMC6586886 DOI: 10.1038/s41598-019-45351-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 11/09/2022] Open
Abstract
Low-energy electrons offer a unique possibility for long exposure imaging of individual biomolecules without significant radiation damage. In addition, low-energy electrons exhibit high sensitivity to local potentials and thus can be employed for imaging charges as small as a fraction of one elementary charge. The combination of these properties makes low-energy electrons an exciting tool for imaging charge transport in individual biomolecules. Here we demonstrate the imaging of individual deoxyribonucleic acid (DNA) molecules at the resolution of about 1 nm with simultaneous imaging of the charging of the DNA molecules that is of the order of less than one elementary charge per nanometer. The cross-correlation analysis performed on different sections of the DNA network reveals that the charge redistribution between the two regions is correlated. Thus, low-energy electron microscopy is capable to provide simultaneous imaging of macromolecular structure and its charge distribution which can be beneficial for imaging and constructing nano-bio-sensors.
Collapse
Affiliation(s)
- Tatiana Latychevskaia
- Physics Department, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Conrad Escher
- Physics Department, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - William Andregg
- Halcyon Molecular, 505 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Michael Andregg
- Halcyon Molecular, 505 Penobscot Drive, Redwood City, CA, 94063, USA
| | - Hans-Werner Fink
- Physics Department, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
19
|
Lin K, Burke A, King NB, Kahanda D, Mazaheripour A, Bartlett A, Dibble DJ, McWilliams MA, Taylor DW, Jocson J, Minary‐Jolandan M, Gorodetsky AA, Slinker JD. Enhancement of the Electrical Properties of DNA Molecular Wires through Incorporation of Perylenediimide DNA Base Surrogates. Chempluschem 2019; 84:416-419. [DOI: 10.1002/cplu.201800661] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/27/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Kuo‐Yao Lin
- Department of Physics The University of Texas at Dallas 800 West Campbell Road, PHY 36 Richardson TX 75080-3021 USA
| | - Anthony Burke
- Department of Chemical Engineering and Materials Science 916 Engineering Tower University of California, Irvine Irvine CA 92697 USA
| | - Nolan B. King
- Department of Physics The University of Texas at Dallas 800 West Campbell Road, PHY 36 Richardson TX 75080-3021 USA
| | - Dimithree Kahanda
- Department of Physics The University of Texas at Dallas 800 West Campbell Road, PHY 36 Richardson TX 75080-3021 USA
| | - Amir Mazaheripour
- Department of Chemical Engineering and Materials Science 916 Engineering Tower University of California, Irvine Irvine CA 92697 USA
| | - Andrew Bartlett
- Department of Chemical Engineering and Materials Science 916 Engineering Tower University of California, Irvine Irvine CA 92697 USA
| | - David J. Dibble
- Department of Chemical Engineering and Materials Science 916 Engineering Tower University of California, Irvine Irvine CA 92697 USA
| | - Marc A. McWilliams
- Department of Physics The University of Texas at Dallas 800 West Campbell Road, PHY 36 Richardson TX 75080-3021 USA
| | - David W. Taylor
- Department of Physics The University of Texas at Dallas 800 West Campbell Road, PHY 36 Richardson TX 75080-3021 USA
| | - Jonah‐Micah Jocson
- Department of Chemical Engineering and Materials Science 916 Engineering Tower University of California, Irvine Irvine CA 92697 USA
| | - Majid Minary‐Jolandan
- Department of Mechanical Engineering The University of Texas at Dallas 800 W. Campbell Road, EC 38 Richardson TX 75080-3020 USA
| | - Alon A. Gorodetsky
- Department of Chemical Engineering and Materials Science 916 Engineering Tower University of California, Irvine Irvine CA 92697 USA
| | - Jason D. Slinker
- Department of Physics The University of Texas at Dallas 800 West Campbell Road, PHY 36 Richardson TX 75080-3021 USA
| |
Collapse
|
20
|
Abstract
Here we describe novel enzymatic procedures for the production of long (from tens of nanometers to microns) double-stranded poly(dG)-poly(dC), triple-helical poly(dG)-poly(dG)-poly(dC), and quadruple-helical G4 DNA. All these molecules are uniform in size and possess improved mechanical and electrical properties with respect to a canonical random sequence double-stranded DNA. They can potentially be used as elements in nanoelectronic devices and circuits.
Collapse
|
21
|
Muftakhov MV, Shchukin PV. Resonant electron capture by uridine and deoxyuridine molecules: Fragmentation with charge transfer. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:482-490. [PMID: 30430683 DOI: 10.1002/rcm.8354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/31/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
RATIONALE Charge transfer via DNA plays an important role in physical and chemical processes in biological systems, and is used in biomolecular electronics. The present study considers the resonant interaction of free electrons with nucleosides, which is important for an understanding of the processes of electron transport in DNA. METHODS Resonant electron capture negative ion mass spectrometry was used to study the processes of low-energy electron attachment to two uracil nucleosides, uridine and deoxyuridine, while density functional theory (DFT) calculations were used to analyze the energy aspects of ion formation and decay. RESULTS Short-lived molecular ions, formed via mechanisms of π* shape resonances, were found in the energy region below 5 eV. The fragmentation channels of these resonances and the structures of the charged and neutral products formed were determined. CONCLUSIONS These results suggest that the formation of some fragment negative ions occurs through intramolecular charge transfer.
