1
|
Haselwandter CA, Kardar M, Triller A, da Silveira RA. Self-assembly and plasticity of synaptic domains through a reaction-diffusion mechanism. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:032705. [PMID: 26465496 DOI: 10.1103/physreve.92.032705] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Indexed: 06/05/2023]
Abstract
Signal transmission across chemical synapses relies crucially on neurotransmitter receptor molecules, concentrated in postsynaptic membrane domains along with scaffold and other postsynaptic molecules. The strength of the transmitted signal depends on the number of receptor molecules in postsynaptic domains, and activity-induced variation in the receptor number is one of the mechanisms of postsynaptic plasticity. Recent experiments have demonstrated that the reaction and diffusion properties of receptors and scaffolds at the membrane, alone, yield spontaneous formation of receptor-scaffold domains of the stable characteristic size observed in neurons. On the basis of these experiments we develop a model describing synaptic receptor domains in terms of the underlying reaction-diffusion processes. Our model predicts that the spontaneous formation of receptor-scaffold domains of the stable characteristic size observed in experiments depends on a few key reactions between receptors and scaffolds. Furthermore, our model suggests novel mechanisms for the alignment of pre- and postsynaptic domains and for short-term postsynaptic plasticity in receptor number. We predict that synaptic receptor domains localize in membrane regions with an increased receptor diffusion coefficient or a decreased scaffold diffusion coefficient. Similarly, we find that activity-dependent increases or decreases in receptor or scaffold diffusion yield a transient increase in the number of receptor molecules concentrated in postsynaptic domains. Thus, the proposed reaction-diffusion model puts forth a coherent set of biophysical mechanisms for the formation, stability, and plasticity of molecular domains on the postsynaptic membrane.
Collapse
Affiliation(s)
- Christoph A Haselwandter
- Departments of Physics & Astronomy and Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Antoine Triller
- IBENS, Institute of Biology at Ecole Normale Supérieure, Inserm U1024, CNRS UMR5197, 46 rue d'Ulm, 75005 Paris, France
| | - Rava Azeredo da Silveira
- Department of Physics, Ecole Normale Supérieure, 24 rue Lhomond, 75005 Paris, France
- Laboratoire de Physique Statistique, Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Université Denis Diderot, France
| |
Collapse
|
2
|
Zamparo M, Chianale F, Tebaldi C, Cosentino-Lagomarsino M, Nicodemi M, Gamba A. Dynamic membrane patterning, signal localization and polarity in living cells. SOFT MATTER 2015; 11:838-849. [PMID: 25563791 DOI: 10.1039/c4sm02157f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We review the molecular and physical aspects of the dynamic localization of signaling molecules on the plasma membranes of living cells. At the nanoscale, clusters of receptors and signaling proteins play an essential role in the processing of extracellular signals. At the microscale, "soft" and highly dynamic signaling domains control the interaction of individual cells with their environment. At the multicellular scale, individual polarity patterns control the forces that shape multicellular aggregates and tissues.
Collapse
Affiliation(s)
- M Zamparo
- Human Genetics Foundation - Torino, Italy.
