1
|
Roberts MG, Dent MR, Ramos S, Thielges MC, Burstyn JN. Probing conformational dynamics of DNA binding by CO-sensing transcription factor, CooA. J Inorg Biochem 2024; 259:112656. [PMID: 38986290 DOI: 10.1016/j.jinorgbio.2024.112656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/29/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
The transcription factor CooA is a CRP/FNR (cAMP receptor protein/ fumarate and nitrate reductase) superfamily protein that uses heme to sense carbon monoxide (CO). Allosteric activation of CooA in response to CO binding is currently described as a series of discrete structural changes, without much consideration for the potential role of protein dynamics in the process of DNA binding. This work uses site-directed spin-label electron paramagnetic resonance spectroscopy (SDSL-EPR) to probe slow timescale (μs-ms) conformational dynamics of CooA with a redox-stable nitroxide spin label, and IR spectroscopy to probe the environment at the CO-bound heme. A series of cysteine substitution variants were created to selectively label CooA in key functional regions, the heme-binding domain, the 4/5-loop, the hinge region, and the DNA binding domain. The EPR spectra of labeled CooA variants are compared across three functional states: Fe(III) "locked off", Fe(II)-CO "on", and Fe(II)-CO bound to DNA. We observe changes in the multicomponent EPR spectra at each location; most notably in the hinge region and DNA binding domain, broadening the description of the CooA allosteric mechanism to include the role of protein dynamics in DNA binding. DNA-dependent changes in IR vibrational frequency and band broadening further suggest that there is conformational heterogeneity in the active WT protein and that DNA binding alters the environment of the heme-bound CO.
Collapse
Affiliation(s)
- Madeleine G Roberts
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
| | - Matthew R Dent
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States
| | - Sashary Ramos
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Megan C Thielges
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States
| | - Judith N Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706, United States.
| |
Collapse
|
2
|
Segers M, Voorspoels A, Sakaue T, Carlon E. Mechanisms of DNA-Mediated Allostery. PHYSICAL REVIEW LETTERS 2023; 131:238402. [PMID: 38134780 DOI: 10.1103/physrevlett.131.238402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023]
Abstract
Proteins often regulate their activities via allostery-or action at a distance-in which the binding of a ligand at one binding site influences the affinity for another ligand at a distal site. Although less studied than in proteins, allosteric effects have been observed in experiments with DNA as well. In these experiments two or more proteins bind at distinct DNA sites and interact indirectly with each other, via a mechanism mediated by the linker DNA molecule. We develop a mechanical model of DNA/protein interactions which predicts three distinct mechanisms of allostery. Two of these involve an enthalpy-mediated allostery, while a third mechanism is entropy driven. We analyze experiments of DNA allostery and highlight the distinctive signatures allowing one to identify which of the proposed mechanisms best fits the data.
Collapse
Affiliation(s)
- Midas Segers
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Aderik Voorspoels
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Takahiro Sakaue
- Department of Physical Sciences, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Enrico Carlon
- Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| |
Collapse
|
3
|
Subsets of Slow Dynamic Modes Reveal Global Information Sources as Allosteric Sites. J Mol Biol 2022; 434:167644. [DOI: 10.1016/j.jmb.2022.167644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/17/2022] [Accepted: 05/17/2022] [Indexed: 02/06/2023]
|
4
|
Tandon H, de Brevern AG, Srinivasan N. Transient association between proteins elicits alteration of dynamics at sites far away from interfaces. Structure 2020; 29:371-384.e3. [PMID: 33306961 DOI: 10.1016/j.str.2020.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 10/01/2020] [Accepted: 11/17/2020] [Indexed: 11/30/2022]
Abstract
Proteins are known to undergo structural changes upon binding to partner proteins. However, the prevalence, extent, location, and function of change in protein dynamics due to transient protein-protein interactions is not well documented. Here, we have analyzed a dataset of 58 protein-protein complexes of known three-dimensional structure and structures of their corresponding unbound forms to evaluate dynamics changes induced by binding. Fifty-five percent of cases showed significant dynamics change away from the interfaces. This change is not always accompanied by an observed structural change. Binding of protein partner is found to alter inter-residue communication within the tertiary structure in about 90% of cases. Also, residue motions accessible to proteins in unbound form were not always maintained in the bound form. Further analyses revealed functional roles for the distant site where dynamics change was observed. Overall, the results presented here strongly suggest that alteration of protein dynamics due to binding of a partner protein commonly occurs.
Collapse
Affiliation(s)
- Himani Tandon
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, 75739 Paris, France; Univ Paris, UMR_S 1134, 75739 Paris, France; Institut National de la Transfusion Sanguine (INTS), 75739 Paris, France; Laboratoire d'Excellence GR-Ex, 75739 Paris, France
| | | |
Collapse
|
5
|
Campitelli P, Modi T, Kumar S, Ozkan SB. The Role of Conformational Dynamics and Allostery in Modulating Protein Evolution. Annu Rev Biophys 2020; 49:267-288. [PMID: 32075411 DOI: 10.1146/annurev-biophys-052118-115517] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Advances in sequencing techniques and statistical methods have made it possible not only to predict sequences of ancestral proteins but also to identify thousands of mutations in the human exome, some of which are disease associated. These developments have motivated numerous theories and raised many questions regarding the fundamental principles behind protein evolution, which have been traditionally investigated horizontally using the tip of the phylogenetic tree through comparative studies of extant proteins within a family. In this article, we review a vertical comparison of the modern and resurrected ancestral proteins. We focus mainly on the dynamical properties responsible for a protein's ability to adapt new functions in response to environmental changes. Using the Dynamic Flexibility Index and the Dynamic Coupling Index to quantify the relative flexibility and dynamic coupling at a site-specific, single-amino-acid level, we provide evidence that the migration of hinges, which are often functionally critical rigid sites, is a mechanism through which proteins can rapidly evolve. Additionally, we show that disease-associated mutations in proteins often result in flexibility changes even at positions distal from mutational sites, particularly in the modulation of active site dynamics.
Collapse
Affiliation(s)
- Paul Campitelli
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona 85281, USA; , ,
| | - Tushar Modi
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona 85281, USA; , ,
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, Pennsylvania 19122, USA; .,Department of Biology, Temple University, Philadelphia, Pennsylvania 19122, USA.,Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - S Banu Ozkan
- Center for Biological Physics, Department of Physics, Arizona State University, Tempe, Arizona 85281, USA; , ,
| |
Collapse
|
6
|
von der Heydt AC, McLeish TCB. How proteins' negative cooperativity emerges from entropic optimisation of versatile collective fluctuations. J Chem Phys 2019; 151:215101. [PMID: 31822099 DOI: 10.1063/1.5123741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The fact that allostery, a nonlocal signaling between distant binding sites, can arise mainly from the entropy balance of collective thermal modes, without conformational changes, is by now well known. However, the propensity to generate negative cooperativity is still unclear. Starting from an elastic-network picture of small protein complexes, in which effector binding is modeled by locally altering interaction strengths in lieu of adding a node-spring pair, we elucidate mechanisms particularly for such negative cooperativity. The approach via a few coupled harmonic oscillators with internal elastic strengths allows us to trace individual eigenmodes, their frequencies, and their statistical weights through successive bindings. We find that the alteration of the oscillators' couplings is paramount to covering both signs of allostery. Binding-modified couplings create a rich set of eigenmodes individually for each binding state, modes inaccessible to an ensemble of noninteracting units. The associated shifts of collective-mode frequencies, nonuniform with respect to modes and binding states, result in an enhanced optimizability, reflected by a subtle phase map of allosteric behaviors.