Collapse
Affiliation(s)
- Mars V Muftakhov
- Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, IMCP UFRC RAS, Prospekt Oktyabrya 151, 450075, Ufa, Russia
| | - Pavel V Shchukin
- Institute of Molecule and Crystal Physics - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, IMCP UFRC RAS, Prospekt Oktyabrya 151, 450075, Ufa, Russia
| |
Collapse
|
22
|
Li YS, Wang XF. Manipulation of the magnetoresistance effect in a double-helix DNA. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:455102. [PMID: 30272566 DOI: 10.1088/1361-648x/aae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Magnetoresistance (R m) of a double-stranded (G:C) N DNA sandwiched between ferromagnetic electrodes has been studied using the transfer matrix method of the tight-binding model. A R m magnitude up to 72.5% for DNA in its natural structure is observed when the spin-orbit coupling with the helix spring geometry and a possible dephasing effect are taken into account. It can be greatly manipulated by stress or torque applied to the DNA with respect to its axis. In addition, the external voltage bias can also be used to efficiently control R m. The dependence of R m on the DNA length in a decaying oscillation form is observed.
Collapse
Affiliation(s)
- Yao-Sheng Li
- School of Physical Science and Technology, Soochow University, 1 Shizi Street, Suzhou 215006, People's Republic of China
| | | |
Collapse
|
23
|
Affiliation(s)
- Paulo R. Bueno
- Instituto de Química, Universidade Estadual Paulista, CP 355, 14800-900 Araraquara, São Paulo, Brazil
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
24
|
Goshi N, Narenji A, Bui C, Mokili JL, Kassegne S. Investigation Into the Effects of Nucleotide Content on the Electrical Characteristics of DNA Plasmid Molecular Wires. IEEE Trans Nanobioscience 2017; 15:585-594. [PMID: 27824579 DOI: 10.1109/tnb.2016.2596243] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study, we investigate the effect of nucleotide content on the conductivity of plasmid length DNA molecular wires covalently bound to high aspect-ratio gold electrodes. The DNA wires were all between [Formula: see text] in length (>6000bp), and contained either 39%, 53%, or 64% GC base-pairs. We compared the current-voltage (I-V) and frequency-impedance characteristics of the DNA wires with varying GC content, and observed statistically significantly higher conductivity in DNA wires containing higher GC content in both AC and DC measurement methods. Additionally, we noted that the conductivity decreased as a function of time for all DNA wires, with the impedance at 100 Hz nearly doubling over a period of seven days. All readings were taken in humidity and temperature controlled environments on DNA wires suspended above an insulative substrate, thus minimizing the effect of experimental and environmental factors as well as potential for nonlinear alternate DNA confirmations. While other groups have studied the effect of GC content on the conductivity of nanoscale DNA molecules (<50bp), we were able to demonstrate that nucleotide content can affect the conductivity of micrometer length DNA wires at scales that may be required during the fabrication of DNA-based electronics. Furthermore, our results provide further evidence that many of the charge transfer theories developed from experiments using nanoscale DNA molecules may still be applicable for DNA wires at the micro scale.
Collapse
|
25
|
Jiménez-Monroy KL, Renaud N, Drijkoningen J, Cortens D, Schouteden K, van Haesendonck C, Guedens WJ, Manca JV, Siebbeles LDA, Grozema FC, Wagner PH. High Electronic Conductance through Double-Helix DNA Molecules with Fullerene Anchoring Groups. J Phys Chem A 2017; 121:1182-1188. [PMID: 28094940 PMCID: PMC5330649 DOI: 10.1021/acs.jpca.7b00348] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
![]()
Determining
the mechanism of charge transport through native DNA
remains a challenge as different factors such as measuring conditions,
molecule conformations, and choice of technique can significantly
affect the final results. In this contribution, we have used a new
approach to measure current flowing through isolated double-stranded
DNA molecules, using fullerene groups to anchor the DNA to a gold
substrate. Measurements were performed at room temperature in an inert
environment using a conductive AFM technique. It is shown that the
π-stacked B-DNA structure is conserved on depositing the DNA.
As a result, currents in the nanoampere range were obtained for voltages
ranging between ±1 V. These experimental results are supported
by a theoretical model that suggests that a multistep hopping mechanism
between delocalized domains is responsible for the long-range current
flow through this specific type of DNA.
Collapse
Affiliation(s)
- Kathia L Jiménez-Monroy
- IMO-IMOMEC, Hasselt University , Campus Diepenbeek, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Nicolas Renaud
- Department of Chemical Engineering, Delft University of Technology , Julianalaan 136, 2628 BL Delft, The Netherlands
| | - Jeroen Drijkoningen
- IMO-IMOMEC, Hasselt University , Campus Diepenbeek, Wetenschapspark 1, 3590 Diepenbeek, Belgium.,IMO & X-LaB, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - David Cortens
- IMO-IMOMEC, Hasselt University , Campus Diepenbeek, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | | | | | - Wanda J Guedens
- IMO-IMOMEC, Hasselt University , Campus Diepenbeek, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| | - Jean V Manca
- IMO-IMOMEC, Hasselt University , Campus Diepenbeek, Wetenschapspark 1, 3590 Diepenbeek, Belgium.,IMO & X-LaB, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Laurens D A Siebbeles
- Department of Chemical Engineering, Delft University of Technology , Julianalaan 136, 2628 BL Delft, The Netherlands
| | - Ferdinand C Grozema
- Department of Chemical Engineering, Delft University of Technology , Julianalaan 136, 2628 BL Delft, The Netherlands
| | - Patrick H Wagner
- IMO-IMOMEC, Hasselt University , Campus Diepenbeek, Wetenschapspark 1, 3590 Diepenbeek, Belgium
| |
Collapse
|
26
|
Plettenberg J, Stockhofe J, Zampetaki AV, Schmelcher P. Local equilibria and state transfer of charged classical particles on a helix in an electric field. Phys Rev E 2017; 95:012213. [PMID: 28208410 DOI: 10.1103/physreve.95.012213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Indexed: 11/07/2022]
Abstract
We explore the effects of a homogeneous external electric field on the static properties and dynamical behavior of two charged particles confined to a helix. In contrast to the field-free setup which provides a separation of the center-of-mass and relative motion, the existence of an external force perpendicular to the helix axis couples the center-of-mass to the relative degree of freedom leading to equilibria with a localized center of mass. By tuning the external field various fixed points are created and/or annihilated through different bifurcation scenarios. We provide a detailed analysis of these bifurcations based on which we demonstrate a robust state transfer between essentially arbitrary equilibrium configurations of the two charges that can be induced by making the external force time dependent.