| | | | | | | | | | | |
Collapse
|
3
|
Bonny M, Fischer-Friedrich E, Loose M, Schwille P, Kruse K. Membrane binding of MinE allows for a comprehensive description of Min-protein pattern formation. PLoS Comput Biol 2013; 9:e1003347. [PMID: 24339757 PMCID: PMC3854456 DOI: 10.1371/journal.pcbi.1003347] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/03/2013] [Indexed: 11/23/2022] Open
Abstract
The rod-shaped bacterium Escherichia coli selects the cell center as site of division with the help of the proteins MinC, MinD, and MinE. This protein system collectively oscillates between the two cell poles by alternately binding to the membrane in one of the two cell halves. This dynamic behavior, which emerges from the interaction of the ATPase MinD and its activator MinE on the cell membrane, has become a paradigm for protein self-organization. Recently, it has been found that not only the binding of MinD to the membrane, but also interactions of MinE with the membrane contribute to Min-protein self-organization. Here, we show that by accounting for this finding in a computational model, we can comprehensively describe all observed Min-protein patterns in vivo and in vitro. Furthermore, by varying the system's geometry, our computations predict patterns that have not yet been reported. We confirm these predictions experimentally. Cellular protein structures have long been suggested to form by protein self-organization. A particularly clear example is provided by the proteins MinC, MinD, and MinE selecting the center as site of cell division in the rod-shaped bacterium Escherichia coli. Based on binding of MinD to the cytoplasmic membrane and an antagonistic action of MinE, which induces the release of MinD into the cytoplasm, these proteins oscillate from pole to pole, where they inhibit cell division. Supporting the idea of self-organization being the cause of the Min oscillations, purified Min proteins were found to spontaneously form traveling waves on supported lipid bilayers. A comprehensive understanding of the Min patterns formed under various conditions remains elusive. We have performed a computational analysis of Min-protein dynamics taking into account the recently discovered persistent action of MinE. We show that this property allows to reproduce all observed Min-protein patterns in a unified framework. Furthermore, our analysis predicts new structures, which we observed experimentally. Our study highlights that mechanisms underlying the spontaneous formation of protein patterns under purified in vitro conditions can also generate patterns inside complex intracellular environments.
Collapse
Affiliation(s)
- Mike Bonny
- Theoretische Physik, Universität des Saarlandes, Saarbrücken, Germany
| | - Elisabeth Fischer-Friedrich
- Max-Planck-Institut für Zellbiologie und Genetik, Dresden, Germany
- Max-Planck-Institut für Physik komplexer Systeme, Dresden, Germany
| | - Martin Loose
- Department of Systems Biology, Harvard Medical School, Boston, Massachussetts, United States of America
| | | | - Karsten Kruse
- Theoretische Physik, Universität des Saarlandes, Saarbrücken, Germany
- * E-mail:
| |
Collapse
|
4
|
Haselwandter CA, Calamai M, Kardar M, Triller A, da Silveira RA. Formation and stability of synaptic receptor domains. PHYSICAL REVIEW LETTERS 2011; 106:238104. [PMID: 21770547 DOI: 10.1103/physrevlett.106.238104] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Indexed: 05/31/2023]
Abstract
Neurotransmitter receptor molecules, concentrated in postsynaptic domains along with scaffold and a number of other molecules, are key regulators of signal transmission across synapses. Combining experiment and theory, we develop a quantitative description of synaptic receptor domains in terms of a reaction-diffusion model. We show that interactions between only receptors and scaffolds, together with the rapid diffusion of receptors on the cell membrane, are sufficient for the formation and stable characteristic size of synaptic receptor domains. Our work reconciles long-term stability of synaptic receptor domains with rapid turnover and diffusion of individual receptors, and suggests novel mechanisms for a form of short-term, postsynaptic plasticity.
Collapse
Affiliation(s)
- Christoph A Haselwandter
- Department of Applied Physics, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | |
Collapse
|
5
|
Di Ventura B, Sourjik V. Self-organized partitioning of dynamically localized proteins in bacterial cell division. Mol Syst Biol 2011; 7:457. [PMID: 21206490 PMCID: PMC3049411 DOI: 10.1038/msb.2010.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022] Open
Abstract
The Min proteins are equally partitioned between daughter cells at division. The mechanism allowing this accurate distribution is intrinsic to the Min system. Individual oscillations appear in each daughter cell before cytokinesis is completed. Diffusion through the gradually constricting septum is key to this process.