Collapse
Affiliation(s)
- Alice C von der Heydt
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Tom C B McLeish
- Department of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| |
Collapse
|
7
|
Wodak SJ, Paci E, Dokholyan NV, Berezovsky IN, Horovitz A, Li J, Hilser VJ, Bahar I, Karanicolas J, Stock G, Hamm P, Stote RH, Eberhardt J, Chebaro Y, Dejaegere A, Cecchini M, Changeux JP, Bolhuis PG, Vreede J, Faccioli P, Orioli S, Ravasio R, Yan L, Brito C, Wyart M, Gkeka P, Rivalta I, Palermo G, McCammon JA, Panecka-Hofman J, Wade RC, Di Pizio A, Niv MY, Nussinov R, Tsai CJ, Jang H, Padhorny D, Kozakov D, McLeish T. Allostery in Its Many Disguises: From Theory to Applications. Structure 2019; 27:566-578. [PMID: 30744993 PMCID: PMC6688844 DOI: 10.1016/j.str.2019.01.003] [Citation(s) in RCA: 245] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/29/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
Allosteric regulation plays an important role in many biological processes, such as signal transduction, transcriptional regulation, and metabolism. Allostery is rooted in the fundamental physical properties of macromolecular systems, but its underlying mechanisms are still poorly understood. A collection of contributions to a recent interdisciplinary CECAM (Center Européen de Calcul Atomique et Moléculaire) workshop is used here to provide an overview of the progress and remaining limitations in the understanding of the mechanistic foundations of allostery gained from computational and experimental analyses of real protein systems and model systems. The main conceptual frameworks instrumental in driving the field are discussed. We illustrate the role of these frameworks in illuminating molecular mechanisms and explaining cellular processes, and describe some of their promising practical applications in engineering molecular sensors and informing drug design efforts.
Collapse
Affiliation(s)
| | | | - Nikolay V Dokholyan
- Department of Biochemistry & Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Departments of Pharmacology and Biochemistry & Molecular Biology, Penn State Medical Center, Hershey, PA, USA
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A(∗)STAR), and Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Amnon Horovitz
- Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Jing Li
- Departments of Biology and T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, USA
| | - Vincent J Hilser
- Departments of Biology and T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, USA
| | - Ivet Bahar
- School of Medicine, University of Pittsburgh, Pittsburgh, USA
| | | | - Gerhard Stock
- Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, Freiburg, Germany
| | - Peter Hamm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Roland H Stote
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Jerome Eberhardt
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Yassmine Chebaro
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Annick Dejaegere
- Department of Integrative Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Marco Cecchini
- Institut de Chimie de Strasbourg, UMR7177 CNRS & Université de Strasbourg, Strasbourg, France
| | | | - Peter G Bolhuis
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Jocelyne Vreede
- van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, Netherlands
| | - Pietro Faccioli
- Physics Department, Università di Trento and INFN-TIFPA, Trento, Italy
| | - Simone Orioli
- Physics Department, Università di Trento and INFN-TIFPA, Trento, Italy
| | - Riccardo Ravasio
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Le Yan
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
| | - Carolina Brito
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS 91501-970, Brazil
| | - Matthieu Wyart
- Institute of Physics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Paraskevi Gkeka
- Structure Design and Informatics, Sanofi R&D, Chilly-Mazarin, France
| | - Ivan Rivalta
- École Normale Supérieure de Lyon, Université de Lyon, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| | - Giulia Palermo
- Department of Chemistry and Biochemistry, University of California, San Diego, USA; Department of Bioengineering, University of California Riverside, CA 92507, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, USA
| | - Joanna Panecka-Hofman
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS) and Center for Molecular Biology (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, Heidelberg, Germany; Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany
| | - Antonella Di Pizio
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Munich, Germany
| | - Masha Y Niv
- Institute of Biochemistry, Food Science and Nutrition, Robert H Smith Faculty of Agriculture Food and Environment, The Hebrew University, Jerusalem, Israel
| | - Ruth Nussinov
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, USA; Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Chung-Jung Tsai
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, USA
| | - Hyunbum Jang
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, USA
| | - Dzmitry Padhorny
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Dima Kozakov
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Tom McLeish
- Department of Physics, University of York, York, UK
| |
Collapse
|
8
|
Negre CFA, Morzan UN, Hendrickson HP, Pal R, Lisi GP, Loria JP, Rivalta I, Ho J, Batista VS. Eigenvector centrality for characterization of protein allosteric pathways. Proc Natl Acad Sci U S A 2018; 115:E12201-E12208. [PMID: 30530700 PMCID: PMC6310864 DOI: 10.1073/pnas.1810452115] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Determining the principal energy-transfer pathways responsible for allosteric communication in biomolecules remains challenging, partially due to the intrinsic complexity of the systems and the lack of effective characterization methods. In this work, we introduce the eigenvector centrality metric based on mutual information to elucidate allosteric mechanisms that regulate enzymatic activity. Moreover, we propose a strategy to characterize the range of correlations that underlie the allosteric processes. We use the V-type allosteric enzyme imidazole glycerol phosphate synthase (IGPS) to test the proposed methodology. The eigenvector centrality method identifies key amino acid residues of IGPS with high susceptibility to effector binding. The findings are validated by solution NMR measurements yielding important biological insights, including direct experimental evidence for interdomain motion, the central role played by helix h[Formula: see text], and the short-range nature of correlations responsible for the allosteric mechanism. Beyond insights on IGPS allosteric pathways and the nature of residues that could be targeted by therapeutic drugs or site-directed mutagenesis, the reported findings demonstrate the eigenvector centrality analysis as a general cost-effective methodology to gain fundamental understanding of allosteric mechanisms at the molecular level.
Collapse
Affiliation(s)
- Christian F A Negre
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545;
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| | - Uriel N Morzan
- Department of Chemistry, Yale University, New Haven, CT 06520-8107;
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| | - Heidi P Hendrickson
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
- Department of Chemistry, Lafayette College, Easton, PA 18042
| | - Rhitankar Pal
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| | - George P Lisi
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI 02903
| | - J Patrick Loria
- Department of Chemistry, Yale University, New Haven, CT 06520-8107
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520
| | - Ivan Rivalta
- Université de Lyon, École Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon 1, Laboratoire de Chimie UMR 5182, Lyon, France;
- Dipartimento di Chimica Industriale "Toso Montanari," Università degli Studi di Bologna, Viale del Risorgimento, 4I-40136 Bologna, Italy
| | - Junming Ho
- School of Chemistry, University of New South Wales, Sydney NSW 2052, Australia
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520-8107;
- Energy Sciences Institute, Yale University, West Haven, CT 06516-7394
| |
Collapse
|
9
|
Schaefer C, de Bruijn RAJ, McLeish TCB. Ligand-regulated oligomerisation of allosterically interacting proteins. SOFT MATTER 2018; 14:6961-6968. [PMID: 30009315 DOI: 10.1039/c8sm00943k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The binding of ligands to distinct sites at proteins or at protein clusters is often cooperative or anti-cooperative due to allosteric signalling between those sites. The allostery is usually attributed to a configurational change of the proteins from a relaxed to a configurationally different tense state. Alternatively, as originally proposed by Cooper and Dryden, a tense state may be achieved by merely restricting the thermal vibrations of the protein around its mean configuration. In this work, we provide theoretical tools to investigate fluctuation allostery using cooling and titration experiments in which ligands regulate dimerisation, or ring or chain formation. We discuss in detail how ligands may regulate the supramolecular (co)polymerisation of liganded and unliganded proteins.
Collapse
Affiliation(s)
- Charley Schaefer
- Department of Physics, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | | |
Collapse
|
10
|
Biosensor libraries harness large classes of binding domains for construction of allosteric transcriptional regulators. Nat Commun 2018; 9:3101. [PMID: 30082754 PMCID: PMC6079105 DOI: 10.1038/s41467-018-05525-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/11/2018] [Indexed: 12/15/2022] Open
Abstract
The ability of bacteria to sense specific molecules within their environment and trigger metabolic responses in accordance is an invaluable biotechnological resource. While many transcription factors (TFs) mediating such processes have been studied, only a handful have been leveraged for molecular biology applications. To expand the repertoire of biotechnologically relevant sensors we present a strategy for the construction and testing of chimeric TF libraries, based on the fusion of highly soluble periplasmic binding proteins (PBPs) with DNA-binding domains (DBDs). We validate this concept by constructing and functionally testing two unique sense-and-respond regulators for benzoate, an environmentally and industrially relevant metabolite. This work will enable the development of tailored biosensors for novel synthetic regulatory circuits. Bacterially encoded environmental sensor proteins are potentially a rich source of transcriptional control but only a few have been harnessed for biotechnological applications. Here the authors develop a general strategy for designing custom-made monogenic synthetic sensors and validate the approach by designing two sense-and-respond regulators for benzoate.