Collapse
Affiliation(s)
- J Plettenberg
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - J Stockhofe
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - A V Zampetaki
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - P Schmelcher
- Zentrum für Optische Quantentechnologien, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.,The Hamburg Centre for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
27
|
Wu T, Sun L, Shi Q, Deng K, Deng W, Lu R. Carrier mobility in double-helix DNA and RNA: A quantum chemistry study with Marcus-Hush theory. J Chem Phys 2016; 145:235101. [DOI: 10.1063/1.4971431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Tao Wu
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
| | - Lei Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Qi Shi
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
| | - Kaiming Deng
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
| | - Weiqiao Deng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| | - Ruifeng Lu
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing 210094, People’s Republic of China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China
| |
Collapse
|
28
|
Lambropoulos K, Kaklamanis K, Morphis A, Tassi M, Lopp R, Georgiadis G, Theodorakou M, Chatzieleftheriou M, Simserides C. Wire and extended ladder model predict THz oscillations in DNA monomers, dimers and trimers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:495101. [PMID: 27731310 DOI: 10.1088/0953-8984/28/49/495101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We call monomer a B-DNA base pair and study, analytically and numerically, electron or hole oscillations in monomers, dimers and trimers. We employ two tight binding (TB) approaches: (I) at the base-pair level, using the on-site energies of the base pairs and the hopping parameters between successive base pairs i.e. a wire model, and (II) at the single-base level, using the on-site energies of the bases and the hopping parameters between neighbouring bases, specifically between (a) two successive bases in the same strand, (b) complementary bases that define a base pair, and (c) diagonally located bases of successive base pairs, i.e. an extended ladder model since it also includes the diagonal hoppings (c). For monomers, with TB II, we predict periodic carrier oscillations with frequency [Formula: see text]-550 THz. For dimers, with TB I, we predict periodic carrier oscillations with [Formula: see text]-100 THz. For trimers made of identical monomers, with TB I, we predict periodic carrier oscillations with [Formula: see text]-33 THz. In other cases, either with TB I or TB II, the oscillations may be not strictly periodic, but Fourier analysis shows similar frequency content. For dimers and trimers, TB I and TB II are successfully compared giving complementary aspects of the oscillations.
Collapse
Affiliation(s)
- K Lambropoulos
- National and Kapodistrian University of Athens, Department of Physics, Panepistimiopolis, 15784 Zografos, Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Lambropoulos K, Chatzieleftheriou M, Morphis A, Kaklamanis K, Lopp R, Theodorakou M, Tassi M, Simserides C. Electronic structure and carrier transfer in B-DNA monomer polymers and dimer polymers: Stationary and time-dependent aspects of a wire model versus an extended ladder model. Phys Rev E 2016; 94:062403. [PMID: 28085358 DOI: 10.1103/physreve.94.062403] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Indexed: 06/06/2023]
Abstract
We employ two tight-binding (TB) approaches to systematically study the electronic structure and hole or electron transfer in B-DNA monomer polymers and dimer polymers made up of N monomers (base pairs): (I) at the base-pair level, using the onsite energies of base pairs and the hopping integrals between successive base pairs, i.e., a wire model and (II) at the single-base level, using the onsite energies of the bases and the hopping integrals between neighboring bases, i.e., an extended ladder model since we also include diagonal hoppings. We solve a system of M (matrix dimension) coupled equations [(I) M=N, (II) M=2N] for the time-independent problem, and a system of M coupled first order differential equations for the time-dependent problem. We perform a comparative study of stationary and time-dependent aspects of the two TB variants, using realistic sets of parameters. The studied properties include HOMO and LUMO eigenspectra, occupation probabilities, density of states and HOMO-LUMO gaps as well as mean over time probabilities to find the carrier at each site [(I) base pair or (II) base], Fourier spectra, which reflect the frequency content of charge transfer, and pure mean transfer rates from a certain site to another. The two TB approaches give coherent, complementary aspects of electronic properties and charge transfer in B-DNA monomer polymers and dimer polymers.