One of the central problems of cell division is the proper distribution of all components to the progeny, which is essential to avoid the adverse effects that an unequal distribution—when not actively sought for differentiation purposes—would have on cell growth and regulation. Fast-growing bacterial cells are particularly exposed to this problem, as corrections of inequalities in protein distribution by biosynthesis could be too slow compared with the generation time. Moreover, bacterial proteins are usually stable and, therefore, their levels are not easily adjustable in one generation. Although for homogeneously distributed proteins an equal partitioning at division is readily achieved, dedicated mechanisms must exist to segregate proteins or cellular structures that possess a specific cellular location, but these mechanisms are largely unknown. An extremely challenging case is represented by the Min proteins—MinC, MinD and MinE—that in Escherichia coli oscillate from pole to pole to inhibit the assembly of the cytokinetic ring anywhere except at mid-cell. The oscillations stem solely from local interactions among the proteins at the cytoplasmic membrane. In this work, we show that self-organization is also responsible for the distribution of Min proteins between daughter cells at division. Our combined experimental and computational results demonstrate that the equal protein partitioning stems from interplay between the self-organized oscillations and changes in the cell geometry during division, with no need for any additional regulatory network. Using high-resolution time-lapse microscopy, we detected changes in the Min oscillatory regime that correlate with the amount of septal constriction (Figure 3A, B, E and F). When the cell is unconstricted, oscillations run from pole to pole (Figure 3A). When the constriction reaches a certain degree, typically corresponding to a septum of 600–500 nm, the oscillations change into a ‘half-cell to half-cell' mode during which the fluorescence covers, alternatively, the entire membrane of one daughter cell (Figure 3A, B and E). This mode persists for several minutes and, just before cell division when the septum is smaller than 200 nm, gives way to yet another oscillatory pattern wherein oscillations split and run independently in each daughter cell (Figure 3A, B and F). Our 3D stochastic computer simulations revealed that these different regimes are an outcome of impaired diffusion through the closing septum and that oscillations finally split because protein exchange between the two future daughter cells becomes critically slow, so that independent oscillations on both sides of the septum become the stable solution (Figure 6A and E). FRAP experiments confirmed that the presence of the septum is enough to slow down the passage of molecules from one side of the cell to the other (Figure 6F). As oscillations become independent in each daughter cell before completion of cytokinesis, diffusion through the septum can still occur, which further equilibrates the levels of the Min proteins in the daughter cells (Figure 3C and D and Figure 6B, C and D). In summary, our results suggest that E. coli cells have evolved a very simple and elegant way to ensure equal concentrations of the Min proteins in the progeny, based entirely on the intrinsic self-organizing properties of the Min system. This provides a clear example of self-organizing partitioning, which we expect to be a widely used strategy given its simplicity and low evolutionary cost. How cells manage to get equal distribution of their structures and molecules at cell division is a crucial issue in biology. In principle, a feedback mechanism could always ensure equality by measuring and correcting the distribution in the progeny. However, an elegant alternative could be a mechanism relying on self-organization, with the interplay between system properties and cell geometry leading to the emergence of equal partitioning. The problem is exemplified by the bacterial Min system that defines the division site by oscillating from pole to pole. Unequal partitioning of Min proteins at division could negatively impact system performance and cell growth because of loss of Min oscillations and imprecise mid-cell determination. In this study, we combine live cell and computational analyses to show that known properties of the Min system together with the gradual reduction of protein exchange through the constricting septum are sufficient to explain the observed highly precise spontaneous protein partitioning. Our findings reveal a novel and effective mechanism of protein partitioning in dividing cells and emphasize the importance of self-organization in basic cellular processes.
Collapse
Affiliation(s)
- Barbara Di Ventura
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | |
Collapse
|
6
|
Soh S, Byrska M, Kandere-Grzybowska K, Grzybowski BA. Reaction-diffusion systems in intracellular molecular transport and control. Angew Chem Int Ed Engl 2010; 49:4170-98. [PMID: 20518023 PMCID: PMC3697936 DOI: 10.1002/anie.200905513] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chemical reactions make cells work only if the participating chemicals are delivered to desired locations in a timely and precise fashion. Most research to date has focused on active-transport mechanisms, although passive diffusion is often equally rapid and energetically less costly. Capitalizing on these advantages, cells have developed sophisticated reaction-diffusion (RD) systems that control a wide range of cellular functions-from chemotaxis and cell division, through signaling cascades and oscillations, to cell motility. These apparently diverse systems share many common features and are "wired" according to "generic" motifs such as nonlinear kinetics, autocatalysis, and feedback loops. Understanding the operation of these complex (bio)chemical systems requires the analysis of pertinent transport-kinetic equations or, at least on a qualitative level, of the characteristic times of the constituent subprocesses. Therefore, in reviewing the manifestations of cellular RD, we also describe basic theory of reaction-diffusion phenomena.