Collapse
|
11
|
McLeish T, Schaefer C, von der Heydt AC. The 'allosteron' model for entropic allostery of self-assembly. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170186. [PMID: 29735739 PMCID: PMC5941180 DOI: 10.1098/rstb.2017.0186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 12/20/2022] Open
Abstract
Using the simple 'allosteron' model, we show that it is possible, in principle, to elicit pathways by which fluctuation allostery affects self-assembly of protein complexes. We treat the cases of (i) protein fibrils and nucleation, (ii) n-mer protein complexes, and (iii) weakly attractive allosteric interactions in protein-like soft nanoscale objects that can be tuned to define exclusive self-associating families.This article is part of a discussion meeting issue 'Allostery and molecular machines'.
Collapse
Affiliation(s)
- Tom McLeish
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - C Schaefer
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - A C von der Heydt
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| |
Collapse
|
12
|
Tiwari SP, Reuter N. Conservation of intrinsic dynamics in proteins — what have computational models taught us? Curr Opin Struct Biol 2018; 50:75-81. [DOI: 10.1016/j.sbi.2017.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 12/12/2022]
|
13
|
Illien P, Zhao X, Dey KK, Butler PJ, Sen A, Golestanian R. Exothermicity Is Not a Necessary Condition for Enhanced Diffusion of Enzymes. NANO LETTERS 2017; 17:4415-4420. [PMID: 28593755 DOI: 10.1021/acs.nanolett.7b01502] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Recent experiments have revealed that the diffusivity of exothermic and fast enzymes is enhanced when they are catalytically active, and different physical mechanisms have been explored and quantified to account for this observation. We perform measurements on the endothermic and relatively slow enzyme aldolase, which also shows substrate-induced enhanced diffusion. We propose a new physical paradigm, which reveals that the diffusion coefficient of a model enzyme hydrodynamically coupled to its environment increases significantly when undergoing changes in conformational fluctuations in a substrate concentration dependent manner, and is independent of the overall turnover rate of the underlying enzymatic reaction. Our results show that substrate-induced enhanced diffusion of enzyme molecules can be explained within an equilibrium picture and that the exothermicity of the catalyzed reaction is not a necessary condition for the observation of this phenomenon.
Collapse
Affiliation(s)
- Pierre Illien
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford , Oxford OX1 3NP, United Kingdom
| | | | | | | | | | - Ramin Golestanian
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford , Oxford OX1 3NP, United Kingdom
| |
Collapse
|
14
|
Morra G, Genoni A, Colombo G. Mechanisms of Differential Allosteric Modulation in Homologous Proteins: Insights from the Analysis of Internal Dynamics and Energetics of PDZ Domains. J Chem Theory Comput 2015; 10:5677-89. [PMID: 26583250 DOI: 10.1021/ct500326g] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Allostery is a general phenomenon in proteins whereby a perturbation at one site reverberates into a functional change at another one, through modulation of its conformational dynamics. Herein, we address the problem of how the molecular signal encoded by a ligand is differentially transmitted through the structures of two homologous PDZ proteins: PDZ2, which responds to binding with structural and dynamical changes in regions distal from the ligand site, and PDZ3, which is characterized by less-intense dynamical variations. We use novel methods of analysis of MD simulations in the unbound and bound states to investigate the determinants of the differential allosteric behavior of the two proteins. The analysis of the correlations between the redistribution of stabilization energy and local fluctuation patterns highlights the nucleus of residues responsible for the stabilization of the 3D fold, the stability core, as the substructure that defines the difference in the allosteric response: in PDZ2, it undergoes a consistent dynamic and energetic reorganization, whereas in PDZ3, it remains largely unperturbed. Specifically, we observe for PDZ2 a significant anticorrelation between the motions of distal loops and residues of the stability core and differences in the correlation patterns between the bound and unbound states. Such variation is not observed in PDZ3, indicating that its energetics and internal dynamics are less affected by the presence/absence of the ligand. Finally, we propose a model with a direct link between the modulation of the structural, energetic and dynamic properties of a protein, and its allosteric response to a perturbation.
Collapse
Affiliation(s)
- Giulia Morra
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche Via Mario Bianco 9, 20131 Milano, Italy
| | - Alessandro Genoni
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche Via Mario Bianco 9, 20131 Milano, Italy.,CNRS, Laboratoire SRSMC, UMR 7565, Vandoeuvre-lès-Nancy F-54506, France.,Université de Lorraine, Laboratoire SRSMC, UMR 7565, Vandoeuvre-lès-Nancy F-54506, France
| | - Giorgio Colombo
- Istituto di Chimica del Riconoscimento Molecolare, Consiglio Nazionale delle Ricerche Via Mario Bianco 9, 20131 Milano, Italy
| |
Collapse
|
15
|
Dynamic Transmission of Protein Allostery without Structural Change: Spatial Pathways or Global Modes? Biophys J 2015; 109:1240-50. [PMID: 26338443 DOI: 10.1016/j.bpj.2015.08.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/02/2015] [Accepted: 08/07/2015] [Indexed: 11/23/2022] Open
Abstract
We examine the contrast between mechanisms for allosteric signaling that involve structural change, and those that do not, from the perspective of allosteric pathways. In particular we treat in detail the case of fluctuation-allostery by which amplitude modulation of the thermal fluctuations of the elastic normal modes conveys the allosteric signal, and address the question of what an allosteric pathway means in this case. We find that a perturbation theory of thermal elastic solids and nonperturbative approach (by super-coarse-graining elasticity into internal bending modes) have opposite signatures in their structure of correlated pathways. We illustrate the effect from analysis of previous results from GlxR of Corynebacterium glutamicum, an example of the CRP/FNR transcription family of allosteric homodimers. We find that the visibility of both correlated pathways and disconnected sites of correlated motion in this protein suggests that mechanisms of local elastic stretch and bend are recruited for the purpose of creating and controlling allosteric cooperativity.
Collapse
|
16
|
Townsend PD, Rodgers TL, Glover LC, Korhonen HJ, Richards SA, Colwell LJ, Pohl E, Wilson MR, Hodgson DRW, McLeish TCB, Cann MJ. The Role of Protein-Ligand Contacts in Allosteric Regulation of the Escherichia coli Catabolite Activator Protein. J Biol Chem 2015; 290:22225-35. [PMID: 26187469 PMCID: PMC4571973 DOI: 10.1074/jbc.m115.669267] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Indexed: 12/20/2022] Open
Abstract
Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. Both experimental and theoretical evidence demonstrate that allostery can be communicated through altered slow relaxation protein dynamics without conformational change. The catabolite activator protein (CAP) of Escherichia coli is an exemplar for the analysis of such entropically driven allostery. Negative allostery in CAP occurs between identical cAMP binding sites. Changes to the cAMP-binding pocket can therefore impact the allosteric properties of CAP. Here we demonstrate, through a combination of coarse-grained modeling, isothermal calorimetry, and structural analysis, that decreasing the affinity of CAP for cAMP enhances negative cooperativity through an entropic penalty for ligand binding. The use of variant cAMP ligands indicates the data are not explained by structural heterogeneity between protein mutants. We observe computationally that altered interaction strength between CAP and cAMP variously modifies the change in allosteric cooperativity due to second site CAP mutations. As the degree of correlated motion between the cAMP-contacting site and a second site on CAP increases, there is a tendency for computed double mutations at these sites to drive CAP toward noncooperativity. Naturally occurring pairs of covarying residues in CAP do not display this tendency, suggesting a selection pressure to fine tune allostery on changes to the CAP ligand-binding pocket without a drive to a noncooperative state. In general, we hypothesize an evolutionary selection pressure to retain slow relaxation dynamics-induced allostery in proteins in which evolution of the ligand-binding site is occurring.