Collapse
Affiliation(s)
- K Lambropoulos
- National and Kapodistrian University of Athens, Department of Physics, Panepistimiopolis, 15784 Zografos, Athens, Greece
| | - M Chatzieleftheriou
- National and Kapodistrian University of Athens, Department of Physics, Panepistimiopolis, 15784 Zografos, Athens, Greece
| | - A Morphis
- National and Kapodistrian University of Athens, Department of Physics, Panepistimiopolis, 15784 Zografos, Athens, Greece
| | - K Kaklamanis
- National and Kapodistrian University of Athens, Department of Physics, Panepistimiopolis, 15784 Zografos, Athens, Greece
| | - R Lopp
- National and Kapodistrian University of Athens, Department of Physics, Panepistimiopolis, 15784 Zografos, Athens, Greece
| | - M Theodorakou
- National and Kapodistrian University of Athens, Department of Physics, Panepistimiopolis, 15784 Zografos, Athens, Greece
| | - M Tassi
- National and Kapodistrian University of Athens, Department of Physics, Panepistimiopolis, 15784 Zografos, Athens, Greece
| | - C Simserides
- National and Kapodistrian University of Athens, Department of Physics, Panepistimiopolis, 15784 Zografos, Athens, Greece
| |
Collapse
|
30
|
Cole DJ, Hine NDM. Applications of large-scale density functional theory in biology. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:393001. [PMID: 27494095 DOI: 10.1088/0953-8984/28/39/393001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Density functional theory (DFT) has become a routine tool for the computation of electronic structure in the physics, materials and chemistry fields. Yet the application of traditional DFT to problems in the biological sciences is hindered, to a large extent, by the unfavourable scaling of the computational effort with system size. Here, we review some of the major software and functionality advances that enable insightful electronic structure calculations to be performed on systems comprising many thousands of atoms. We describe some of the early applications of large-scale DFT to the computation of the electronic properties and structure of biomolecules, as well as to paradigmatic problems in enzymology, metalloproteins, photosynthesis and computer-aided drug design. With this review, we hope to demonstrate that first principles modelling of biological structure-function relationships are approaching a reality.
Collapse
Affiliation(s)
- Daniel J Cole
- Theory of Condensed Matter group, Cavendish Laboratory, 19 JJ Thomson Ave, Cambridge CB3 0HE, UK. School of Chemistry, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | |
Collapse
|
31
|
Bag S, Mogurampelly S, Goddard WA, Maiti PK. Dramatic changes in DNA conductance with stretching: structural polymorphism at a critical extension. NANOSCALE 2016; 8:16044-16052. [PMID: 27545499 DOI: 10.1039/c6nr03418g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In order to interpret recent experimental studies of the dependence of conductance of ds-DNA as the DNA is pulled from the 3'end1-3'end2 ends, which find a sharp conductance jump for a very short (4.5%) stretching length, we carried out multiscale modeling to predict the conductance of dsDNA as it is mechanically stretched to promote various structural polymorphisms. We calculate the current along the stretched DNA using a combination of molecular dynamics simulations, non-equilibrium pulling simulations, quantum mechanics calculations, and kinetic Monte Carlo simulations. For 5'end1-5'end2 attachments we find an abrupt jump in the current within a very short stretching length (6 Å or 17%) leading to a melted DNA state. In contrast, for 3'end1-3'end2 pulling it takes almost 32 Å (84%) of stretching to cause a similar jump in the current. Thus, we demonstrate that charge transport in DNA can occur over stretching lengths of several nanometers. We find that this unexpected behaviour in the B to S conformational DNA transition arises from highly inclined base pair geometries that result from this pulling protocol. We found that the dramatically different conductance behaviors for two different pulling protocols arise from how the hydrogen bonds of DNA base pairs break.
Collapse
Affiliation(s)
- Saientan Bag
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore 560012, India.
| | | | | | | |
Collapse
|
32
|
García-Álvarez L, Las Heras U, Mezzacapo A, Sanz M, Solano E, Lamata L. Quantum chemistry and charge transport in biomolecules with superconducting circuits. Sci Rep 2016; 6:27836. [PMID: 27324814 PMCID: PMC4914947 DOI: 10.1038/srep27836] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 05/25/2016] [Indexed: 11/08/2022] Open
Abstract
We propose an efficient protocol for digital quantum simulation of quantum chemistry problems and enhanced digital-analog quantum simulation of transport phenomena in biomolecules with superconducting circuits. Along these lines, we optimally digitize fermionic models of molecular structure with single-qubit and two-qubit gates, by means of Trotter-Suzuki decomposition and Jordan-Wigner transformation. Furthermore, we address the modelling of system-environment interactions of biomolecules involving bosonic degrees of freedom with a digital-analog approach. Finally, we consider gate-truncated quantum algorithms to allow the study of environmental effects.
Collapse
Affiliation(s)
- L. García-Álvarez
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - U. Las Heras
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - A. Mezzacapo
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- IBM T. J. Watson Research Center, Yorktown Heights, NY 10598, USA
| | - M. Sanz
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| | - E. Solano
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
- IKERBASQUE, Basque Foundation for Science, Maria Diaz de Haro 3, 48013 Bilbao, Spain
| | - L. Lamata
- Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, E-48080 Bilbao, Spain
| |
Collapse
|
33
|
Li Y, Artés JM, Qi J, Morelan IA, Feldstein P, Anantram MP, Hihath J. Comparing Charge Transport in Oligonucleotides: RNA:DNA Hybrids and DNA Duplexes. J Phys Chem Lett 2016; 7:1888-1894. [PMID: 27145167 DOI: 10.1021/acs.jpclett.6b00749] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Understanding the electronic properties of oligonucleotide systems is important for applications in nanotechnology, biology, and sensing systems. Here the charge-transport properties of guanine-rich RNA:DNA hybrids are compared to double-stranded DNA (dsDNA) duplexes with identical sequences. The conductance of the RNA:DNA hybrids is ∼10 times higher than the equivalent dsDNA, and conformational differences are determined to be the primary reason for this difference. The conductance of the RNA:DNA hybrids is also found to decrease more rapidly than dsDNA when the length is increased. Ab initio electronic structure and Green's function-based density of states calculations demonstrate that these differences arise because the energy levels are more spatially distributed in the RNA:DNA hybrid but that the number of accessible hopping sites is smaller. These combination results indicate that a simple hopping model that treats each individual guanine as a hopping site is insufficient to explain both a higher conductance and β value for RNA:DNA hybrids, and larger delocalization lengths must be considered.