Collapse
Affiliation(s)
- Siowling Soh
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Marta Byrska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Kristiana Kandere-Grzybowska
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208
| | - Bartosz A. Grzybowski
- Department of Chemistry, Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Evanston, IL 60208, Homepage: http://www.dysa.northwestern.edu
| |
Collapse
|
7
|
Soh S, Byrska M, Kandere-Grzybowska K, Grzybowski B. Reaktions-Diffusions-Systeme für intrazellulären Transport und Kontrolle. Angew Chem Int Ed Engl 2010. [DOI: 10.1002/ange.200905513] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Derr J, Hopper JT, Sain A, Rutenberg AD. Self-organization of the MinE protein ring in subcellular Min oscillations. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2009; 80:011922. [PMID: 19658744 DOI: 10.1103/physreve.80.011922] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 05/11/2009] [Indexed: 05/28/2023]
Abstract
We model the self-organization of the MinE ring that is observed during subcellular oscillations of the proteins MinD and MinE within the rod-shaped bacterium Escherichia coli. With a steady-state approximation, we can study the MinE ring generically--apart from the other details of the Min oscillation. Rebinding of MinE to depolymerizing MinD-filament tips controls MinE-ring formation through a scaled cell shape parameter r. We find two types of E-ring profiles near the filament tip: either a strong plateaulike E ring controlled by one-dimensional diffusion of MinE along the bacterial length or a weak cusplike E ring controlled by three-dimensional diffusion near the filament tip. While the width of a strong E ring depends on r, the occupation fraction of MinE at the MinD-filament tip is saturated and hence the depolymerization speed does not depend strongly on r. Conversely, for weak E rings both r and the MinE to MinD stoichiometry strongly control the tip occupation and hence the depolymerization speed. MinE rings in vivo are close to the threshold between weak and strong, and so MinD-filament depolymerization speed should be sensitive to cell shape, stoichiometry, and MinE-rebinding rate. We also find that the transient to MinE-ring formation is quite long in the appropriate open geometry for assays of ATPase activity in vitro, explaining the long delays of ATPase activity observed for smaller MinE concentrations in those assays without the need to invoke cooperative MinE activity.
Collapse
Affiliation(s)
- Julien Derr
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada B3H 3J5.
| | | | | | | |
Collapse
|
9
|
Quantitative analysis of time-series fluorescence microscopy using a spot tracking method: application to Min protein dynamics. Biologia (Bratisl) 2009. [DOI: 10.2478/s11756-009-0013-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Xu X, Kulkarni RV. Modelling of processes governing subcellular localisation of MinD in Escherichia coli. IET Syst Biol 2009; 2:285-92. [PMID: 19045823 DOI: 10.1049/iet-syb:20070083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent research has highlighted several examples wherein bacterial cell fate is determined by precise subcellular localisation of proteins. A prominent example is the polar localisation and oscillation of the Min proteins which is necessary for accurate cell division in Escherichia coli. Several computational models have been proposed which reproduce the oscillatory behaviour and observed phenotypes. However, these models use varying assumptions to do so leading to different mechanisms for precise polar localisation of MinD zones. To gain further insight, the authors extend a simplified model which focused on some key processes to explain the observed length scale for MinD zone formation. Using analytical approaches and numerical simulations, the authors explore cellular MinD distributions produced by these processes and propose a mechanism for precise polar localisation of MinD.