Collapse
Affiliation(s)
- Philip D Townsend
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| | - Thomas L Rodgers
- the School of Chemical Engineering and Analytical Science, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Laura C Glover
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and the Departments of Chemistry and
| | - Heidi J Korhonen
- the Biophysical Sciences Institute, and the Departments of Chemistry and the Department of Chemistry, University of Turku, 20014 Turku, Finland, and
| | | | - Lucy J Colwell
- the Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Ehmke Pohl
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and the Departments of Chemistry and
| | - Mark R Wilson
- the Biophysical Sciences Institute, and the Departments of Chemistry and
| | - David R W Hodgson
- the Biophysical Sciences Institute, and the Departments of Chemistry and
| | - Tom C B McLeish
- the Biophysical Sciences Institute, and the Departments of Chemistry and Physics, Durham University, Durham DH1 3LE, United Kingdom
| | - Martin J Cann
- From the School of Biological and Biomedical Sciences, the Biophysical Sciences Institute, and
| |
Collapse
|
17
|
Ribeiro AA, Ortiz V. Local elastic constants of LacI and implications for allostery. J Mol Graph Model 2015; 57:106-13. [DOI: 10.1016/j.jmgm.2015.01.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 11/28/2022]
|
18
|
Townsend PD, Rodgers TL, Pohl E, Wilson MR, McLeish TCB, Cann MJ. Global low-frequency motions in protein allostery: CAP as a model system. Biophys Rev 2015; 7:175-182. [PMID: 26000062 PMCID: PMC4432019 DOI: 10.1007/s12551-015-0163-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/12/2015] [Indexed: 11/28/2022] Open
Abstract
Allostery is a fundamental process by which ligand binding to a protein alters its activity at a distant site. There is considerable evidence that allosteric cooperativity can be communicated by the modulation of protein dynamics without conformational change. The Catabolite Activator Protein (CAP) of Escherichia coli is an important experimental exemplar for entropically driven allostery. Here we discuss recent experimentally supported theoretical analysis that highlights the role of global low-frequency dynamics in allostery in CAP and identify how allostery arises as a natural consequence of changes in global low-frequency protein fluctuations on ligand binding.
Collapse
Affiliation(s)
- Philip D Townsend
- Biophysical Sciences Institute, Durham University, Durham, UK ; School of Biological and Biomedical Sciences, Durham University, Durham, UK
| | - Thomas L Rodgers
- Biophysical Sciences Institute, Durham University, Durham, UK ; Department of Chemistry, Durham University, Durham, UK ; School of Chemical Engineering and Analytical Sciences, University of Manchester, Manchester, UK
| | - Ehmke Pohl
- Biophysical Sciences Institute, Durham University, Durham, UK ; School of Biological and Biomedical Sciences, Durham University, Durham, UK ; Department of Chemistry, Durham University, Durham, UK
| | - Mark R Wilson
- Biophysical Sciences Institute, Durham University, Durham, UK ; Department of Chemistry, Durham University, Durham, UK
| | - Tom C B McLeish
- Biophysical Sciences Institute, Durham University, Durham, UK ; Department of Chemistry, Durham University, Durham, UK ; Department of Physics, Durham University, Durham, UK
| | - Martin J Cann
- Biophysical Sciences Institute, Durham University, Durham, UK ; School of Biological and Biomedical Sciences, Durham University, Durham, UK
| |
Collapse
|
19
|
Mochizuki K, Whittleston CS, Somani S, Kusumaatmaja H, Wales DJ. A conformational factorisation approach for estimating the binding free energies of macromolecules. Phys Chem Chem Phys 2014; 16:2842-53. [PMID: 24213246 DOI: 10.1039/c3cp53537a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We present a conformational factorization approach. The theory is based on a superposition partition function, decomposed as a sum over contributions from local minima. The factorisation greatly reduces the number of minima that need to be considered, by employing the same local configurations for groups that are sufficiently distant from the binding site. The theory formalises the conditions required to analyse how our definition of the binding site region affects the free energy difference between the apo and holo states. We employ basin-hopping parallel tempering to sample minima that contribute significantly to the partition function, and calculate the binding free energies within the harmonic normal mode approximation. A further significant gain in efficiency is achieved using a recently developed local rigid body framework in both the sampling and the normal mode analysis, which reduces the number of degrees of freedom. We benchmark this approach for human aldose reductase (PDB code 2INE). When varying the size of the rigid region, the free energy difference converges for factorisation of groups at a distance of 14 Å from the binding site, which corresponds to 80% of the protein being locally rigidified.
Collapse
Affiliation(s)
- Kenji Mochizuki
- School of Physical Sciences, The Graduate University for Advanced Studies (SOKENDAI), Myodaiji, Okazaki 444-8585, Japan.
| | | | | | | | | |
Collapse
|
20
|
Hu Y, Liu H. Case study on temperature-accelerated molecular dynamics simulation of ligand dissociation: inducer dissociation from the Lac repressor protein. J Phys Chem A 2014; 118:9272-9. [PMID: 24941022 DOI: 10.1021/jp503856h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied ligand dissociation from the inducer-binding domain of the Lac repressor protein using temperature-accelerated molecular dynamics (TAMD) simulations. With TAMD, ligand dissociation could be observed within relatively short simulation time. This allowed many dissociation trajectories to be sampled. Under the adiabatic approximation of TAMD, all but one degree of freedom of the system were sampled from usual canonical ensembles at room temperature. Thus, meaningful statistical analyses could be carried out on the trajectories. A systematic approach was proposed to analyze possible correlations between ligand dissociation and fluctuations of various protein conformational coordinates. These analyses employed relative entropies, allowing both linear and nonlinear correlations to be considered. Applying the simulation and analysis methods to the inducer binding domain of the Lac repressor protein, we found that ligand dissociation from this protein correlated mainly with fluctuations of side-chain conformations of a few residues that surround the binding pocket. In addition, the two binding sites of the dimeric protein were dynamically coupled: occupation of one site by an inducer molecule could significantly reduce or slow down conformational dynamics around the other binding pocket.
Collapse
Affiliation(s)
- Yue Hu
- School of Life Sciences, ‡Hefei National Laboratory for Physical Sciences at the Microscales, and §Hefei Institutes of Physical Science, Chinese Academy of Sciences, University of Science and Technology of China , 96 Jinzhai Road, Hefei, Anhui 230026, China
| | | |
Collapse
|
21
|
Perunov N, England JL. Quantitative theory of hydrophobic effect as a driving force of protein structure. Protein Sci 2014; 23:387-99. [PMID: 24408023 DOI: 10.1002/pro.2420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 11/06/2022]
Abstract
Various studies suggest that the hydrophobic effect plays a major role in driving the folding of proteins. In the past, however, it has been challenging to translate this understanding into a predictive, quantitative theory of how the full pattern of sequence hydrophobicity in a protein shapes functionally important features of its tertiary structure. Here, we extend and apply such a phenomenological theory of the sequence-structure relationship in globular protein domains, which had previously been applied to the study of allosteric motion. In an effort to optimize parameters for the model, we first analyze the patterns of backbone burial found in single-domain crystal structures, and discover that classic hydrophobicity scales derived from bulk physicochemical properties of amino acids are already nearly optimal for prediction of burial using the model. Subsequently, we apply the model to studying structural fluctuations in proteins and establish a means of identifying ligand-binding and protein-protein interaction sites using this approach.
Collapse
Affiliation(s)
- Nikolay Perunov
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | | |
Collapse
|
22
|
Singharoy A, Polavarapu A, Joshi H, Baik MH, Ortoleva P. Epitope fluctuations in the human papillomavirus are under dynamic allosteric control: a computational evaluation of a new vaccine design strategy. J Am Chem Soc 2013; 135:18458-68. [PMID: 24199651 DOI: 10.1021/ja407489r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The dynamic properties of the capsid of the human papillomavirus (HPV) type 16 were examined using classical molecular dynamics simulations. By systematically comparing the structural fluctuations of the capsid protein, a strong dynamic allosteric connection between the epitope containing loops and the h4 helix located more than 50 Å away is identified, which was not recognized thus far. Computer simulations show that restricting the structural fluctuations of the h4 helix is key to rigidifying the epitopes, which is thought to be required for eliciting a proper immune response. The allostery identified in the components of the HPV is nonclassical because the mean structure of the epitope carrying loops remains unchanged, but as a result of allosteric effect the structural fluctuations are altered significantly, which in turn changes the biochemical reactivity profile of the epitopes. Exploiting this novel insight, a new vaccine design strategy is proposed wherein a relatively small virus capsid fragment is deposited on a silica nanoparticle in such a way that the fluctuations of the h4 helix are suppressed. The structural and dynamic properties of the epitope carrying loops on this hybrid nanoparticle match the characteristics of epitopes found on the full virus-like particle precisely, suggesting that these nanoparticles may serve as potent, cost-effective, and safe alternatives to traditionally developed vaccines. The structural and dynamic properties of the hybrid nanoparticle are examined in detail to establish the general concepts of the proposed new design.