Collapse
Affiliation(s)
- Yuanhui Li
- Electrical and Computer Engineering Department, University of California Davis , Davis, California 95616, United States
| | - Juan M Artés
- Electrical and Computer Engineering Department, University of California Davis , Davis, California 95616, United States
| | - Jianqing Qi
- Department of Electrical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Ian A Morelan
- Department of Plant Pathology, University of California Davis , Davis, California 95616, United States
| | - Paul Feldstein
- Department of Plant Pathology, University of California Davis , Davis, California 95616, United States
| | - M P Anantram
- Department of Electrical Engineering, University of Washington , Seattle, Washington 98195, United States
| | - Joshua Hihath
- Electrical and Computer Engineering Department, University of California Davis , Davis, California 95616, United States
| |
Collapse
|
34
|
Ribeiro WC, Gonçalves LM, Liébana S, Pividori MI, Bueno PR. Molecular conductance of double-stranded DNA evaluated by electrochemical capacitance spectroscopy. NANOSCALE 2016; 8:8931-8938. [PMID: 27074378 DOI: 10.1039/c6nr01076h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Conductance was measured in two different double stranded DNA (both with 20 bases), the more conducting poly(dG)-poly(dC) (ds-DNAc) and the less conducting poly(dA)-poly(dT) (ds-DNAi), by means of Electrochemical Capacitance Spectroscopy (ECS). The use of the ECS approach, exemplified herein with DNA nanowires, is equally a suitable and time-dependent advantageous alternative for conductance measurement of molecular systems, additionally allowing better understanding of the alignment existing between molecular scale conductance and electron transfer rate.
Collapse
Affiliation(s)
- W C Ribeiro
- Instituto de Química, Universidade Estadual Paulista, (Nanobionics Research Group), CP 355, 14800-900, Araraquara, SP, Brazil
| | - L M Gonçalves
- Requimte, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - S Liébana
- Grup de Sensors & Biosensors, Unitat de Química Analítica, Bloc de Ciencias e Biociencias, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M I Pividori
- Grup de Sensors & Biosensors, Unitat de Química Analítica, Bloc de Ciencias e Biociencias, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - P R Bueno
- Instituto de Química, Universidade Estadual Paulista, (Nanobionics Research Group), CP 355, 14800-900, Araraquara, SP, Brazil
| |
Collapse
|
35
|
Rettie AJE, Chemelewski WD, Emin D, Mullins CB. Unravelling Small-Polaron Transport in Metal Oxide Photoelectrodes. J Phys Chem Lett 2016; 7:471-479. [PMID: 26758715 DOI: 10.1021/acs.jpclett.5b02143] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Transition-metal oxides are a promising class of semiconductors for the oxidation of water, a process that underpins both photoelectrochemical water splitting and carbon dioxide reduction. However, these materials are limited by very slow charge transport. This is because, unlike conventional semiconductors, material aspects of metal oxides favor the formation of slow-moving, self-trapped charge carriers: small polarons. In this Perspective, we seek to highlight the salient features of small-polaron transport in metal oxides, offer guidelines for their experimental characterization, and examine recent transport studies of two prototypical oxide photoanodes: tungsten-doped monoclinic bismuth vanadate (W:BiVO4) and titanium-doped hematite (Ti:α-Fe2O3). Analysis shows that conduction in both materials is well-described by the adiabatic small-polaron model, with electron drift mobility (distinct from the Hall mobility) values on the order of 10(-4) and 10(-2) cm(2) V(-1) s(-1), respectively. Future directions to build a full picture of charge transport in this family of materials are discussed.
Collapse
Affiliation(s)
| | | | - David Emin
- Department of Physics and Astronomy, The University of New Mexico , Albuquerque, New Mexico 87131, United States
| | | |
Collapse
|
36
|
Capobianco A, Caruso T, Peluso A. Hole delocalization over adenine tracts in single stranded DNA oligonucleotides. Phys Chem Chem Phys 2016; 17:4750-6. [PMID: 25589467 DOI: 10.1039/c4cp04282d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Adiabatic ionization energies of single stranded DNA oligonucleotides containing adenine tracts of different sizes have been computed at the DFT level and compared with the oxidation potentials determined by differential pulse voltammetry. Geometry optimizations have been performed at the full quantum mechanical level, including the sugar phosphate backbone and solvent effects. The observed progressive lowering of the ionization energy upon increasing the number of consecutive adenines is well predicted, the computed ionization potential shifts being in very good agreement with the experimental outcomes, both by using pure and hybrid functionals. The spin density of the oligonucleotide radical cations is distributed almost over the whole adenine tract, forming delocalized polarons.
Collapse
Affiliation(s)
- Amedeo Capobianco
- Dipartimento di Chimica e Biologia, Università di Salerno, I-84084 Fisciano, SA, Italy.
| | | | | |
Collapse
|
37
|
Magliulo M, Manoli K, Macchia E, Palazzo G, Torsi L. Tailoring Functional Interlayers in Organic Field-Effect Transistor Biosensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7528-51. [PMID: 25429859 DOI: 10.1002/adma.201403477] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/24/2014] [Indexed: 05/18/2023]
Abstract
This review aims to provide an update on the development involving dielectric/organic semiconductor (OSC) interfaces for the realization of biofunctional organic field-effect transistors (OFETs). Specific focus is given on biointerfaces and recent technological approaches where biological materials serve as interlayers in back-gated OFETs for biosensing applications. Initially, to better understand the effects produced by the presence of biomolecules deposited at the dielectric/OSC interfacial region, the tuning of the dielectric surface properties by means of self-assembled monolayers is discussed. Afterward, emphasis is given to the modification of solid-state dielectric surfaces, in particular inorganic dielectrics, with biological molecules such as peptides and proteins. Special attention is paid on how the presence of an interlayer of biomolecules and bioreceptors underneath the OSC impacts on the charge transport and sensing performance of the device. Moreover, naturally occurring materials, such as carbohydrates and DNA, used directly as bulk gating materials in OFETs are reviewed. The role of metal contact/OSC interface in the overall performance of OFET-based sensors is also discussed.