Collapse
Affiliation(s)
- X Xu
- Virginia Polytechnic and State University, Department of Physics, Blacksburg, VA 24061, USA
| | | |
Collapse
|
11
|
Lutkenhaus J. Min Oscillation in Bacteria. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 641:49-61. [DOI: 10.1007/978-0-387-09794-7_4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
The Min system as a general cell geometry detection mechanism: branch lengths in Y-shaped Escherichia coli cells affect Min oscillation patterns and division dynamics. J Bacteriol 2008; 190:2106-17. [PMID: 18178745 DOI: 10.1128/jb.00720-07] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, division site placement is regulated by the dynamic behavior of the MinCDE proteins, which oscillate from pole to pole and confine septation to the centers of normal rod-shaped cells. Some current mathematical models explain these oscillations by considering interactions among the Min proteins without recourse to additional localization signals. So far, such models have been applied only to regularly shaped bacteria, but here we test these models further by employing aberrantly shaped E. coli cells as miniature reactors. The locations of MinCDE proteins fused to derivatives of green fluorescent protein were monitored in branched cells with at least three conspicuous poles. MinCDE most often moved from one branch to another in an invariant order, following a nonreversing clockwise or counterclockwise direction over the time periods observed. In cells with two short branches or nubs, the proteins oscillated symmetrically from one end to the other. The locations of FtsZ rings were consistent with a broad MinC-free zone near the branch junctions, and Min rings exhibited the surprising behavior of moving quickly from one possible position to another. Using a reaction-diffusion model that reproduces the observed MinCD oscillations in rod-shaped and round E. coli, we predict that the oscillation patterns in branched cells are a natural response of Min behavior in cellular geometries having different relative branch lengths. The results provide further evidence that Min protein oscillations act as a general cell geometry detection mechanism that can locate poles even in branched cells.
Collapse
|
13
|
Lan Y, Wolynes PG, Papoian GA. A variational approach to the stochastic aspects of cellular signal transduction. J Chem Phys 2007; 125:124106. [PMID: 17014165 DOI: 10.1063/1.2353835] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cellular signaling networks have evolved to cope with intrinsic fluctuations, coming from the small numbers of constituents, and the environmental noise. Stochastic chemical kinetics equations govern the way biochemical networks process noisy signals. The essential difficulty associated with the master equation approach to solving the stochastic chemical kinetics problem is the enormous number of ordinary differential equations involved. In this work, we show how to achieve tremendous reduction in the dimensionality of specific reaction cascade dynamics by solving variationally an equivalent quantum field theoretic formulation of stochastic chemical kinetics. The present formulation avoids cumbersome commutator computations in the derivation of evolution equations, making the physical significance of the variational method more transparent. We propose novel time-dependent basis functions which work well over a wide range of rate parameters. We apply the new basis functions to describe stochastic signaling in several enzymatic cascades and compare the results so obtained with those from alternative solution techniques. The variational Ansatz gives probability distributions that agree well with the exact ones, even when fluctuations are large and discreteness and nonlinearity are important. A numerical implementation of our technique is many orders of magnitude more efficient computationally compared with the traditional Monte Carlo simulation algorithms or the Langevin simulations.
Collapse
Affiliation(s)
- Yueheng Lan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | | | | |
Collapse
|
14
|
Lan Y, Papoian GA. The interplay between discrete noise and nonlinear chemical kinetics in a signal amplification cascade. J Chem Phys 2007; 125:154901. [PMID: 17059287 DOI: 10.1063/1.2358342] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We used various analytical and numerical techniques to elucidate signal propagation in a small enzymatic cascade which is subjected to external and internal noises. The nonlinear character of catalytic reactions, which underlie protein signal transduction cascades, renders stochastic signaling dynamics in cytosol biochemical networks distinct from the usual description of stochastic dynamics in gene regulatory networks. For a simple two-step enzymatic cascade which underlies many important protein signaling pathways, we demonstrated that the commonly used techniques such as the linear noise approximation and the Langevin equation become inadequate when the number of proteins becomes too low. Consequently, we developed a new analytical approximation, based on mixing the generating function and distribution function approaches, to the solution of the master equation that describes nonlinear chemical signaling kinetics for this important class of biochemical reactions. Our techniques work in a much wider range of protein number fluctuations than the methods used previously. We found that under certain conditions the burst phase noise may be injected into the downstream signaling network dynamics, resulting possibly in unusually large macroscopic fluctuations. In addition to computing first and second moments, which is the goal of commonly used analytical techniques, our new approach provides the full time-dependent probability distributions of the colored non-Gaussian processes in a nonlinear signal transduction cascade.