Collapse
Affiliation(s)
- Abhishek Singharoy
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | | | | | | | | |
Collapse
|
23
|
McLeish TCB, Rodgers TL, Wilson MR. Allostery without conformation change: modelling protein dynamics at multiple scales. Phys Biol 2013; 10:056004. [PMID: 24021665 DOI: 10.1088/1478-3975/10/5/056004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The original ideas of Cooper and Dryden, that allosteric signalling can be induced between distant binding sites on proteins without any change in mean structural conformation, has proved to be a remarkably prescient insight into the rich structure of protein dynamics. It represents an alternative to the celebrated Monod-Wyman-Changeux mechanism and proposes that modulation of the amplitude of thermal fluctuations around a mean structure, rather than shifts in the structure itself, give rise to allostery in ligand binding. In a complementary approach to experiments on real proteins, here we take a theoretical route to identify the necessary structural components of this mechanism. By reviewing and extending an approach that moves from very coarse-grained to more detailed models, we show that, a fundamental requirement for a body supporting fluctuation-induced allostery is a strongly inhomogeneous elastic modulus. This requirement is reflected in many real proteins, where a good approximation of the elastic structure maps strongly coherent domains onto rigid blocks connected by more flexible interface regions.
Collapse
Affiliation(s)
- T C B McLeish
- Biophysical Sciences Institute, Durham University, South Road, Durham DH1 3LE, UK
| | | | | |
Collapse
|
24
|
England JL. Allostery in protein domains reflects a balance of steric and hydrophobic effects. Structure 2011; 19:967-75. [PMID: 21742263 DOI: 10.1016/j.str.2011.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 04/05/2011] [Accepted: 04/06/2011] [Indexed: 10/18/2022]
Abstract
Allosteric conformational change underlies biological function in many proteins. Allostery refers to a conformational event in which one region of a protein undergoes structural rearrangement in response to a stimulus applied to a different region of the same protein. Here, I show for a variety of proteins that a simple, phenomenological model of the dependence of protein conformation on hydrophobic burial energy allows one to compute low-energy conformational fluctuations for a given sequence by using linear programming to find optimized combinations of sequence-specific hydrophobic burial modes that satisfy steric constraints. From these fluctuations one may calculate allosteric couplings between different sites in a protein domain. Although the physical basis of protein structure is complex and multifactorial, a simplified description of conformational energy in terms of the hydrophobic effect alone is sufficient to give a mechanistic explanation for many biologically important allosteric events.
Collapse
Affiliation(s)
- Jeremy L England
- 263 Icahn Laboratory, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
25
|
Ma CW, Xiu ZL, Zeng AP. A new concept to reveal protein dynamics based on energy dissipation. PLoS One 2011; 6:e26453. [PMID: 22022616 PMCID: PMC3195717 DOI: 10.1371/journal.pone.0026453] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/27/2011] [Indexed: 11/30/2022] Open
Abstract
Protein dynamics is essential for its function, especially for intramolecular signal transduction. In this work we propose a new concept, energy dissipation model, to systematically reveal protein dynamics upon effector binding and energy perturbation. The concept is applied to better understand the intramolecular signal transduction during allostery of enzymes. The E. coli allosteric enzyme, aspartokinase III, is used as a model system and special molecular dynamics simulations are designed and carried out. Computational results indicate that the number of residues affected by external energy perturbation (i.e. caused by a ligand binding) during the energy dissipation process shows a sigmoid pattern. Using the two-state Boltzmann equation, we define two parameters, the half response time and the dissipation rate constant, which can be used to well characterize the energy dissipation process. For the allostery of aspartokinase III, the residue response time indicates that besides the ACT2 signal transduction pathway, there is another pathway between the regulatory site and the catalytic site, which is suggested to be the β15-αK loop of ACT1. We further introduce the term “protein dynamical modules” based on the residue response time. Different from the protein structural modules which merely provide information about the structural stability of proteins, protein dynamical modules could reveal protein characteristics from the perspective of dynamics. Finally, the energy dissipation model is applied to investigate E. coli aspartokinase III mutations to better understand the desensitization of product feedback inhibition via allostery. In conclusion, the new concept proposed in this paper gives a novel holistic view of protein dynamics, a key question in biology with high impacts for both biotechnology and biomedicine.
Collapse
Affiliation(s)
- Cheng-Wei Ma
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Zhi-Long Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
- * E-mail:
| |
Collapse
|
26
|
McLeish T. Physics met biology, and the consequence was.. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2011; 42:190-192. [PMID: 21486657 DOI: 10.1016/j.shpsc.2010.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We summarise the contributions to the discussion and the links between them. The complex relationship between the physical and biological sciences demonstrates three "axes of tension": the role of simulation, the interplay between levels of explanation, and the generality of "laws". We identify examples of true synergy between approaches that genuinely explore new research territory, and underscore the contemporary value of the type of discussions contained in this volume.
Collapse
Affiliation(s)
- Tom McLeish
- Department of Physics and Biophysical Sciences Institute, Durham University, UK.
| |
Collapse
|
27
|
Rowbottom DP. Approximations, idealizations and 'experiments' at the physics-biology interface. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2011; 42:145-154. [PMID: 21486652 DOI: 10.1016/j.shpsc.2010.11.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This paper, which is based on recent empirical research at the University of Leeds, the University of Edinburgh, and the University of Bristol, presents two difficulties which arise when condensed matter physicists interact with molecular biologists: (1) the former use models which appear to be too coarse-grained, approximate and/or idealized to serve a useful scientific purpose to the latter; and (2) the latter have a rather narrower view of what counts as an experiment, particularly when it comes to computer simulations, than the former. It argues that these findings are related; that computer simulations are considered to be undeserving of experimental status, by molecular biologists, precisely because of the idealizations and approximations that they involve. The complexity of biological systems is a key factor. The paper concludes by critically examining whether the new research programme of 'systems biology' offers a genuine alternative to the modelling strategies used by physicists. It argues that it does not.
Collapse
Affiliation(s)
- Darrell P Rowbottom
- Faculty of Philosophy, University of Oxford, 10 Merton Street, Oxford OX1 4JJ, United Kingdom.
| |
Collapse
|
28
|
Zhu L, Frenkel D, Bolhuis PG. Role of fluctuations in ligand binding cooperativity of membrane receptors. PHYSICAL REVIEW LETTERS 2011; 106:168103. [PMID: 21599417 DOI: 10.1103/physrevlett.106.168103] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Indexed: 05/30/2023]
Abstract
Signal transduction upon binding of a ligand to a membrane protein can occur not only via allosteric conformational changes but also through fluctuations. We report a numerical study on the influence of conformational fluctuations on the cooperativity of a binding reaction in a simple model of an integral membrane receptor consisting of transmembrane helices. We find that small fluctuations lateral as well as perpendicular to the membrane can increase the cooperativity, with the former more dominant. Moreover, too much fluctuation induces negative cooperativity. Proteins with fewer than four helices do not show positive cooperativity under any circumstances. This behavior is rather robust, and independent of the receptor topology or ligand size. Fluctuations measured in all-atom molecular dynamics simulations of a G-protein coupled receptor fall within the predicted region of maximum cooperativity.
Collapse
Affiliation(s)
- Lizhe Zhu
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
29
|
Farago B, Li J, Cornilescu G, Callaway DJE, Bu Z. Activation of nanoscale allosteric protein domain motion revealed by neutron spin echo spectroscopy. Biophys J 2011; 99:3473-82. [PMID: 21081097 DOI: 10.1016/j.bpj.2010.09.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/09/2010] [Accepted: 09/30/2010] [Indexed: 11/15/2022] Open
Abstract
NHERF1 is a multidomain scaffolding protein that assembles signaling complexes, and regulates the cell surface expression and endocytic recycling of a variety of membrane proteins. The ability of the two PDZ domains in NHERF1 to assemble protein complexes is allosterically modulated by the membrane-cytoskeleton linker protein ezrin, whose binding site is located as far as 110 Ångstroms away from the PDZ domains. Here, using neutron spin echo (NSE) spectroscopy, selective deuterium labeling, and theoretical analyses, we reveal the activation of interdomain motion in NHERF1 on nanometer length-scales and on submicrosecond timescales upon forming a complex with ezrin. We show that a much-simplified coarse-grained model suffices to describe interdomain motion of a multidomain protein or protein complex. We expect that future NSE experiments will benefit by exploiting our approach of selective deuteration to resolve the specific domain motions of interest from a plethora of global translational and rotational motions. Our results demonstrate that the dynamic propagation of allosteric signals to distal sites involves changes in long-range coupled domain motions on submicrosecond timescales, and that these coupled motions can be distinguished and characterized by NSE.