Collapse
Affiliation(s)
- Maria Magliulo
- Università degli Studi di Bari "Aldo Moro", Via Orabona, 470125, Bari, Italy
| | - Kyriaki Manoli
- Università degli Studi di Bari "Aldo Moro", Via Orabona, 470125, Bari, Italy
| | - Eleonora Macchia
- Università degli Studi di Bari "Aldo Moro", Via Orabona, 470125, Bari, Italy
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari "A. Moro", Via Orabona, 470125, Bari, Italy
| | - Gerardo Palazzo
- Università degli Studi di Bari "Aldo Moro", Via Orabona, 470125, Bari, Italy
| | - Luisa Torsi
- Università degli Studi di Bari "Aldo Moro", Via Orabona, 470125, Bari, Italy
| |
Collapse
|
38
|
Yoo-Kong S, Liewrian W. Double path integral method for obtaining the mobility of the one-dimensional charge transport in molecular chain. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2015; 38:135. [PMID: 26701710 DOI: 10.1140/epje/i2015-15135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 11/17/2015] [Indexed: 06/05/2023]
Abstract
We report on a theoretical investigation concerning the polaronic effect on the transport properties of a charge carrier in a one-dimensional molecular chain. Our technique is based on the Feynman's path integral approach. Analytical expressions for the frequency-dependent mobility and effective mass of the carrier are obtained as functions of electron-phonon coupling. The result exhibits the crossover from a nearly free particle to a heavily trapped particle. We find that the mobility depends on temperature and decreases exponentially with increasing temperature at low temperature. It exhibits large polaronic-like behaviour in the case of weak electron-phonon coupling. These results agree with the phase transition (A.S. Mishchenko et al., Phys. Rev. Lett. 114, 146401 (2015)) of transport phenomena related to polaron motion in the molecular chain.
Collapse
Affiliation(s)
- Sikarin Yoo-Kong
- Theoretical and Computational Physics (TCP) Group, Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, 10140, Bangkok, Thailand.
- Theoretical and Computational Science Centre (TaCS), Faculty of Science, King Mongkut's University of Technology Thonburi, 10140, Bangkok, Thailand.
- Ratchaburi Campus, King Mongkut's University of Technology Thonburi, 70510, Ratchaburi, Thailand.
| | - Watchara Liewrian
- Theoretical and Computational Physics (TCP) Group, Department of Physics, Faculty of Science, King Mongkut's University of Technology Thonburi, 10140, Bangkok, Thailand.
- Theoretical and Computational Science Centre (TaCS), Faculty of Science, King Mongkut's University of Technology Thonburi, 10140, Bangkok, Thailand.
- ThEP Center, Commission of Higher Education, 328 Si Ayuthaya Rd., 10400, Bangkok, Thailand.
| |
Collapse
|
39
|
Li X, Liu L, Sharma P. Geometrically nonlinear deformation and the emergent behavior of polarons in soft matter. SOFT MATTER 2015; 11:8042-8047. [PMID: 26345397 DOI: 10.1039/c5sm01925g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mechanical strain can alter the electronic structure of both bulk semiconductors as well as nanostructures such as quantum dots. This fact has been extensively researched and exploited for tailoring electronic properties. The strain mediated interaction between the charge carriers and the lattice is interpreted through the so-called deformation potential. In the case of soft materials or nanostructures, such as DNA, the deformation potential leads to the formation of polarons which largely determine the electronic characteristics of DNA and similar polymer entities. In addition, polarons are also speculated to be responsible for the mechanism of quantum actuation in carbon nanotubes. The deformation potential is usually taken to be a linear function of the lattice deformation (U ∼ αε) where α is the deformation potential "constant" that determines the coupling strength and ε is the mechanical strain. In this letter, by carefully accounting for nonlinear geometric deformation that has been hitherto ignored so far in this context, we show that the deformation potential constant is renormalized in a non-trivial manner and is hardly a constant. It varies spatially within the material and with the size of the material. This effect, while negligible for hard materials, is found to be important for soft materials and critically impacts the interpretation of quantities such as polaron size, binding energy, and accordingly, electronic behavior.