Collapse
Affiliation(s)
- Yueheng Lan
- Department of Chemistry, University of North Carolina at Chapel Hill, North Carolina 27599-3290, USA
| | | |
Collapse
|
15
|
Meacci G, Kruse K. Min-oscillations in Escherichia coli induced by interactions of membrane-bound proteins. Phys Biol 2007; 2:89-97. [PMID: 16204861 DOI: 10.1088/1478-3975/2/2/002] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
During division it is of primary importance for a cell to correctly determine the site of cleavage. The bacterium Escherichia coli divides in the center, producing two daughter cells of equal size. Selection of the center as the correct division site is in part achieved by the Min-proteins. They oscillate between the two cell poles and thereby prevent division at these locations. Here, a phenomenological description of these oscillations is presented, where lateral interactions between proteins on the cell membrane play a key role. Solutions to the dynamic equations are compared to experimental findings. In particular, the temporal period of the oscillations is measured as a function of the cell length and found to be compatible with the theoretical prediction.
Collapse
Affiliation(s)
- Giovanni Meacci
- Max-Planck-Institut für Physik komplexer Systeme, Nöthnitzerstr. 38, 01187 Dresden, Germany
| | | |
Collapse
|
16
|
Gomez-Marin A, Garcia-Ojalvo J, Sancho JM. Self-sustained spatiotemporal oscillations induced by membrane-bulk coupling. PHYSICAL REVIEW LETTERS 2007; 98:168303. [PMID: 17501471 DOI: 10.1103/physrevlett.98.168303] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Indexed: 05/15/2023]
Abstract
We propose a novel mechanism leading to spatiotemporal oscillations in extended systems that does not rely on local bulk instabilities. Instead, oscillations arise from the interaction of two subsystems of different spatial dimensionality. Specifically, we show that coupling a passive diffusive bulk of dimension d with an excitable membrane of dimension d-1 produces a self-sustained oscillatory behavior. An analytical explanation of the phenomenon is provided for d=1. Moreover, in-phase and antiphase synchronization of oscillations are found numerically in one and two dimensions. This novel dynamic instability could be used by biological systems such as cells, where the dynamics on the cellular membrane is necessarily different from that of the cytoplasmic bulk.
Collapse
Affiliation(s)
- A Gomez-Marin
- Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona, Spain
| | | | | |
Collapse
|
17
|
Touhami A, Jericho M, Rutenberg AD. Temperature dependence of MinD oscillation in Escherichia coli: running hot and fast. J Bacteriol 2006; 188:7661-7. [PMID: 16936014 PMCID: PMC1636269 DOI: 10.1128/jb.00911-06] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We observed that the oscillation period of MinD within rod-like and filamentous cells of Escherichia coli varied by a factor of 4 in the temperature range from 20 degrees C to 40 degrees C. The detailed dependence was Arrhenius, with a slope similar to the overall temperature-dependent growth curve of E. coli. The detailed pattern of oscillation, including the characteristic wavelength in filamentous cells, remained independent of temperature. A quantitative model of MinDE oscillation exhibited similar behavior, with an activated temperature dependence of the MinE-stimulated MinD-ATPase rate.