Collapse
|
30
|
Proteins move! Protein dynamics and long-range allostery in cell signaling. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2011; 83:163-221. [PMID: 21570668 DOI: 10.1016/b978-0-12-381262-9.00005-7] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An emerging point of view in protein chemistry is that proteins are not the static objects that are displayed in textbooks but are instead dynamic actors. Protein dynamics plays a fundamental role in many diseases, and spans a large hierarchy of timescales, from picoseconds to milliseconds or even longer. Nanoscale protein domain motion on length scales comparable to protein dimensions is key to understanding how signals are relayed through multiple protein-protein interactions. A canonical example is how the scaffolding proteins NHERF1 and ezrin work in coordination to assemble crucial membrane complexes. As membrane-cytoskeleton scaffolding proteins, these provide excellent prototypes for understanding how regulatory signals are relayed through protein-protein interactions between the membrane and the cytoskeleton. Here, we review recent progress in understanding the structure and dynamics of the interaction. We describe recent novel applications of neutron spin echo spectroscopy to reveal the dynamic propagation of allosteric signals by nanoscale protein motion, and present a guide to the future study of dynamics and its application to the cure of disease.
Collapse
|
31
|
Toncrova H, McLeish TCB. Substrate-modulated thermal fluctuations affect long-range allosteric signaling in protein homodimers: exemplified in CAP. Biophys J 2010; 98:2317-26. [PMID: 20483341 PMCID: PMC2872212 DOI: 10.1016/j.bpj.2010.01.039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 01/14/2010] [Accepted: 01/22/2010] [Indexed: 11/30/2022] Open
Abstract
The role of conformational dynamics in allosteric signaling of proteins is increasingly recognized as an important and subtle aspect of this ubiquitous phenomenon. Cooperative binding is commonly observed in proteins with twofold symmetry that bind two identical ligands. We construct a coarse-grained model of an allosteric coupled dimer and show how the signal can be propagated between the distant binding sites via change in slow global vibrational modes alone. We demonstrate that modulation on substrate binding of as few as 5-10 slow modes can give rise to cooperativity observed in biological systems and that the type of cooperativity is given by change of interaction between the two monomers upon ligand binding. To illustrate the application of the model, we apply it to a challenging test case: the catabolite activator protein (CAP). CAP displays negative cooperativity upon association with two identical ligands. The conformation of CAP is not affected by the binding, but its vibrational spectrum undergoes a strong modification. Intriguingly, the first binding enhances thermal fluctuations, yet the second quenches them. We show that this counterintuitive behavior is, in fact, necessary for an optimal anticooperative system, and captured within a well-defined region of the model's parameter space. From analyzing the experimental results, we conclude that fast local modes take an active part in the allostery of CAP, coupled to the more-global slow modes. By including them into the model, we elucidate the role of the modes on different timescales. We conclude that such dynamic control of allostery in homodimers may be a general phenomenon and that our model framework can be used for extended interpretation of thermodynamic parameters in other systems.
Collapse
|
32
|
Thalmann F. A schematic model for molecular affinity and binding with Ising variables. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2010; 31:441-454. [PMID: 20480964 DOI: 10.1140/epje/i2010-10600-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
After discussing the relevance of statistical physics in molecular recognition processes, we present a schematic model for ligand-receptor association based on an Ising chain. We discuss the possible behaviors of the affinity when the stiffness of the ligand increases. We also consider the case of flexible receptors. A variety of interesting behaviors is obtained, including some affinity modulation upon bond hardening or softening. The affinity of a ligand for its receptor is shown to depend on the details of its rigidity profile, and we question the possibility of encoding information in the rigidities as well as in the shape. An exhaustive study of the selectivity of patterns with length n < 8 is carried out. Connection with other spin models, in particular spin glasses is mentioned in the conclusion.
Collapse
Affiliation(s)
- F Thalmann
- Institut Charles Sadron, Université de Strasbourg, CNRS UPR 22, 23 rue du Loess, BP 84047, F-67034 Strasbourg Cedex, France.
| |
Collapse
|
33
|
Dykeman EC, Twarock R. All-atom normal-mode analysis reveals an RNA-induced allostery in a bacteriophage coat protein. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 81:031908. [PMID: 20365771 DOI: 10.1103/physreve.81.031908] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Indexed: 05/29/2023]
Abstract
Assembly of the T=3 bacteriophage MS2 is initiated by the binding of a 19 nucleotide RNA stem loop from within the phage genome to a symmetric coat protein dimer. This binding event effects a folding of the FG loop in one of the protein subunits of the dimer and results in the formation of an asymmetric dimer. Since both the symmetric and asymmetric forms of the dimer are needed for the assembly of the protein container, this allosteric switch plays an important role in the life cycle of the phage. We provide here details of an all-atom normal-mode analysis of this allosteric effect. The results suggest that asymmetric contacts between the A -duplex RNA phosphodiester backbone of the stem loop with the EF loop in one coat protein subunit results in an increased dynamic behavior of its FG loop. The four lowest-frequency modes, which encompass motions predominantly on the FG loops, account for over 90% of the increased dynamic behavior due to a localization of the vibrational pattern on a single FG loop. Finally, we show that an analysis of the allosteric effect using an elastic network model fails to predict this localization effect, highlighting the importance of using an all-atom full force field method for this problem.
Collapse
Affiliation(s)
- Eric C Dykeman
- Department of Biology, University of York, York YO10 5DD, United Kingdom
| | | |
Collapse
|
34
|
McClendon CL, Friedland G, Mobley DL, Amirkhani H, Jacobson MP. Quantifying Correlations Between Allosteric Sites in Thermodynamic Ensembles. J Chem Theory Comput 2009; 5:2486-2502. [PMID: 20161451 PMCID: PMC2790287 DOI: 10.1021/ct9001812] [Citation(s) in RCA: 173] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Allostery describes altered protein function at one site due to a perturbation at another site. One mechanism of allostery involves correlated motions, which can occur even in the absence of substantial conformational change. We present a novel method, "MutInf", to identify statistically significant correlated motions from equilibrium molecular dynamics simulations. Our approach analyzes both backbone and sidechain motions using internal coordinates to account for the gear-like twists that can take place even in the absence of the large conformational changes typical of traditional allosteric proteins. We quantify correlated motions using a mutual information metric, which we extend to incorporate data from multiple short simulations and to filter out correlations that are not statistically significant. Applying our approach to uncover mechanisms of cooperative small molecule binding in human interleukin-2, we identify clusters of correlated residues from 50 ns of molecular dynamics simulations. Interestingly, two of the clusters with the strongest correlations highlight known cooperative small-molecule binding sites and show substantial correlations between these sites. These cooperative binding sites on interleukin-2 are correlated not only through the hydrophobic core of the protein but also through a dynamic polar network of hydrogen bonding and electrostatic interactions. Since this approach identifies correlated conformations in an unbiased, statistically robust manner, it should be a useful tool for finding novel or "orphan" allosteric sites in proteins of biological and therapeutic importance.
Collapse
Affiliation(s)
- Christopher L McClendon
- University of California San Francisco, Graduate Group in Biophysics and Department of Pharmaceutical Chemistry
| | | | | | | | | |
Collapse
|
35
|
Pereverzev YV, Prezhdo OV, Sokurenko EV. Allosteric role of the large-scale domain opening in biological catch-binding. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 79:051913. [PMID: 19518486 DOI: 10.1103/physreve.79.051913] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Indexed: 05/27/2023]
Abstract
The proposed model demonstrates the allosteric role of the two-domain region of the receptor protein in the increased lifetimes of biological receptor/ligand bonds subjected to an external force. The interaction between the domains is represented by a bounded potential, containing two minima corresponding to the attached and separated conformations of the two protein domains. The dissociative potential with a single minimum describing receptor/ligand binding fluctuates between deep and shallow states, depending on whether the domains are attached or separated. A number of valuable analytic expressions are derived and are used to interpret experimental data for two catch bonds. The P-selectin/P-selectin-glycoprotein-ligand-1 (PSGL-1) bond is controlled by the interface between the epidermal growth factor (EGF) and lectin domains of P-selectin, and the type 1 fimbrial adhesive protein (FimH)/mannose bond is governed by the interface between the lectin and pilin domains of FimH. Catch-binding occurs in these systems when the external force stretches the receptor proteins and increases the interdomain distance. The allosteric effect is supported by independent measurements, in which the domains are kept separated by attachment of another ligand. The proposed model accurately describes the experimentally observed anomalous behavior of the lifetimes of the P-selectin/PSGL-1 and FimH/mannose complexes as a function of applied force and provides valuable insights into the mechanism of catch-binding.