Collapse
Affiliation(s)
- Xiaobao Li
- Department of Mechanical Engineering, University of Houston, TX 77204, USA
| | | | | |
Collapse
|
40
|
McWilliams MA, Bhui R, Taylor DW, Slinker JD. The Electronic Influence of Abasic Sites in DNA. J Am Chem Soc 2015; 137:11150-5. [DOI: 10.1021/jacs.5b06604] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marc A. McWilliams
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Rd., PHY 36, Richardson, Texas 75080, United States
| | - Rita Bhui
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Rd., PHY 36, Richardson, Texas 75080, United States
| | - David W. Taylor
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Rd., PHY 36, Richardson, Texas 75080, United States
| | - Jason D. Slinker
- Department of Physics, The University of Texas at Dallas, 800 W. Campbell Rd., PHY 36, Richardson, Texas 75080, United States
| |
Collapse
|
41
|
Zhang Y, Zhu WH, Ding GH, Dong B, Wang XF. Charge transport and ac response under light illumination in gate-modulated DNA molecular junctions. NANOTECHNOLOGY 2015; 26:205201. [PMID: 25927276 DOI: 10.1088/0957-4484/26/20/205201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Using a two-strand tight-binding model and within nonequilibrium Green's function approach, we study charge transport through DNA sequences (GC)NGC and (GC)1(TA)NTA (GC)3 sandwiched between two Pt electrodes. We show that at low temperature DNA sequence (GC)NGC exhibits coherent charge carrier transport at very small bias, since the highest occupied molecular orbital in the GC base pair can be aligned with the Fermi energy of the metallic electrodes by a gate voltage. A weak distance dependent conductance is found in DNA sequence (GC)1(TA)NTA (GC)3 with large NTA. Different from the mechanism of thermally induced hopping of charges proposed by the previous experiments, we find that this phenomenon is dominated by quantum tunnelling through discrete quantum well states in the TA base pairs. In addition, ac response of this DNA junction under light illumination is also investigated. The suppression of ac conductances of the left and right lead of DNA sequences at some particular frequencies is attributed to the excitation of electrons in the DNA to the lead Fermi surface by ac potential, or the excitation of electrons in deep DNA energy levels to partially occupied energy levels in the transport window. Therefore, measuring ac response of DNA junctions can reveal a wealth of information about the intrinsic dynamics of DNA molecules.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Artificial Structures and Quantum Control (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
Study of DNA adsorption on mica surfaces using a surface force apparatus. Sci Rep 2015; 5:8442. [PMID: 25676333 PMCID: PMC4326959 DOI: 10.1038/srep08442] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 01/19/2015] [Indexed: 11/22/2022] Open
Abstract
We report our studies on the adsorption properties of double-stranded DNA molecules on mica surfaces in a confined environment using a surface force apparatus. Specifically, we studied the influence of cation species and concentrations on DNA adsorption properties. Our results indicated that divalent cations (Mg2+ and Co2+) preferred to form uniform and moderately dense DNA layers on a mica substrate. By measuring the interactions between DNA-coated mica and bare mica in an aqueous solution, obvious adhesion was observed in a cobalt chloride solution, possibly due to the ion-correlation attraction between negatively charged DNA and the mica surface. Furthermore, the interaction differences that were observed with MgCl2 and CoCl2 solutions reveal that the specific adsorption behaviors of DNA molecules on a mica substrate were mediated by these two salts. Our results are helpful to elucidate the dynamics of DNA binding on a solid substrate.
Collapse
|
43
|
Borrelli R, Capobianco A, Landi A, Peluso A. Vibronic couplings and coherent electron transfer in bridged systems. Phys Chem Chem Phys 2015; 17:30937-45. [DOI: 10.1039/c5cp01190f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A computational strategy to analyze the dynamics of coherent electron transfer processes in bridged systems, involving three or more electronic states, is presented.
Collapse
Affiliation(s)
- Raffaele Borrelli
- Department of Agricultural
- Forestry and Food Science
- University of Torino
- I-10095 Grugliasco
- Italy
| | - Amedeo Capobianco
- Dipartimento di Chimica e Biologia
- Università di Salerno
- I-84084 Fisciano (SA)
- Italy
| | - Alessandro Landi
- Dipartimento di Chimica e Biologia
- Università di Salerno
- I-84084 Fisciano (SA)
- Italy
| | - Andrea Peluso
- Dipartimento di Chimica e Biologia
- Università di Salerno
- I-84084 Fisciano (SA)
- Italy
| |
Collapse
|
44
|
Mohamad AS, Jeynes JCG, Hughes MP. Dielectrophoretic response of DNA shows different conduction mechanisms for poly(dG)-poly(dC) and poly(dA)-Poly(dT) in solution. IEEE Trans Nanobioscience 2014; 13:51-4. [PMID: 24594514 DOI: 10.1109/tnb.2014.2299215] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Although the subject of some scrutiny over the years, the mechanism of conduction in DNA has not yet been resolved, with competing theories suggesting either electronic and ionic conduction mechanisms. In this paper we use dielectrophoresis to determine the electrical properties of poly(dG)-poly(dC) (GC) and poly(dA)-poly(dT) (AT) DNA in solution. The molecules show different conduction mechanisms; GC DNA exhibits conduction primarily through the molecule, whereas in AT DNA conduction through the counterion cloud surrounding the molecule in solution is more significant.
Collapse
|
45
|
|
46
|
Wirth J, Garwe F, Meyer R, Csáki A, Stranik O, Fritzsche W. Plasmonically enhanced electron escape from gold nanoparticles and their polarization-dependent excitation transfer along DNA nanowires. NANO LETTERS 2014; 14:3809-3816. [PMID: 24884536 DOI: 10.1021/nl5009184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we show plasmon mediated excitation transfer along DNA nanowires over up to one micrometer. Apparently, an electron excitation is initiated by a femtosecond laser pulse that illuminates gold nanoparticles (AuNP) on double stranded DNA (dsDNA). The dependency of this excitation on laser wavelength and polarization are investigated. Excitation of the plasmon resonance of the AuNPs via one- and two-photon absorption at 520 and 1030 nm, respectively, was explored. We demonstrate an excitation transfer along dsDNA molecules at plasmon supported four-photon excitation of AuNP cluster or at laser field driven nanoparticle electron tunneling for an alignment of the attached dsDNA to the polarization of the electric field of the laser light. These results extend the previously observed plasmonically induced three-photon excitation transfer along DNA nanowires to another nanoparticle material (gold) and the adapted irradiation wavelengths.