Collapse
Affiliation(s)
- Ahmed Touhami
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia B3H 3J5, Canada
| | | | | |
Collapse
|
18
|
Adachi S, Hori K, Hiraga S. Subcellular Positioning of F Plasmid Mediated by Dynamic Localization of SopA and SopB. J Mol Biol 2006; 356:850-63. [PMID: 16403518 DOI: 10.1016/j.jmb.2005.11.088] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2005] [Revised: 11/11/2005] [Accepted: 11/30/2005] [Indexed: 11/16/2022]
Abstract
SopA, SopB proteins and the cis-acting sopC DNA region of F plasmid are essential for partitioning of the plasmid, ensuring proper subcellular positioning of the plasmid DNA molecules. We have analyzed by immunofluorescence microscopy the subcellular localization of SopA and SopB. The majority of SopB molecules formed foci, which localized frequently with F plasmid DNA molecules. The foci increased in number in proportion to the cell length. Interestingly, beside the foci formation, SopB formed a spiral structure that was dependent on SopA, which also formed a spiral structure, independent of the presence of SopB, and these two structures partially overlapped. On the basis of these results and previous biochemical studies together with our simulations, we propose a theoretical model named "the reaction-diffusion partitioning model", using reaction-diffusion equations that explain the dynamic subcellular localization of SopA and SopB proteins and the subcellular positioning of F plasmid. We hypothesized that sister copies of plasmid DNA compete with each other for sites at which SopB multimer is at the optimum concentration. The plasmid incompatibility mediated by the Sop system might be explained clearly by this hypothesis.
Collapse
Affiliation(s)
- Shun Adachi
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Konoe-cho, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
19
|
Pavin N, Paljetak HC, Krstić V. Min-protein oscillations in Escherichia coli with spontaneous formation of two-stranded filaments in a three-dimensional stochastic reaction-diffusion model. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2006; 73:021904. [PMID: 16605359 DOI: 10.1103/physreve.73.021904] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2005] [Revised: 11/28/2005] [Indexed: 05/08/2023]
Abstract
We introduce a three-dimensional stochastic reaction-diffusion model to describe MinD/MinE dynamical structures in Escherichia coli. This model spontaneously generates pole-to-pole oscillations of the membrane-associated MinD proteins, MinE ring, as well as filaments of the membrane-associated MinD proteins. Experimental data suggest MinD filaments are two-stranded. In order to model them we assume that each membrane-associated MinD protein can form up to three bonds with adjacent membrane-associated MinD molecules and that MinE induced hydrolysis strongly depends on the number of bonds MinD has established.
Collapse
Affiliation(s)
- Nenad Pavin
- Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | | | | |
Collapse
|
20
|
Kerr RA, Levine H, Sejnowski TJ, Rappel WJ. Division accuracy in a stochastic model of Min oscillations in Escherichia coli. Proc Natl Acad Sci U S A 2005; 103:347-52. [PMID: 16387859 PMCID: PMC1326155 DOI: 10.1073/pnas.0505825102] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Accurate cell division in Escherichia coli requires the Min proteins MinC, MinD, and MinE as well as the presence of nucleoids. MinD and MinE exhibit spatial oscillations, moving from pole to pole of the bacterium, resulting in an average MinD concentration that is low at the center of the cell and high at the poles. This concentration minimum is thought to signal the site of cell division. Deterministic models of the Min oscillations reproduce many observed features of the system, including the concentration minimum of MinD. However, there are only a few thousand Min proteins in a bacterium, so stochastic effects are likely to play an important role. Here, we show that Monte Carlo simulations with a large number of proteins agree well with the results from a deterministic treatment of the equations. The location of minimum local MinD concentration is too variable to account for cell division accuracy in wild-type, but is consistent with the accuracy of cell division in cells without nucleoids. This finding confirms the need to include additional mechanisms, such as reciprocal interactions with the cell division ring or positioning of the nucleoids, to explain wild-type accuracy.
Collapse
Affiliation(s)
- Rex A Kerr
- Computational Neurobiology Laboratory and Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|