Collapse
Affiliation(s)
- Yuriy V Pereverzev
- Departments of Chemistry and Microbiology, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
36
|
Killian BJ, Kravitz JY, Somani S, Dasgupta P, Pang YP, Gilson MK. Configurational entropy in protein-peptide binding: computational study of Tsg101 ubiquitin E2 variant domain with an HIV-derived PTAP nonapeptide. J Mol Biol 2009; 389:315-35. [PMID: 19362095 DOI: 10.1016/j.jmb.2009.04.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 03/27/2009] [Accepted: 04/01/2009] [Indexed: 11/19/2022]
Abstract
Configurational entropy is thought to influence biomolecular processes, but there are still many open questions about this quantity, including its magnitude, its relationship to molecular structure, and the importance of correlation. The mutual information expansion (MIE) provides a novel and systematic approach to extracting configurational entropy changes due to correlated motions from molecular simulations. We present the first application of the MIE method to protein-ligand binding using multiple molecular dynamics simulations to study the association of the ubiquitin E2 variant domain of the protein Tsg101 and an HIV-derived nonapeptide. This investigation utilizes the second-order MIE approximation, which accounts for correlations between all pairs of degrees of freedom. The computed change in configurational entropy is large and has a major contribution from changes in pairwise correlation. The results also reveal intricate structure-entropy relationships. Thus, the present analysis suggests that in order for a model of binding to be accurate, it must include a careful accounting of configurational entropy changes.
Collapse
Affiliation(s)
- Benjamin J Killian
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, 9600 Gudelsky Drive, Rockville, MD 20850, USA
| | | | | | | | | | | |
Collapse
|
37
|
Shimizu T, Asano N, Mizutani T, Chang HC, Kitagawa S. Allosteric binding of amino alcohols and diamines by dimeric zinc biladienone. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2008.11.057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Tsai CJ, Sol AD, Nussinov R. Allostery: absence of a change in shape does not imply that allostery is not at play. J Mol Biol 2008; 378:1-11. [PMID: 18353365 PMCID: PMC2684958 DOI: 10.1016/j.jmb.2008.02.034] [Citation(s) in RCA: 361] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2007] [Revised: 02/15/2008] [Accepted: 02/15/2008] [Indexed: 11/17/2022]
Abstract
Allostery is essential for controlled catalysis, signal transmission, receptor trafficking, turning genes on and off, and apoptosis. It governs the organism's response to environmental and metabolic cues, dictating transient partner interactions in the cellular network. Textbooks taught us that allostery is a change of shape at one site on the protein surface brought about by ligand binding to another. For several years, it has been broadly accepted that the change of shape is not induced; rather, it is observed simply because a larger protein population presents it. Current data indicate that while side chains can reorient and rewire, allostery may not even involve a change of (backbone) shape. Assuming that the enthalpy change does not reverse the free-energy change due to the change in entropy, entropy is mainly responsible for binding.
Collapse
Affiliation(s)
- Chung-Jung Tsai
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
| | - Antonio del Sol
- Bioinformatics Research Unit, Research and Development Division, Fujirebio Inc., 51 Komiya-cho, Hachioji-shi, Tokyo 192-0031, Japan
| | - Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Center for Cancer Research Nanobiology Program, NCI-Frederick, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
39
|
Khalili M, Wales DJ. Pathways for conformational change in nitrogen regulatory protein C from discrete path sampling. J Phys Chem B 2008; 112:2456-65. [PMID: 18247595 DOI: 10.1021/jp076628e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pathways corresponding to the conformational change in nitrogen regulatory protein C are calculated using the CHARMM19 force field with an implicit solvation model. Our analysis employs the discrete path sampling approach to grow a database of local minima and transition states from the potential energy surface that contains kinetically relevant pathways. The pathways with the largest contribution to the phenomenological two-state rate constants are found to exhibit a number of structural features that agree with experimental observations. Further details of the calculated pathways for conformational change may therefore provide useful predictions of how this large-scale motion is achieved.
Collapse
Affiliation(s)
- Mey Khalili
- University Chemical Laboratories, Lensfield Road, Cambridge CB2 1EW, UK
| | | |
Collapse
|
40
|
Knowles TP, Fitzpatrick AW, Meehan S, Mott HR, Vendruscolo M, Dobson CM, Welland ME. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 2008; 318:1900-3. [PMID: 18096801 DOI: 10.1126/science.1150057] [Citation(s) in RCA: 557] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Protein molecules have the ability to form a rich variety of natural and artificial structures and materials. We show that amyloid fibrils, ordered supramolecular nanostructures that are self-assembled from a wide range of polypeptide molecules, have rigidities varying over four orders of magnitude, and constitute a class of high-performance biomaterials. We elucidate the molecular origin of fibril material properties and show that the major contribution to their rigidity stems from a generic interbackbone hydrogen-bonding network that is modulated by variable side-chain interactions.
Collapse
Affiliation(s)
- Tuomas P Knowles
- Nanoscience Centre, University of Cambridge, J. J. Thomson Avenue, Cambridge CB3 0FF, UK
| | | | | | | | | | | | | |
Collapse
|
41
|
Taraban M, Zhan H, Whitten AE, Langley DB, Matthews KS, Swint-Kruse L, Trewhella J. Ligand-induced conformational changes and conformational dynamics in the solution structure of the lactose repressor protein. J Mol Biol 2007; 376:466-81. [PMID: 18164724 DOI: 10.1016/j.jmb.2007.11.067] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/16/2007] [Accepted: 11/20/2007] [Indexed: 11/30/2022]
Abstract
We present here the results of a series of small-angle X-ray scattering studies aimed at understanding the role of conformational changes and structural flexibility in DNA binding and allosteric signaling in a bacterial transcription regulator, lactose repressor protein (LacI). Experiments were designed to detect possible conformational changes that occur when LacI binds either DNA or the inducer IPTG, or both. Our studies included the native LacI dimer of homodimers and a dimeric variant (R3), enabling us to probe conformational changes within the homodimers and distinguish them from those involving changes in the homodimer-homodimer relationships. The scattering data indicate that removal of operator DNA (oDNA) from R3 results in an unfolding and extension of the hinge helix that connects the LacI regulatory and DNA-binding domains. In contrast, only very subtle conformational changes occur in the R3 dimer-oDNA complex upon IPTG binding, indicative of small adjustments in the orientations of domains and/or subdomains within the structure. The binding of IPTG to native (tetrameric) LacI-oDNA complexes also appears to facilitate a modest change in the average homodimer-homodimer disposition. Notably, the crystal structure of the native LacI-oDNA complex differs significantly from the average solution conformation. The solution scattering data are best fit by an ensemble of structures that includes (1) approximately 60% of the V-shaped dimer of homodimers observed in the crystal structure and (2) approximately 40% of molecules with more "open" forms, such as those generated when the homodimers move with respect to each other about the tetramerization domain. In gene regulation, such a flexible LacI would be beneficial for the interaction of its two DNA-binding domains, positioned at the tips of the V, with the required two of three LacI operators needed for full repression.
Collapse
Affiliation(s)
- Marc Taraban
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Xing J. Nonequilibrium dynamic mechanism for allosteric effect. PHYSICAL REVIEW LETTERS 2007; 99:168103. [PMID: 17995300 DOI: 10.1103/physrevlett.99.168103] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Indexed: 05/25/2023]
Abstract
Allosteric regulation is often viewed as thermodynamic in nature. However, protein internal motions during an enzymatic reaction cycle can slow the hoping processes over numerous potential barriers. We propose that regulating molecules may function by modifying the nonequilibrium protein dynamics. The theory predicts that an enzyme under the new mechanism has a different temperature dependence, waiting time distribution of the turnover cycle, and dynamic fluctuation patterns with and without an effector. Experimental tests of the theory are proposed.