Collapse
Affiliation(s)
- J Wirth
- Leibniz Institute of Photonic Technology , Jena 07745, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Wang J, Xu Y, Yau ST. Mediatorless Immunoassay with Voltage-Controlled Intrinsic Amplification for Ultrasensitive and Rapid Detection of Microorganism Pathogens. ChemElectroChem 2014. [DOI: 10.1002/celc.201300180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Kundu S, Karmakar SN. Localization phenomena in a DNA double-helix structure: a twisted ladder model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:032719. [PMID: 24730886 DOI: 10.1103/physreve.89.032719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Indexed: 06/03/2023]
Abstract
In this work we propose a model for the DNA double helix within the tight-binding framework that incorporates the helicity of the molecules. We have studied the localization properties of three DNA sequences, the periodic poly(dG)-poly(dC) and poly(dA)-poly(dT) sequences and the random ATGC sequence (where A is adenine, T is thymine, G is guanine, and C is cytosine), all of which are coupled to the backbone with random site energies representing the environmental fluctuations. We observe that due to the helicity of DNA, electron transport is greatly enhanced and there exists an almost disorder-strength-independent critical value of the hopping integral, which accounts for the helicity of DNA, for which the electronic states become maximally extended. We have also investigated the effect of backbone energetics on the transmission and I-V characteristics of DNA.
Collapse
Affiliation(s)
- Sourav Kundu
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| | - S N Karmakar
- Condensed Matter Physics Division, Saha Institute of Nuclear Physics, 1/AF, Bidhannagar, Kolkata 700 064, India
| |
Collapse
|
49
|
Tsuburaya M, Sakamoto H, Mizoguchi K. Electronic states of DNA and M-DNA studied by optical absorption. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 89:022719. [PMID: 25353520 DOI: 10.1103/physreve.89.022719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Indexed: 06/04/2023]
Abstract
To unveil the electronic states of divalent metal ion incorporated M-DNAs, where M is Mg, Mn, Ni, Co, or Fe, optical absorption spectra have been studied in aqueous solutions of single-stranded (SS) 30 mer DNA of poly(dA) (adenine), poly(dG) (guanine), poly(dT) (thymine), poly(dC) (cytosine), salmon-sperm DNA (B-DNA), and M-DNA. The absorption spectrum of the double-stranded (DS) B-DNA can be reproduced with the sum of the four absorption spectra of the SS oligo-DNAs in the ratio corresponding to the composition of B-DNA. This observation suggests that the interactions between complementary strands of DS DNA are negligibly weaker than the bandwidths of the optical spectra. In the metal-incorporated M-DNAs, except for Fe-DNA, the absorption spectra show no significant qualitative change from that of B-DNA. Quantitatively, however, the absorption intensity decreases by ≈ 15% uniquely in a DS poly(dA)-poly(dT) solution with adding MCl(2), while nothing happens quantitatively and qualitatively in any SS oligo-DNA and DS poly(dG)-poly(dC) solutions, suggesting some suppression of the electronic excitation only in the Adenine-M-Thymine complex. In contrast, remarkable differences have been observed in Fe-DNA, prepared with FeCl(2) and B-DNA. New absorption bands appear in the intragap energy of Fe-DNA, in addition to the suppression of the interband absorption peak of DNA at 4.8 eV. The intragap absorption is attributed to the appearance of Fe(3+) species with the same spectral feature as that of FeCl(3), that is, purely ionic Fe(3+) species. This observation suggests that FeCl(2) + B-DNA forms Fe-DNA with hydrated Fe(3+) ions with ionic bonds. Thus, it is concluded that the charge transfer from Fe(2+) to DNA has occurred in Fe-DNA and that the transferred charges are expected to be located in the nearby bases.
Collapse
Affiliation(s)
- Makoto Tsuburaya
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Hirokazu Sakamoto
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Kenji Mizoguchi
- Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| |
Collapse
|
50
|
Wohlgamuth CH, McWilliams MA, Slinker JD. Temperature dependence of electrochemical DNA charge transport: influence of a mismatch. Anal Chem 2013; 85:1462-7. [PMID: 23252597 DOI: 10.1021/ac302508f] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Charge transfer through DNA is of interest as DNA is both the quintessential biomolecule of all living organisms and a self-organizing element in bioelectronic circuits and sensing applications. Here, we report the temperature-dependent properties of DNA charge transport in an electronically relevant arrangement of DNA monolayers on gold under biologically relevant conditions, and we track the effects of incorporating a CA single base pair mismatch. Charge transfer (CT) through double stranded, 17mer monolayers was monitored by following the yield of electrochemical reduction of a Nile blue redox probe conjugated to a modified thymine. Analysis with cyclic voltammetry and square wave voltammetry shows that DNA CT increases significantly with temperature, indicative of more DNA bridges becoming active for transport. The mismatch was found to attenuate DNA CT at lower temperatures, but the effect of the mismatch diminished as temperature was increased. Voltammograms were analyzed to extract the electron transfer rate k(0), the electron transfer coefficient α, and the redox-active surface coverage Γ*. Arrhenius behavior was observed, with activation energies of 100 meV for electron transfer through well-matched DNA. Single CA mismatches increased the activation energy by 60 meV. These results have clear implications for sensing applications and are evaluated with respect to the prominent models of DNA CT.
Collapse
Affiliation(s)
- Chris H Wohlgamuth
- Department of Physics, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas 75080, United States
| | | | | |
Collapse
|