Collapse
Affiliation(s)
- Jianhua Xing
- Chemistry, Materials and Life Sciences Directorate, University of California, Livermore, California 94550, USA.
| |
Collapse
|
43
|
Choi B, Zocchi G. Mimicking cAMP-dependent allosteric control of protein kinase A through mechanical tension. J Am Chem Soc 2007; 128:8541-8. [PMID: 16802820 DOI: 10.1021/ja060903d] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the activation of an enzyme complex by mechanical tension. Protein kinase A, a tetrameric enzyme that, in the cell, is allosterically controlled by cAMP, has been modified by the insertion of a "molecular spring" on the regulatory subunit. The spring is made of DNA, and its stiffness can be varied externally by hybridization to a complementary strand. This allows us to exert a controlled mechanical tension between the two points on the protein's surface where the spring is attached. We show that upon applying the tension, we can activate the enzyme with efficiency comparable to the activation by its natural regulatory molecule, cAMP.
Collapse
Affiliation(s)
- Brian Choi
- Department of Physics and Astronomy, University of California-Los Angeles, Los Angeles, CA 90095-1547, USA
| | | |
Collapse
|
44
|
Harris SA, Laughton CA. A simple physical description of DNA dynamics: quasi-harmonic analysis as a route to the configurational entropy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2007; 19:076103. [PMID: 22251585 DOI: 10.1088/0953-8984/19/7/076103] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
It has become increasingly apparent that the dynamic as well as the structural properties of biological macromolecules are important to their function. However, information concerning molecular flexibility can be difficult to obtain experimentally at the atomic level. Computer modelling techniques such as molecular dynamics (MD) have therefore proved invaluable in advancing our understanding of biomolecular flexibility. This paper describes how a combination of atomistic MD simulations and quasi-harmonic analysis can be used to describe the dynamics of duplex DNA, with a particular emphasis on methods for calculating differences in configurational entropies. We demonstrate that DNA possesses remarkably simple mechanical properties relative to globular proteins, making it an ideal system for exploring biomolecular flexibility in general. Our results also highlight the importance of solvent viscosity in determining the dynamic behaviour of DNA in aqueous solution.
Collapse
Affiliation(s)
- S A Harris
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
| | | |
Collapse
|
45
|
Khatri BS, Kawakami M, Byrne K, Smith DA, McLeish TCB. Entropy and barrier-controlled fluctuations determine conformational viscoelasticity of single biomolecules. Biophys J 2006; 92:1825-35. [PMID: 17158578 PMCID: PMC1861772 DOI: 10.1529/biophysj.106.097709] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biological macromolecules have complex and nontrivial energy landscapes, endowing them with a unique conformational adaptability and diversity in function. Hence, understanding the processes of elasticity and dissipation at the nanoscale is important to molecular biology and emerging fields such as nanotechnology. Here we analyze single molecule fluctuations in an atomic force microscope, using a generic model of biopolymer viscoelasticity that includes local "internal" conformational dissipation. Comparing two biopolymers, dextran and cellulose (polysaccharides with and without local bistable transitions), demonstrates that signatures of simple conformational change are minima in both the elastic and internal friction constants around a characteristic force. A novel analysis of dynamics on a bistable energy landscape provides a simple explanation: an elasticity driven by the entropy, and friction by a barrier-controlled hopping time of populations between states, which is surprisingly distinct to the well-known relaxation time. This nonequilibrium microscopic analysis thus provides a means of quantifying new dynamical features of the energy landscape of the glucopyranose ring, revealing an unexpected underlying roughness and information on the shape of the barrier of the chair-boat transition in dextran. The results presented herein provide a basis toward probing the viscoelasticity of macromolecular conformational transitions on more complex energy landscapes, such as during protein folding.
Collapse
Affiliation(s)
- Bhavin S Khatri
- Institute of Molecular Biophysics & Polymer and Complex Fluids Group, School of Physics and Astronomy, University of Leeds, Leeds, United Kingdom
| | | | | | | | | |
Collapse
|
46
|
Abstract
Since the introduction of the induced-fit theory by D. E. Koshland Jr., it has been established that conformational motion invariably accompanies the execution of protein function. The catalytic activity of kinases, specifically, is associated with large conformational changes ( approximately 1 nm amplitude). In the case of guanylate kinase, upon substrate binding, the LID and nucleotide-monophosphate-binding domains are brought together and toward the CORE with large concerted movements about the alpha3 (helix 3) axis. However, whether the change in conformation mostly affects the catalytic rate or mostly increases binding affinities for one or the other substrate is unclear. We investigate this question using a nanotechnology approach based on mechanical stress. Using an "allosteric spring probe", we bias conformational states in favor of the "open" (substrate-free) conformation of the enzyme; the result is that the binding constant for the substrate guanosine monophosphate (GMP) is reduced by up to a factor of 10, whereas the binding constant for adenosine triphosphate (ATP) and the catalytic rate are essentially unaffected. The results show that the GMP-induced conformational change, which promotes catalysis, does not promote ATP binding, consistent with previous mutagenesis studies. Furthermore, they show that this conformational change is of the induced-fit type with respect to GMP binding (but not ATP binding). We elaborate on this point by proposing a quantitative criterion for the classification of conformational changes with respect to the induced-fit theory. More generally, these results show that the allosteric spring probe can be used to affect enzymatic activity in a continuously controlled manner, and also to affect specific steps of the reaction mechanism while leaving others unaffected. It is presumed that this will enable informative comparisons with the results of future molecular dynamics or statistical mechanics computations.
Collapse
Affiliation(s)
- Brian Choi
- Department of Physics and Astronomy, University of California, Los Angeles, California, USA
| | | |
Collapse
|
47
|
Abstract
Alpha helical coiled-coils appear in many important allosteric proteins such as the dynein molecular motor and bacteria chemotaxis transmembrane receptors. As a mechanism for transmitting the information of ligand binding to a distant site across an allosteric protein, an alternative to conformational change in the mean static structure is an induced change in the pattern of the internal dynamics of the protein. We explore how ligand binding may change the intramolecular vibrational free energy of a coiled-coil, using parameterized coarse-grained models, treating the case of dynein in detail. The models predict that coupling of slide, bend and twist modes of the coiled-coil transmits an allosteric free energy of approximately 2kBT, consistent with experimental results. A further prediction is a quantitative increase in the effective stiffness of the coiled-coil without any change in inherent flexibility of the individual helices. The model provides a possible and experimentally testable mechanism for transmission of information through the alpha helical coiled-coil of dynein.
Collapse
Affiliation(s)
- Rhoda J Hawkins
- School of Physics and Astronomy, and Astbury Centre for Structural Molecular Biology, University of Leeds, IRC in Polymer Science and Technology, Leeds, LS2 9JT, UK.
| | | |
Collapse
|
48
|
Hawkins RJ, McLeish TCB. Coupling of global and local vibrational modes in dynamic allostery of proteins. Biophys J 2006; 91:2055-62. [PMID: 16798805 PMCID: PMC1557547 DOI: 10.1529/biophysj.106.082180] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It is now recognized that internal global protein dynamics play an important role in the allosteric function of many proteins. Alterations of protein flexibility on effector binding affect the entropic cost of binding at a distant site. We present a coarse-grained model for a potential amplification of such entropic allostery due to coupling of fast, localized modes to the slow, global modes. We show how such coupling can give rise to large compensating entropic and enthalpic terms. The model corresponds to the pattern of calorimetry and NMR data from experiments on the Met repressor.
Collapse
Affiliation(s)
- Rhoda J Hawkins
- Interdisciplinary Research Centre in Polymer Science and Technology, School of Physics and Astronomy and Astbury Centre for Structural Biology, University of Leeds, Leeds, United Kingdom
| | | |
Collapse
|
49
|
Choi B, Zocchi G, Wu Y, Chan S, Jeanne Perry L. Allosteric control through mechanical tension. PHYSICAL REVIEW LETTERS 2005; 95:078102. [PMID: 16196826 DOI: 10.1103/physrevlett.95.078102] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Indexed: 05/04/2023]
Abstract
Conformational changes of proteins modulate their function. In allosteric control, the conformational change is induced by the binding of a signaling molecule. Here we insert a "molecular spring" on the enzyme guanylate kinase, to control the conformation of this protein. The stiffness of the spring can be varied externally, which allows one to exert a controlled mechanical tension between the two points on the protein's surface where the spring is attached. We show that by applying and releasing the tension we can reversibly turn the enzyme off and on.
Collapse
Affiliation(s)
- Brian Choi
- Department of Physics and Astronomy, University of California Los Angeles, 90095-1547, USA
| | | | | | | | | |
Collapse
|